snapper.c revision 1.2 1 /* $NetBSD: snapper.c,v 1.2 2004/10/29 12:57:16 yamt Exp $ */
2 /* Id: snapper.c,v 1.11 2002/10/31 17:42:13 tsubai Exp */
3
4 /*-
5 * Copyright (c) 2002 Tsubai Masanari. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 /*
31 * Datasheet is available from
32 * http://www.ti.com/sc/docs/products/analog/tas3004.html
33 */
34
35 #include <sys/param.h>
36 #include <sys/audioio.h>
37 #include <sys/device.h>
38 #include <sys/systm.h>
39
40 #include <dev/auconv.h>
41 #include <dev/audio_if.h>
42 #include <dev/mulaw.h>
43 #include <dev/ofw/openfirm.h>
44 #include <macppc/dev/dbdma.h>
45
46 #include <uvm/uvm_extern.h>
47
48 #include <machine/autoconf.h>
49 #include <machine/pio.h>
50
51 #ifdef SNAPPER_DEBUG
52 # define DPRINTF printf
53 #else
54 # define DPRINTF while (0) printf
55 #endif
56
57 struct snapper_softc {
58 struct device sc_dev;
59 int sc_flags;
60 int sc_node;
61
62 void (*sc_ointr)(void *); /* dma completion intr handler */
63 void *sc_oarg; /* arg for sc_ointr() */
64 int sc_opages; /* # of output pages */
65
66 void (*sc_iintr)(void *); /* dma completion intr handler */
67 void *sc_iarg; /* arg for sc_iintr() */
68
69 u_int sc_record_source; /* recording source mask */
70 u_int sc_output_mask; /* output source mask */
71
72 u_char *sc_reg;
73 struct device *sc_i2c;
74
75 u_int sc_vol_l;
76 u_int sc_vol_r;
77
78 dbdma_regmap_t *sc_odma;
79 dbdma_regmap_t *sc_idma;
80 struct dbdma_command sc_odmacmd[20];
81 struct dbdma_command sc_idmacmd[20];
82 };
83
84 int snapper_match(struct device *, struct cfdata *, void *);
85 void snapper_attach(struct device *, struct device *, void *);
86 void snapper_defer(struct device *);
87 int snapper_intr(void *);
88 int snapper_open(void *, int);
89 void snapper_close(void *);
90 int snapper_query_encoding(void *, struct audio_encoding *);
91 int snapper_set_params(void *, int, int, struct audio_params *,
92 struct audio_params *);
93 int snapper_round_blocksize(void *, int);
94 int snapper_halt_output(void *);
95 int snapper_halt_input(void *);
96 int snapper_getdev(void *, struct audio_device *);
97 int snapper_set_port(void *, mixer_ctrl_t *);
98 int snapper_get_port(void *, mixer_ctrl_t *);
99 int snapper_query_devinfo(void *, mixer_devinfo_t *);
100 size_t snapper_round_buffersize(void *, int, size_t);
101 paddr_t snapper_mappage(void *, void *, off_t, int);
102 int snapper_get_props(void *);
103 int snapper_trigger_output(void *, void *, void *, int, void (*)(void *),
104 void *, struct audio_params *);
105 int snapper_trigger_input(void *, void *, void *, int, void (*)(void *),
106 void *, struct audio_params *);
107 void snapper_set_volume(struct snapper_softc *, int, int);
108 int snapper_set_rate(struct snapper_softc *, int);
109
110 int tas3004_write(struct snapper_softc *, u_int, const void *);
111 static int gpio_read(char *);
112 static void gpio_write(char *, int);
113 void snapper_mute_speaker(struct snapper_softc *, int);
114 void snapper_mute_headphone(struct snapper_softc *, int);
115 int snapper_cint(void *);
116 int tas3004_init(struct snapper_softc *);
117 void snapper_init(struct snapper_softc *, int);
118
119 static void mono16_to_stereo16(void *, u_char *, int);
120 static void swap_bytes_mono16_to_stereo16(void *, u_char *, int);
121
122 /* XXX */
123 int ki2c_setmode(struct device *, int);
124 int ki2c_write(struct device *, int, int, const void *, int);
125 void ki2c_writereg(struct device *, int, u_int);
126
127
128 struct cfattach snapper_ca = {
129 "snapper", {}, sizeof(struct snapper_softc),
130 snapper_match, snapper_attach
131 };
132
133 const struct audio_hw_if snapper_hw_if = {
134 snapper_open,
135 snapper_close,
136 NULL,
137 snapper_query_encoding,
138 snapper_set_params,
139 snapper_round_blocksize,
140 NULL,
141 NULL,
142 NULL,
143 NULL,
144 NULL,
145 snapper_halt_output,
146 snapper_halt_input,
147 NULL,
148 snapper_getdev,
149 NULL,
150 snapper_set_port,
151 snapper_get_port,
152 snapper_query_devinfo,
153 NULL,
154 NULL,
155 snapper_round_buffersize,
156 snapper_mappage,
157 snapper_get_props,
158 snapper_trigger_output,
159 snapper_trigger_input,
160 NULL
161 };
162
163 struct audio_device snapper_device = {
164 "SNAPPER",
165 "",
166 "snapper"
167 };
168
169 static u_char *amp_mute;
170 static u_char *headphone_mute;
171 static u_char *audio_hw_reset;
172 static u_char *headphone_detect;
173 static int headphone_detect_active;
174
175
176 /* I2S registers */
177 #define I2S_INT 0x00
178 #define I2S_FORMAT 0x10
179 #define I2S_FRAMECOUNT 0x40
180 #define I2S_FRAMEMATCH 0x50
181 #define I2S_WORDSIZE 0x60
182
183 /* TAS3004 registers */
184 #define DEQ_MCR1 0x01 /* Main control register 1 (1byte) */
185 #define DEQ_DRC 0x02 /* Dynamic range compression (6bytes?) */
186 #define DEQ_VOLUME 0x04 /* Volume (6bytes) */
187 #define DEQ_TREBLE 0x05 /* Treble control (1byte) */
188 #define DEQ_BASS 0x06 /* Bass control (1byte) */
189 #define DEQ_MIXER_L 0x07 /* Mixer left gain (9bytes) */
190 #define DEQ_MIXER_R 0x08 /* Mixer right gain (9bytes) */
191 #define DEQ_LB0 0x0a /* Left biquad 0 (15bytes) */
192 #define DEQ_LB1 0x0b /* Left biquad 1 (15bytes) */
193 #define DEQ_LB2 0x0c /* Left biquad 2 (15bytes) */
194 #define DEQ_LB3 0x0d /* Left biquad 3 (15bytes) */
195 #define DEQ_LB4 0x0e /* Left biquad 4 (15bytes) */
196 #define DEQ_LB5 0x0f /* Left biquad 5 (15bytes) */
197 #define DEQ_LB6 0x10 /* Left biquad 6 (15bytes) */
198 #define DEQ_RB0 0x13 /* Right biquad 0 (15bytes) */
199 #define DEQ_RB1 0x14 /* Right biquad 1 (15bytes) */
200 #define DEQ_RB2 0x15 /* Right biquad 2 (15bytes) */
201 #define DEQ_RB3 0x16 /* Right biquad 3 (15bytes) */
202 #define DEQ_RB4 0x17 /* Right biquad 4 (15bytes) */
203 #define DEQ_RB5 0x18 /* Right biquad 5 (15bytes) */
204 #define DEQ_RB6 0x19 /* Right biquad 6 (15bytes) */
205 #define DEQ_LLB 0x21 /* Left loudness biquad (15bytes) */
206 #define DEQ_RLB 0x22 /* Right loudness biquad (15bytes) */
207 #define DEQ_LLB_GAIN 0x23 /* Left loudness biquad gain (3bytes) */
208 #define DEQ_RLB_GAIN 0x24 /* Right loudness biquad gain (3bytes) */
209 #define DEQ_ACR 0x40 /* Analog control register (1byte) */
210 #define DEQ_MCR2 0x43 /* Main control register 2 (1byte) */
211
212 #define DEQ_MCR1_FL 0x80 /* Fast load */
213 #define DEQ_MCR1_SC 0x40 /* SCLK frequency */
214 #define DEQ_MCR1_SC_32 0x00 /* 32fs */
215 #define DEQ_MCR1_SC_64 0x40 /* 64fs */
216 #define DEQ_MCR1_SM 0x30 /* Output serial port mode */
217 #define DEQ_MCR1_SM_L 0x00 /* Left justified */
218 #define DEQ_MCR1_SM_R 0x10 /* Right justified */
219 #define DEQ_MCR1_SM_I2S 0x20 /* I2S */
220 #define DEQ_MCR1_W 0x03 /* Serial port word length */
221 #define DEQ_MCR1_W_16 0x00 /* 16 bit */
222 #define DEQ_MCR1_W_18 0x01 /* 18 bit */
223 #define DEQ_MCR1_W_20 0x02 /* 20 bit */
224
225 #define DEQ_MCR2_DL 0x80 /* Download */
226 #define DEQ_MCR2_AP 0x02 /* All pass mode */
227
228 #define DEQ_ACR_ADM 0x80 /* ADC output mode */
229 #define DEQ_ACR_LRB 0x40 /* Select B input */
230 #define DEQ_ACR_DM 0x0c /* De-emphasis control */
231 #define DEQ_ACR_DM_OFF 0x00 /* off */
232 #define DEQ_ACR_DM_48 0x04 /* fs = 48kHz */
233 #define DEQ_ACR_DM_44 0x08 /* fs = 44.1kHz */
234 #define DEQ_ACR_INP 0x02 /* Analog input select */
235 #define DEQ_ACR_INP_A 0x00 /* A */
236 #define DEQ_ACR_INP_B 0x02 /* B */
237 #define DEQ_ACR_APD 0x01 /* Analog power down */
238
239 struct tas3004_reg {
240 u_char MCR1[1];
241 u_char DRC[6];
242 u_char VOLUME[6];
243 u_char TREBLE[1];
244 u_char BASS[1];
245 u_char MIXER_L[9];
246 u_char MIXER_R[9];
247 u_char LB0[15];
248 u_char LB1[15];
249 u_char LB2[15];
250 u_char LB3[15];
251 u_char LB4[15];
252 u_char LB5[15];
253 u_char LB6[15];
254 u_char RB0[15];
255 u_char RB1[15];
256 u_char RB2[15];
257 u_char RB3[15];
258 u_char RB4[15];
259 u_char RB5[15];
260 u_char RB6[15];
261 u_char LLB[15];
262 u_char RLB[15];
263 u_char LLB_GAIN[3];
264 u_char RLB_GAIN[3];
265 u_char ACR[1];
266 u_char MCR2[1];
267 };
268
269 #define GPIO_OUTSEL 0xf0 /* Output select */
270 /* 0x00 GPIO bit0 is output
271 0x10 media-bay power
272 0x20 reserved
273 0x30 MPIC */
274
275 #define GPIO_ALTOE 0x08 /* Alternate output enable */
276 /* 0x00 Use DDR
277 0x08 Use output select */
278
279 #define GPIO_DDR 0x04 /* Data direction */
280 #define GPIO_DDR_OUTPUT 0x04 /* Output */
281 #define GPIO_DDR_INPUT 0x00 /* Input */
282
283 #define GPIO_LEVEL 0x02 /* Pin level (RO) */
284
285 #define GPIO_DATA 0x01 /* Data */
286
287 int
288 snapper_match(parent, match, aux)
289 struct device *parent;
290 struct cfdata *match;
291 void *aux;
292 {
293 struct confargs *ca = aux;
294 int soundbus, soundchip;
295 char compat[32];
296
297 if (strcmp(ca->ca_name, "i2s") != 0)
298 return 0;
299
300 if ((soundbus = OF_child(ca->ca_node)) == 0 ||
301 (soundchip = OF_child(soundbus)) == 0)
302 return 0;
303
304 bzero(compat, sizeof compat);
305 OF_getprop(soundchip, "compatible", compat, sizeof compat);
306
307 if (strcmp(compat, "snapper") != 0)
308 return 0;
309
310 return 1;
311 }
312
313 void
314 snapper_attach(parent, self, aux)
315 struct device *parent;
316 struct device *self;
317 void *aux;
318 {
319 struct snapper_softc *sc = (struct snapper_softc *)self;
320 struct confargs *ca = aux;
321 int cirq, oirq, iirq, cirq_type, oirq_type, iirq_type;
322 int soundbus, intr[6];
323
324 #ifdef DIAGNOSTIC
325 if ((vaddr_t)sc->sc_odmacmd & 0x0f) {
326 printf(": bad dbdma alignment\n");
327 return;
328 }
329 #endif
330
331 ca->ca_reg[0] += ca->ca_baseaddr;
332 ca->ca_reg[2] += ca->ca_baseaddr;
333 ca->ca_reg[4] += ca->ca_baseaddr;
334
335 sc->sc_node = ca->ca_node;
336 sc->sc_reg = (void *)ca->ca_reg[0];
337 sc->sc_odma = (void *)ca->ca_reg[2];
338 sc->sc_idma = (void *)ca->ca_reg[4];
339
340 soundbus = OF_child(ca->ca_node);
341 OF_getprop(soundbus, "interrupts", intr, sizeof intr);
342 cirq = intr[0];
343 oirq = intr[2];
344 iirq = intr[4];
345 cirq_type = intr[1] ? IST_LEVEL : IST_EDGE;
346 oirq_type = intr[3] ? IST_LEVEL : IST_EDGE;
347 iirq_type = intr[5] ? IST_LEVEL : IST_EDGE;
348
349 /* intr_establish(cirq, cirq_type, IPL_AUDIO, snapper_intr, sc); */
350 intr_establish(oirq, oirq_type, IPL_AUDIO, snapper_intr, sc);
351 /* intr_establish(iirq, iirq_type, IPL_AUDIO, snapper_intr, sc); */
352
353 printf("%s: irq %d,%d,%d\n", sc->sc_dev.dv_xname, cirq, oirq, iirq);
354
355 config_interrupts(self, snapper_defer);
356 }
357
358 void
359 snapper_defer(struct device *dev)
360 {
361 struct snapper_softc *sc = (struct snapper_softc *)dev;
362 struct device *dv;
363
364 for (dv = alldevs.tqh_first; dv; dv=dv->dv_list.tqe_next)
365 if (strncmp(dv->dv_xname, "ki2c", 4) == 0 &&
366 strncmp(dv->dv_parent->dv_xname, "obio", 4) == 0)
367 sc->sc_i2c = dv;
368 if (sc->sc_i2c == NULL) {
369 printf("%s: unable to find i2c\n", sc->sc_dev.dv_xname);
370 return;
371 }
372
373 /* XXX If i2c was failed to attach, what should we do? */
374
375 audio_attach_mi(&snapper_hw_if, sc, &sc->sc_dev);
376
377 /* ki2c_setmode(sc->sc_i2c, I2C_STDSUBMODE); */
378 snapper_init(sc, sc->sc_node);
379 }
380
381 int
382 snapper_intr(v)
383 void *v;
384 {
385 struct snapper_softc *sc = v;
386 struct dbdma_command *cmd = sc->sc_odmacmd;
387 int count = sc->sc_opages;
388 int status;
389
390 /* Fill used buffer(s). */
391 while (count-- > 0) {
392 if ((dbdma_ld16(&cmd->d_command) & 0x30) == 0x30) {
393 status = dbdma_ld16(&cmd->d_status);
394 cmd->d_status = 0;
395 if (status) /* status == 0x8400 */
396 if (sc->sc_ointr)
397 (*sc->sc_ointr)(sc->sc_oarg);
398 }
399 cmd++;
400 }
401
402 return 1;
403 }
404
405 int
406 snapper_open(h, flags)
407 void *h;
408 int flags;
409 {
410 return 0;
411 }
412
413 /*
414 * Close function is called at splaudio().
415 */
416 void
417 snapper_close(h)
418 void *h;
419 {
420 struct snapper_softc *sc = h;
421
422 snapper_halt_output(sc);
423 snapper_halt_input(sc);
424
425 sc->sc_ointr = 0;
426 sc->sc_iintr = 0;
427 }
428
429 int
430 snapper_query_encoding(h, ae)
431 void *h;
432 struct audio_encoding *ae;
433 {
434 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
435
436 switch (ae->index) {
437 case 0:
438 strcpy(ae->name, AudioEslinear);
439 ae->encoding = AUDIO_ENCODING_SLINEAR;
440 ae->precision = 16;
441 ae->flags = 0;
442 return 0;
443 case 1:
444 strcpy(ae->name, AudioEslinear_be);
445 ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
446 ae->precision = 16;
447 ae->flags = 0;
448 return 0;
449 case 2:
450 strcpy(ae->name, AudioEslinear_le);
451 ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
452 ae->precision = 16;
453 return 0;
454 case 3:
455 strcpy(ae->name, AudioEulinear_be);
456 ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
457 ae->precision = 16;
458 return 0;
459 case 4:
460 strcpy(ae->name, AudioEulinear_le);
461 ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
462 ae->precision = 16;
463 return 0;
464 case 5:
465 strcpy(ae->name, AudioEmulaw);
466 ae->encoding = AUDIO_ENCODING_ULAW;
467 ae->precision = 8;
468 return 0;
469 case 6:
470 strcpy(ae->name, AudioEalaw);
471 ae->encoding = AUDIO_ENCODING_ALAW;
472 ae->precision = 8;
473 return 0;
474 default:
475 return EINVAL;
476 }
477 }
478
479 static void
480 mono16_to_stereo16(v, p, cc)
481 void *v;
482 u_char *p;
483 int cc;
484 {
485 int x;
486 int16_t *src, *dst;
487
488 src = (void *)(p + cc);
489 dst = (void *)(p + cc * 2);
490 while (cc > 0) {
491 x = *--src;
492 *--dst = x;
493 *--dst = x;
494 cc -= 2;
495 }
496 }
497
498 static void
499 swap_bytes_mono16_to_stereo16(v, p, cc)
500 void *v;
501 u_char *p;
502 int cc;
503 {
504 swap_bytes(v, p, cc);
505 mono16_to_stereo16(v, p, cc);
506 }
507
508 int
509 snapper_set_params(h, setmode, usemode, play, rec)
510 void *h;
511 int setmode, usemode;
512 struct audio_params *play, *rec;
513 {
514 struct snapper_softc *sc = h;
515 struct audio_params *p;
516 int mode, rate;
517
518 p = NULL;
519
520 /*
521 * This device only has one clock, so make the sample rates match.
522 */
523 if (play->sample_rate != rec->sample_rate &&
524 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
525 if (setmode == AUMODE_PLAY) {
526 rec->sample_rate = play->sample_rate;
527 setmode |= AUMODE_RECORD;
528 } else if (setmode == AUMODE_RECORD) {
529 play->sample_rate = rec->sample_rate;
530 setmode |= AUMODE_PLAY;
531 } else
532 return EINVAL;
533 }
534
535 for (mode = AUMODE_RECORD; mode != -1;
536 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
537 if ((setmode & mode) == 0)
538 continue;
539
540 p = mode == AUMODE_PLAY ? play : rec;
541
542 if (p->sample_rate < 4000 || p->sample_rate > 50000 ||
543 (p->precision != 8 && p->precision != 16) ||
544 (p->channels != 1 && p->channels != 2))
545 return EINVAL;
546
547 p->factor = 1;
548 p->sw_code = 0;
549
550 switch (p->encoding) {
551
552 case AUDIO_ENCODING_SLINEAR_LE:
553 if (p->channels == 2 && p->precision == 16) {
554 p->sw_code = swap_bytes;
555 break;
556 }
557 if (p->channels == 1 && p->precision == 16) {
558 p->factor = 2;
559 p->sw_code = swap_bytes_mono16_to_stereo16;
560 break;
561 }
562 return EINVAL;
563 case AUDIO_ENCODING_SLINEAR_BE:
564 if (p->channels == 1 && p->precision == 16) {
565 p->factor = 2;
566 p->sw_code = mono16_to_stereo16;
567 break;
568 }
569 if (p->channels == 2 && p->precision == 16)
570 break;
571
572 return EINVAL;
573
574 case AUDIO_ENCODING_ULINEAR_LE:
575 if (p->channels == 2 && p->precision == 16) {
576 p->sw_code = swap_bytes_change_sign16_be;
577 break;
578 }
579 return EINVAL;
580
581 case AUDIO_ENCODING_ULINEAR_BE:
582 if (p->channels == 2 && p->precision == 16) {
583 p->sw_code = change_sign16_be;
584 break;
585 }
586 return EINVAL;
587
588 case AUDIO_ENCODING_ULAW:
589 if (mode == AUMODE_PLAY) {
590 p->factor = 2;
591 p->sw_code = mulaw_to_slinear16_be;
592 break;
593 } else
594 break; /* XXX */
595
596 return EINVAL;
597
598 case AUDIO_ENCODING_ALAW:
599 if (mode == AUMODE_PLAY) {
600 p->factor = 2;
601 p->sw_code = alaw_to_slinear16_be;
602 break;
603 }
604 return EINVAL;
605
606 default:
607 return EINVAL;
608 }
609 }
610
611 /* Set the speed */
612 rate = p->sample_rate;
613
614 if (snapper_set_rate(sc, rate))
615 return EINVAL;
616
617 return 0;
618 }
619
620 int
621 snapper_round_blocksize(h, size)
622 void *h;
623 int size;
624 {
625 if (size < NBPG)
626 size = NBPG;
627 return size & ~PGOFSET;
628 }
629
630 int
631 snapper_halt_output(h)
632 void *h;
633 {
634 struct snapper_softc *sc = h;
635
636 dbdma_stop(sc->sc_odma);
637 dbdma_reset(sc->sc_odma);
638 return 0;
639 }
640
641 int
642 snapper_halt_input(h)
643 void *h;
644 {
645 struct snapper_softc *sc = h;
646
647 dbdma_stop(sc->sc_idma);
648 dbdma_reset(sc->sc_idma);
649 return 0;
650 }
651
652 int
653 snapper_getdev(h, retp)
654 void *h;
655 struct audio_device *retp;
656 {
657 *retp = snapper_device;
658 return 0;
659 }
660
661 enum {
662 SNAPPER_MONITOR_CLASS,
663 SNAPPER_OUTPUT_CLASS,
664 SNAPPER_RECORD_CLASS,
665 SNAPPER_OUTPUT_SELECT,
666 SNAPPER_VOL_OUTPUT,
667 SNAPPER_INPUT_SELECT,
668 SNAPPER_VOL_INPUT,
669 SNAPPER_ENUM_LAST
670 };
671
672 int
673 snapper_set_port(h, mc)
674 void *h;
675 mixer_ctrl_t *mc;
676 {
677 struct snapper_softc *sc = h;
678 int l, r;
679
680 DPRINTF("snapper_set_port dev = %d, type = %d\n", mc->dev, mc->type);
681
682 l = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
683 r = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
684
685 switch (mc->dev) {
686 case SNAPPER_OUTPUT_SELECT:
687 /* No change necessary? */
688 if (mc->un.mask == sc->sc_output_mask)
689 return 0;
690
691 snapper_mute_speaker(sc, 1);
692 snapper_mute_headphone(sc, 1);
693 if (mc->un.mask & 1 << 0)
694 snapper_mute_speaker(sc, 0);
695 if (mc->un.mask & 1 << 1)
696 snapper_mute_headphone(sc, 0);
697
698 sc->sc_output_mask = mc->un.mask;
699 return 0;
700
701 case SNAPPER_VOL_OUTPUT:
702 snapper_set_volume(sc, l, r);
703 return 0;
704
705 case SNAPPER_INPUT_SELECT:
706 /* no change necessary? */
707 if (mc->un.mask == sc->sc_record_source)
708 return 0;
709 switch (mc->un.mask) {
710 case 1 << 0: /* CD */
711 case 1 << 1: /* microphone */
712 case 1 << 2: /* line in */
713 /* XXX TO BE DONE */
714 break;
715 default: /* invalid argument */
716 return EINVAL;
717 }
718 sc->sc_record_source = mc->un.mask;
719 return 0;
720
721 case SNAPPER_VOL_INPUT:
722 /* XXX TO BE DONE */
723 return 0;
724 }
725
726 return ENXIO;
727 }
728
729 int
730 snapper_get_port(h, mc)
731 void *h;
732 mixer_ctrl_t *mc;
733 {
734 struct snapper_softc *sc = h;
735
736 DPRINTF("snapper_get_port dev = %d, type = %d\n", mc->dev, mc->type);
737
738 switch (mc->dev) {
739 case SNAPPER_OUTPUT_SELECT:
740 mc->un.mask = sc->sc_output_mask;
741 return 0;
742
743 case SNAPPER_VOL_OUTPUT:
744 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_vol_l;
745 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_vol_r;
746 return 0;
747
748 case SNAPPER_INPUT_SELECT:
749 mc->un.mask = sc->sc_record_source;
750 return 0;
751
752 case SNAPPER_VOL_INPUT:
753 /* XXX TO BE DONE */
754 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 0;
755 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 0;
756 return 0;
757
758 default:
759 return ENXIO;
760 }
761
762 return 0;
763 }
764
765 int
766 snapper_query_devinfo(h, dip)
767 void *h;
768 mixer_devinfo_t *dip;
769 {
770 switch (dip->index) {
771
772 case SNAPPER_OUTPUT_SELECT:
773 dip->mixer_class = SNAPPER_MONITOR_CLASS;
774 strcpy(dip->label.name, AudioNoutput);
775 dip->type = AUDIO_MIXER_SET;
776 dip->prev = dip->next = AUDIO_MIXER_LAST;
777 dip->un.s.num_mem = 2;
778 strcpy(dip->un.s.member[0].label.name, AudioNspeaker);
779 dip->un.s.member[0].mask = 1 << 0;
780 strcpy(dip->un.s.member[1].label.name, AudioNheadphone);
781 dip->un.s.member[1].mask = 1 << 1;
782 return 0;
783
784 case SNAPPER_VOL_OUTPUT:
785 dip->mixer_class = SNAPPER_MONITOR_CLASS;
786 strcpy(dip->label.name, AudioNmaster);
787 dip->type = AUDIO_MIXER_VALUE;
788 dip->prev = dip->next = AUDIO_MIXER_LAST;
789 dip->un.v.num_channels = 2;
790 strcpy(dip->un.v.units.name, AudioNvolume);
791 return 0;
792
793 case SNAPPER_INPUT_SELECT:
794 dip->mixer_class = SNAPPER_RECORD_CLASS;
795 strcpy(dip->label.name, AudioNsource);
796 dip->type = AUDIO_MIXER_SET;
797 dip->prev = dip->next = AUDIO_MIXER_LAST;
798 dip->un.s.num_mem = 3;
799 strcpy(dip->un.s.member[0].label.name, AudioNcd);
800 dip->un.s.member[0].mask = 1 << 0;
801 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
802 dip->un.s.member[1].mask = 1 << 1;
803 strcpy(dip->un.s.member[2].label.name, AudioNline);
804 dip->un.s.member[2].mask = 1 << 2;
805 return 0;
806
807 case SNAPPER_VOL_INPUT:
808 dip->mixer_class = SNAPPER_RECORD_CLASS;
809 strcpy(dip->label.name, AudioNrecord);
810 dip->type = AUDIO_MIXER_VALUE;
811 dip->prev = dip->next = AUDIO_MIXER_LAST;
812 dip->un.v.num_channels = 2;
813 strcpy(dip->un.v.units.name, AudioNvolume);
814 return 0;
815
816 case SNAPPER_MONITOR_CLASS:
817 dip->mixer_class = SNAPPER_MONITOR_CLASS;
818 strcpy(dip->label.name, AudioCmonitor);
819 dip->type = AUDIO_MIXER_CLASS;
820 dip->next = dip->prev = AUDIO_MIXER_LAST;
821 return 0;
822
823 case SNAPPER_OUTPUT_CLASS:
824 dip->mixer_class = SNAPPER_OUTPUT_CLASS;
825 strcpy(dip->label.name, AudioCoutputs);
826 dip->type = AUDIO_MIXER_CLASS;
827 dip->next = dip->prev = AUDIO_MIXER_LAST;
828 return 0;
829
830 case SNAPPER_RECORD_CLASS:
831 dip->mixer_class = SNAPPER_RECORD_CLASS;
832 strcpy(dip->label.name, AudioCrecord);
833 dip->type = AUDIO_MIXER_CLASS;
834 dip->next = dip->prev = AUDIO_MIXER_LAST;
835 return 0;
836 }
837
838 return ENXIO;
839 }
840
841 size_t
842 snapper_round_buffersize(h, dir, size)
843 void *h;
844 int dir;
845 size_t size;
846 {
847 if (size > 65536)
848 size = 65536;
849 return size;
850 }
851
852 paddr_t
853 snapper_mappage(h, mem, off, prot)
854 void *h;
855 void *mem;
856 off_t off;
857 int prot;
858 {
859 if (off < 0)
860 return -1;
861 return -1; /* XXX */
862 }
863
864 int
865 snapper_get_props(h)
866 void *h;
867 {
868 return AUDIO_PROP_FULLDUPLEX /* | AUDIO_PROP_MMAP */;
869 }
870
871 int
872 snapper_trigger_output(h, start, end, bsize, intr, arg, param)
873 void *h;
874 void *start, *end;
875 int bsize;
876 void (*intr)(void *);
877 void *arg;
878 struct audio_params *param;
879 {
880 struct snapper_softc *sc = h;
881 struct dbdma_command *cmd = sc->sc_odmacmd;
882 vaddr_t va;
883 int i, len, intmode;
884
885 DPRINTF("trigger_output %p %p 0x%x\n", start, end, bsize);
886
887 sc->sc_ointr = intr;
888 sc->sc_oarg = arg;
889 sc->sc_opages = ((char *)end - (char *)start) / NBPG;
890
891 #ifdef DIAGNOSTIC
892 if (sc->sc_opages > 16)
893 panic("snapper_trigger_output");
894 #endif
895
896 va = (vaddr_t)start;
897 len = 0;
898 for (i = sc->sc_opages; i > 0; i--) {
899 len += NBPG;
900 if (len < bsize)
901 intmode = 0;
902 else {
903 len = 0;
904 intmode = DBDMA_INT_ALWAYS;
905 }
906
907 DBDMA_BUILD(cmd, DBDMA_CMD_OUT_MORE, 0, NBPG, vtophys(va), intmode, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
908 cmd++;
909 va += NBPG;
910 }
911
912 DBDMA_BUILD(cmd, DBDMA_CMD_NOP, 0, 0,
913 0/*vtophys((vaddr_t)sc->sc_odmacmd)*/, 0, DBDMA_WAIT_NEVER, DBDMA_BRANCH_ALWAYS);
914
915 dbdma_st32(&cmd->d_cmddep, vtophys((vaddr_t)sc->sc_odmacmd));
916
917 dbdma_start(sc->sc_odma, sc->sc_odmacmd);
918
919 return 0;
920 }
921
922 int
923 snapper_trigger_input(h, start, end, bsize, intr, arg, param)
924 void *h;
925 void *start, *end;
926 int bsize;
927 void (*intr)(void *);
928 void *arg;
929 struct audio_params *param;
930 {
931 printf("snapper_trigger_input called\n");
932
933 return 1;
934 }
935
936 void
937 snapper_set_volume(sc, left, right)
938 struct snapper_softc *sc;
939 int left, right;
940 {
941 u_char vol[6];
942
943 sc->sc_vol_l = left;
944 sc->sc_vol_r = right;
945
946 left <<= 8; /* XXX for now */
947 right <<= 8;
948
949 vol[0] = left >> 16;
950 vol[1] = left >> 8;
951 vol[2] = left;
952 vol[3] = right >> 16;
953 vol[4] = right >> 8;
954 vol[5] = right;
955
956 tas3004_write(sc, DEQ_VOLUME, vol);
957 }
958
959 #define CLKSRC_49MHz 0x80000000 /* Use 49152000Hz Osc. */
960 #define CLKSRC_45MHz 0x40000000 /* Use 45158400Hz Osc. */
961 #define CLKSRC_18MHz 0x00000000 /* Use 18432000Hz Osc. */
962 #define MCLK_DIV 0x1f000000 /* MCLK = SRC / DIV */
963 #define MCLK_DIV1 0x14000000 /* MCLK = SRC */
964 #define MCLK_DIV3 0x13000000 /* MCLK = SRC / 3 */
965 #define MCLK_DIV5 0x12000000 /* MCLK = SRC / 5 */
966 #define SCLK_DIV 0x00f00000 /* SCLK = MCLK / DIV */
967 #define SCLK_DIV1 0x00800000
968 #define SCLK_DIV3 0x00900000
969 #define SCLK_MASTER 0x00080000 /* Master mode */
970 #define SCLK_SLAVE 0x00000000 /* Slave mode */
971 #define SERIAL_FORMAT 0x00070000
972 #define SERIAL_SONY 0x00000000
973 #define SERIAL_64x 0x00010000
974 #define SERIAL_32x 0x00020000
975 #define SERIAL_DAV 0x00040000
976 #define SERIAL_SILICON 0x00050000
977
978 // rate = fs = LRCLK
979 // SCLK = 64*LRCLK (I2S)
980 // MCLK = 256fs (typ. -- changeable)
981
982 // MCLK = clksrc / mdiv
983 // SCLK = MCLK / sdiv
984 // rate = SCLK / 64 ( = LRCLK = fs)
985
986 int
987 snapper_set_rate(sc, rate)
988 struct snapper_softc *sc;
989 int rate;
990 {
991 u_int reg = 0;
992 int MCLK;
993 int clksrc, mdiv, sdiv;
994 int mclk_fs;
995
996 switch (rate) {
997 case 8000:
998 clksrc = 18432000; /* 18MHz */
999 reg = CLKSRC_18MHz;
1000 mclk_fs = 256;
1001 break;
1002
1003 case 44100:
1004 clksrc = 45158400; /* 45MHz */
1005 reg = CLKSRC_45MHz;
1006 mclk_fs = 256;
1007 break;
1008
1009 case 48000:
1010 clksrc = 49152000; /* 49MHz */
1011 reg = CLKSRC_49MHz;
1012 mclk_fs = 256;
1013 break;
1014
1015 default:
1016 return EINVAL;
1017 }
1018
1019 MCLK = rate * mclk_fs;
1020 mdiv = clksrc / MCLK; // 4
1021 sdiv = mclk_fs / 64; // 4
1022
1023 switch (mdiv) {
1024 case 1:
1025 reg |= MCLK_DIV1;
1026 break;
1027 case 3:
1028 reg |= MCLK_DIV3;
1029 break;
1030 case 5:
1031 reg |= MCLK_DIV5;
1032 break;
1033 default:
1034 reg |= ((mdiv / 2 - 1) << 24) & 0x1f000000;
1035 break;
1036 }
1037
1038 switch (sdiv) {
1039 case 1:
1040 reg |= SCLK_DIV1;
1041 break;
1042 case 3:
1043 reg |= SCLK_DIV3;
1044 break;
1045 default:
1046 reg |= ((sdiv / 2 - 1) << 20) & 0x00f00000;
1047 break;
1048 }
1049
1050 reg |= SCLK_MASTER; /* XXX master mode */
1051
1052 reg |= SERIAL_64x;
1053
1054 /* stereo input and output */
1055 DPRINTF("I2SSetDataWordSizeReg 0x%08x -> 0x%08x\n",
1056 in32rb(sc->sc_reg + I2S_WORDSIZE), 0x02000200);
1057 out32rb(sc->sc_reg + I2S_WORDSIZE, 0x02000200);
1058
1059 DPRINTF("I2SSetSerialFormatReg 0x%x -> 0x%x\n",
1060 in32rb(sc->sc_reg + I2S_FORMAT), reg);
1061 out32rb(sc->sc_reg + I2S_FORMAT, reg);
1062
1063 return 0;
1064 }
1065
1066 #define DEQaddr 0x6a
1067
1068 const struct tas3004_reg tas3004_initdata = {
1069 { DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_20 }, /* MCR1 */
1070 { 1, 0, 0, 0, 0, 0 }, /* DRC */
1071 { 0, 0, 0, 0, 0, 0 }, /* VOLUME */
1072 { 0x72 }, /* TREBLE */
1073 { 0x72 }, /* BASS */
1074 { 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 }, /* MIXER_L */
1075 { 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 }, /* MIXER_R */
1076 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1077 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1078 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1079 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1080 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1081 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1082 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1083 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1084 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1085 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1086 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1087 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1088 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1089 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1090 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1091 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1092 { 0, 0, 0 }, /* LLB_GAIN */
1093 { 0, 0, 0 }, /* RLB_GAIN */
1094 { 0 }, /* ACR */
1095 { 0 } /* MCR2 */
1096 };
1097
1098 const char tas3004_regsize[] = {
1099 0, /* 0x00 */
1100 sizeof tas3004_initdata.MCR1, /* 0x01 */
1101 sizeof tas3004_initdata.DRC, /* 0x02 */
1102 0, /* 0x03 */
1103 sizeof tas3004_initdata.VOLUME, /* 0x04 */
1104 sizeof tas3004_initdata.TREBLE, /* 0x05 */
1105 sizeof tas3004_initdata.BASS, /* 0x06 */
1106 sizeof tas3004_initdata.MIXER_L, /* 0x07 */
1107 sizeof tas3004_initdata.MIXER_R, /* 0x08 */
1108 0, /* 0x09 */
1109 sizeof tas3004_initdata.LB0, /* 0x0a */
1110 sizeof tas3004_initdata.LB1, /* 0x0b */
1111 sizeof tas3004_initdata.LB2, /* 0x0c */
1112 sizeof tas3004_initdata.LB3, /* 0x0d */
1113 sizeof tas3004_initdata.LB4, /* 0x0e */
1114 sizeof tas3004_initdata.LB5, /* 0x0f */
1115 sizeof tas3004_initdata.LB6, /* 0x10 */
1116 0, /* 0x11 */
1117 0, /* 0x12 */
1118 sizeof tas3004_initdata.RB0, /* 0x13 */
1119 sizeof tas3004_initdata.RB1, /* 0x14 */
1120 sizeof tas3004_initdata.RB2, /* 0x15 */
1121 sizeof tas3004_initdata.RB3, /* 0x16 */
1122 sizeof tas3004_initdata.RB4, /* 0x17 */
1123 sizeof tas3004_initdata.RB5, /* 0x18 */
1124 sizeof tas3004_initdata.RB6, /* 0x19 */
1125 0,0,0,0, 0,0,
1126 0, /* 0x20 */
1127 sizeof tas3004_initdata.LLB, /* 0x21 */
1128 sizeof tas3004_initdata.RLB, /* 0x22 */
1129 sizeof tas3004_initdata.LLB_GAIN, /* 0x23 */
1130 sizeof tas3004_initdata.RLB_GAIN, /* 0x24 */
1131 0,0,0,0, 0,0,0,0, 0,0,0,
1132 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,
1133 sizeof tas3004_initdata.ACR, /* 0x40 */
1134 0, /* 0x41 */
1135 0, /* 0x42 */
1136 sizeof tas3004_initdata.MCR2 /* 0x43 */
1137 };
1138
1139 int
1140 tas3004_write(sc, reg, data)
1141 struct snapper_softc *sc;
1142 u_int reg;
1143 const void *data;
1144 {
1145 int size;
1146
1147 KASSERT(reg < sizeof tas3004_regsize);
1148 size = tas3004_regsize[reg];
1149 KASSERT(size > 0);
1150
1151 if (ki2c_write(sc->sc_i2c, DEQaddr, reg, data, size))
1152 return -1;
1153
1154 return 0;
1155 }
1156
1157 int
1158 gpio_read(addr)
1159 char *addr;
1160 {
1161 if (*addr & GPIO_DATA)
1162 return 1;
1163 return 0;
1164 }
1165
1166 void
1167 gpio_write(addr, val)
1168 char *addr;
1169 int val;
1170 {
1171 u_int data = GPIO_DDR_OUTPUT;
1172
1173 if (val)
1174 data |= GPIO_DATA;
1175 *addr = data;
1176 asm volatile ("eieio");
1177 }
1178
1179 #define headphone_active 0 /* XXX OF */
1180 #define amp_active 0 /* XXX OF */
1181
1182 void
1183 snapper_mute_speaker(sc, mute)
1184 struct snapper_softc *sc;
1185 int mute;
1186 {
1187 u_int x;
1188
1189 DPRINTF("ampmute %d --> ", gpio_read(amp_mute));
1190
1191 if (mute)
1192 x = amp_active; /* mute */
1193 else
1194 x = !amp_active; /* unmute */
1195 if (x != gpio_read(amp_mute))
1196 gpio_write(amp_mute, x);
1197
1198 DPRINTF("%d\n", gpio_read(amp_mute));
1199 }
1200
1201 void
1202 snapper_mute_headphone(sc, mute)
1203 struct snapper_softc *sc;
1204 int mute;
1205 {
1206 u_int x;
1207
1208 DPRINTF("headphonemute %d --> ", gpio_read(headphone_mute));
1209
1210 if (mute)
1211 x = headphone_active; /* mute */
1212 else
1213 x = !headphone_active; /* unmute */
1214 if (x != gpio_read(headphone_mute))
1215 gpio_write(headphone_mute, x);
1216
1217 DPRINTF("%d\n", gpio_read(headphone_mute));
1218 }
1219
1220 int
1221 snapper_cint(v)
1222 void *v;
1223 {
1224 struct snapper_softc *sc = v;
1225 u_int sense;
1226
1227 sense = *headphone_detect;
1228 DPRINTF("headphone detect = 0x%x\n", sense);
1229
1230 if (((sense & 0x02) >> 1) == headphone_detect_active) {
1231 DPRINTF("headphone is inserted\n");
1232 snapper_mute_speaker(sc, 1);
1233 snapper_mute_headphone(sc, 0);
1234 sc->sc_output_mask = 1 << 1;
1235 } else {
1236 DPRINTF("headphone is NOT inserted\n");
1237 snapper_mute_speaker(sc, 0);
1238 snapper_mute_headphone(sc, 1);
1239 sc->sc_output_mask = 1 << 0;
1240 }
1241
1242 return 1;
1243 }
1244
1245 #define reset_active 0 /* XXX OF */
1246
1247 #define DEQ_WRITE(sc, reg, addr) \
1248 if (tas3004_write(sc, reg, addr)) goto err
1249
1250 int
1251 tas3004_init(sc)
1252 struct snapper_softc *sc;
1253 {
1254
1255 /* No reset port. Nothing to do. */
1256 if (audio_hw_reset == NULL)
1257 goto noreset;
1258
1259 /* Reset TAS3004. */
1260 gpio_write(audio_hw_reset, !reset_active); /* Negate RESET */
1261 delay(100000); /* XXX Really needed? */
1262
1263 gpio_write(audio_hw_reset, reset_active); /* Assert RESET */
1264 delay(1);
1265
1266 gpio_write(audio_hw_reset, !reset_active); /* Negate RESET */
1267 delay(10000);
1268
1269 noreset:
1270 DEQ_WRITE(sc, DEQ_LB0, tas3004_initdata.LB0);
1271 DEQ_WRITE(sc, DEQ_LB1, tas3004_initdata.LB1);
1272 DEQ_WRITE(sc, DEQ_LB2, tas3004_initdata.LB2);
1273 DEQ_WRITE(sc, DEQ_LB3, tas3004_initdata.LB3);
1274 DEQ_WRITE(sc, DEQ_LB4, tas3004_initdata.LB4);
1275 DEQ_WRITE(sc, DEQ_LB5, tas3004_initdata.LB5);
1276 DEQ_WRITE(sc, DEQ_LB6, tas3004_initdata.LB6);
1277 DEQ_WRITE(sc, DEQ_RB0, tas3004_initdata.RB0);
1278 DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1);
1279 DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1);
1280 DEQ_WRITE(sc, DEQ_RB2, tas3004_initdata.RB2);
1281 DEQ_WRITE(sc, DEQ_RB3, tas3004_initdata.RB3);
1282 DEQ_WRITE(sc, DEQ_RB4, tas3004_initdata.RB4);
1283 DEQ_WRITE(sc, DEQ_RB5, tas3004_initdata.RB5);
1284 DEQ_WRITE(sc, DEQ_MCR1, tas3004_initdata.MCR1);
1285 DEQ_WRITE(sc, DEQ_MCR2, tas3004_initdata.MCR2);
1286 DEQ_WRITE(sc, DEQ_DRC, tas3004_initdata.DRC);
1287 DEQ_WRITE(sc, DEQ_VOLUME, tas3004_initdata.VOLUME);
1288 DEQ_WRITE(sc, DEQ_TREBLE, tas3004_initdata.TREBLE);
1289 DEQ_WRITE(sc, DEQ_BASS, tas3004_initdata.BASS);
1290 DEQ_WRITE(sc, DEQ_MIXER_L, tas3004_initdata.MIXER_L);
1291 DEQ_WRITE(sc, DEQ_MIXER_R, tas3004_initdata.MIXER_R);
1292 DEQ_WRITE(sc, DEQ_LLB, tas3004_initdata.LLB);
1293 DEQ_WRITE(sc, DEQ_RLB, tas3004_initdata.RLB);
1294 DEQ_WRITE(sc, DEQ_LLB_GAIN, tas3004_initdata.LLB_GAIN);
1295 DEQ_WRITE(sc, DEQ_RLB_GAIN, tas3004_initdata.RLB_GAIN);
1296 DEQ_WRITE(sc, DEQ_ACR, tas3004_initdata.ACR);
1297
1298 return 0;
1299 err:
1300 printf("tas3004_init: error\n");
1301 return -1;
1302 }
1303
1304 /* FCR(0x3c) bits */
1305 #define I2S0CLKEN 0x1000
1306 #define I2S0EN 0x2000
1307 #define I2S1CLKEN 0x080000
1308 #define I2S1EN 0x100000
1309
1310 #define FCR3C_BITMASK "\020\25I2S1EN\24I2S1CLKEN\16I2S0EN\15I2S0CLKEN"
1311
1312 void
1313 snapper_init(sc, node)
1314 struct snapper_softc *sc;
1315 int node;
1316 {
1317 int gpio;
1318 int headphone_detect_intr = -1, headphone_detect_intrtype;
1319
1320 #ifdef SNAPPER_DEBUG
1321 char fcr[32];
1322
1323 bitmask_snprintf(in32rb(0x8000003c), FCR3C_BITMASK, fcr, sizeof fcr);
1324 printf("FCR(0x3c) 0x%s\n", fcr);
1325 #endif
1326
1327 gpio = getnodebyname(OF_parent(node), "gpio");
1328 DPRINTF(" /gpio 0x%x\n", gpio);
1329 gpio = OF_child(gpio);
1330 while (gpio) {
1331 char name[64], audio_gpio[64];
1332 int intr[2];
1333 char *addr;
1334
1335 bzero(name, sizeof name);
1336 bzero(audio_gpio, sizeof audio_gpio);
1337 addr = 0;
1338 OF_getprop(gpio, "name", name, sizeof name);
1339 OF_getprop(gpio, "audio-gpio", audio_gpio, sizeof audio_gpio);
1340 OF_getprop(gpio, "AAPL,address", &addr, sizeof addr);
1341 /* printf("0x%x %s %s\n", gpio, name, audio_gpio); */
1342
1343 /* gpio5 */
1344 if (strcmp(audio_gpio, "headphone-mute") == 0)
1345 headphone_mute = addr;
1346 /* gpio6 */
1347 if (strcmp(audio_gpio, "amp-mute") == 0)
1348 amp_mute = addr;
1349 /* extint-gpio15 */
1350 if (strcmp(audio_gpio, "headphone-detect") == 0) {
1351 headphone_detect = addr;
1352 OF_getprop(gpio, "audio-gpio-active-state",
1353 &headphone_detect_active, 4);
1354 OF_getprop(gpio, "interrupts", intr, 8);
1355 headphone_detect_intr = intr[0];
1356 headphone_detect_intrtype = intr[1];
1357 }
1358 /* gpio11 (keywest-11) */
1359 if (strcmp(audio_gpio, "audio-hw-reset") == 0)
1360 audio_hw_reset = addr;
1361 gpio = OF_peer(gpio);
1362 }
1363 DPRINTF(" headphone-mute %p\n", headphone_mute);
1364 DPRINTF(" amp-mute %p\n", amp_mute);
1365 DPRINTF(" headphone-detect %p\n", headphone_detect);
1366 DPRINTF(" headphone-detect active %x\n", headphone_detect_active);
1367 DPRINTF(" headphone-detect intr %x\n", headphone_detect_intr);
1368 DPRINTF(" audio-hw-reset %p\n", audio_hw_reset);
1369
1370 if (headphone_detect_intr != -1)
1371 intr_establish(headphone_detect_intr, IST_EDGE, IPL_AUDIO,
1372 snapper_cint, sc);
1373
1374 /* "sample-rates" (44100, 48000) */
1375 snapper_set_rate(sc, 44100);
1376
1377 /* Enable headphone interrupt? */
1378 *headphone_detect |= 0x80;
1379 asm volatile ("eieio");
1380
1381 /* i2c_set_port(port); */
1382
1383 #if 1
1384 /* Enable I2C interrupts. */
1385 #define IER 4
1386 #define I2C_INT_DATA 0x01
1387 #define I2C_INT_ADDR 0x02
1388 #define I2C_INT_STOP 0x04
1389 ki2c_writereg(sc->sc_i2c, IER,I2C_INT_DATA|I2C_INT_ADDR|I2C_INT_STOP);
1390 #endif
1391
1392 if (tas3004_init(sc))
1393 return;
1394
1395 /* Update headphone status. */
1396 snapper_cint(sc);
1397
1398 snapper_set_volume(sc, 80, 80);
1399 }
1400