snapper.c revision 1.20 1 /* $NetBSD: snapper.c,v 1.20 2007/04/04 02:14:57 jmcneill Exp $ */
2 /* Id: snapper.c,v 1.11 2002/10/31 17:42:13 tsubai Exp */
3 /* Id: i2s.c,v 1.12 2005/01/15 14:32:35 tsubai Exp */
4 /*-
5 * Copyright (c) 2002, 2003 Tsubai Masanari. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 /*
31 * Datasheet is available from
32 * http://www.ti.com/sc/docs/products/analog/tas3004.html
33 */
34
35 #include <sys/param.h>
36 #include <sys/audioio.h>
37 #include <sys/device.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40
41 #include <dev/auconv.h>
42 #include <dev/audio_if.h>
43 #include <dev/mulaw.h>
44 #include <dev/ofw/openfirm.h>
45 #include <macppc/dev/dbdma.h>
46
47 #include <uvm/uvm_extern.h>
48 #include <dev/i2c/i2cvar.h>
49
50 #include <machine/autoconf.h>
51 #include <machine/pio.h>
52
53 #include <macppc/dev/deqvar.h>
54
55 #ifdef SNAPPER_DEBUG
56 # define DPRINTF printf
57 #else
58 # define DPRINTF while (0) printf
59 #endif
60
61 struct snapper_softc {
62 struct device sc_dev;
63 int sc_flags;
64 int sc_node;
65
66 void (*sc_ointr)(void *); /* dma completion intr handler */
67 void *sc_oarg; /* arg for sc_ointr() */
68 int sc_opages; /* # of output pages */
69
70 void (*sc_iintr)(void *); /* dma completion intr handler */
71 void *sc_iarg; /* arg for sc_iintr() */
72 int sc_ipages; /* # of input pages */
73
74 u_int sc_record_source; /* recording source mask */
75 u_int sc_output_mask; /* output source mask */
76
77 u_char *sc_reg;
78 i2c_addr_t sc_deqaddr;
79 i2c_tag_t sc_i2c;
80
81 int sc_rate; /* current sampling rate */
82 int sc_bitspersample;
83 int sc_swvol;
84
85 u_int sc_vol_l;
86 u_int sc_vol_r;
87 u_int sc_treble;
88 u_int sc_bass;
89 u_int mixer[6]; /* s1_l, s2_l, an_l, s1_r, s2_r, an_r */
90
91 dbdma_regmap_t *sc_odma;
92 dbdma_regmap_t *sc_idma;
93 unsigned char dbdma_cmdspace[sizeof(struct dbdma_command) * 40 + 15];
94 struct dbdma_command *sc_odmacmd;
95 struct dbdma_command *sc_idmacmd;
96 };
97
98 int snapper_match(struct device *, struct cfdata *, void *);
99 void snapper_attach(struct device *, struct device *, void *);
100 void snapper_defer(struct device *);
101 int snapper_intr(void *);
102 void snapper_close(void *);
103 int snapper_query_encoding(void *, struct audio_encoding *);
104 int snapper_set_params(void *, int, int, audio_params_t *,
105 audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
106 int snapper_round_blocksize(void *, int, int, const audio_params_t *);
107 int snapper_halt_output(void *);
108 int snapper_halt_input(void *);
109 int snapper_getdev(void *, struct audio_device *);
110 int snapper_set_port(void *, mixer_ctrl_t *);
111 int snapper_get_port(void *, mixer_ctrl_t *);
112 int snapper_query_devinfo(void *, mixer_devinfo_t *);
113 size_t snapper_round_buffersize(void *, int, size_t);
114 paddr_t snapper_mappage(void *, void *, off_t, int);
115 int snapper_get_props(void *);
116 int snapper_trigger_output(void *, void *, void *, int, void (*)(void *),
117 void *, const audio_params_t *);
118 int snapper_trigger_input(void *, void *, void *, int, void (*)(void *),
119 void *, const audio_params_t *);
120 void snapper_set_volume(struct snapper_softc *, int, int);
121 int snapper_set_rate(struct snapper_softc *);
122 void snapper_set_treble(struct snapper_softc *, int);
123 void snapper_set_bass(struct snapper_softc *, int);
124 void snapper_write_mixers(struct snapper_softc *);
125
126 int tas3004_write(struct snapper_softc *, u_int, const void *);
127 static int gpio_read(char *);
128 static void gpio_write(char *, int);
129 void snapper_mute_speaker(struct snapper_softc *, int);
130 void snapper_mute_headphone(struct snapper_softc *, int);
131 int snapper_cint(void *);
132 int tas3004_init(struct snapper_softc *);
133 void snapper_init(struct snapper_softc *, int);
134
135 struct snapper_codecvar {
136 stream_filter_t base;
137 };
138
139 static stream_filter_t *snapper_factory
140 (int (*)(stream_fetcher_t *, audio_stream_t *, int));
141 static void snapper_dtor(stream_filter_t *);
142
143
144 /* XXX We can't access the hw device softc from our audio
145 * filter -- lame...
146 */
147 static u_int snapper_vol_l = 128, snapper_vol_r = 128;
148
149 /* XXX why doesn't auconv define this? */
150 #define DEFINE_FILTER(name) \
151 static int \
152 name##_fetch_to(stream_fetcher_t *, audio_stream_t *, int); \
153 stream_filter_t * name(struct audio_softc *, \
154 const audio_params_t *, const audio_params_t *); \
155 stream_filter_t * \
156 name(struct audio_softc *sc, const audio_params_t *from, \
157 const audio_params_t *to) \
158 { \
159 return snapper_factory(name##_fetch_to); \
160 } \
161 static int \
162 name##_fetch_to(stream_fetcher_t *self, audio_stream_t *dst, int max_used)
163
164 DEFINE_FILTER(snapper_volume)
165 {
166 stream_filter_t *this;
167 int16_t j;
168 int16_t *wp;
169 int m, err;
170
171 this = (stream_filter_t *)self;
172 max_used = (max_used + 1) & ~1;
173 if ((err = this->prev->fetch_to(this->prev, this->src, max_used)))
174 return err;
175 m = (dst->end - dst->start) & ~1;
176 m = min(m, max_used);
177 FILTER_LOOP_PROLOGUE(this->src, 2, dst, 2, m) {
178 j = (s[0] << 8 | s[1]);
179 wp = (int16_t *)d;
180 *wp = ((j * snapper_vol_l) / 255);
181 } FILTER_LOOP_EPILOGUE(this->src, dst);
182
183 return 0;
184 }
185
186 static stream_filter_t *
187 snapper_factory(int (*fetch_to)(stream_fetcher_t *, audio_stream_t *, int))
188 {
189 struct snapper_codecvar *this;
190
191 this = malloc(sizeof(*this), M_DEVBUF, M_WAITOK | M_ZERO);
192 this->base.base.fetch_to = fetch_to;
193 this->base.dtor = snapper_dtor;
194 this->base.set_fetcher = stream_filter_set_fetcher;
195 this->base.set_inputbuffer = stream_filter_set_inputbuffer;
196 return &this->base;
197 }
198
199 static void
200 snapper_dtor(stream_filter_t *this)
201 {
202 if (this != NULL)
203 free(this, M_DEVBUF);
204 }
205
206 struct cfattach snapper_ca = {
207 "snapper", {}, sizeof(struct snapper_softc),
208 snapper_match, snapper_attach
209 };
210
211 const struct audio_hw_if snapper_hw_if = {
212 NULL, /* open */
213 snapper_close,
214 NULL,
215 snapper_query_encoding,
216 snapper_set_params,
217 snapper_round_blocksize,
218 NULL,
219 NULL,
220 NULL,
221 NULL,
222 NULL,
223 snapper_halt_output,
224 snapper_halt_input,
225 NULL,
226 snapper_getdev,
227 NULL,
228 snapper_set_port,
229 snapper_get_port,
230 snapper_query_devinfo,
231 NULL,
232 NULL,
233 snapper_round_buffersize,
234 snapper_mappage,
235 snapper_get_props,
236 snapper_trigger_output,
237 snapper_trigger_input,
238 NULL
239 };
240
241 struct audio_device snapper_device = {
242 "SNAPPER",
243 "",
244 "snapper"
245 };
246
247 const uint8_t snapper_basstab[] = {
248 0x96, /* -18dB */
249 0x94, /* -17dB */
250 0x92, /* -16dB */
251 0x90, /* -15dB */
252 0x8e, /* -14dB */
253 0x8c, /* -13dB */
254 0x8a, /* -12dB */
255 0x88, /* -11dB */
256 0x86, /* -10dB */
257 0x84, /* -9dB */
258 0x82, /* -8dB */
259 0x80, /* -7dB */
260 0x7e, /* -6dB */
261 0x7c, /* -5dB */
262 0x7a, /* -4dB */
263 0x78, /* -3dB */
264 0x76, /* -2dB */
265 0x74, /* -1dB */
266 0x72, /* 0dB */
267 0x6f, /* 1dB */
268 0x6d, /* 2dB */
269 0x6a, /* 3dB */
270 0x67, /* 4dB */
271 0x65, /* 5dB */
272 0x62, /* 6dB */
273 0x5f, /* 7dB */
274 0x5b, /* 8dB */
275 0x55, /* 9dB */
276 0x4f, /* 10dB */
277 0x49, /* 11dB */
278 0x43, /* 12dB */
279 0x3b, /* 13dB */
280 0x33, /* 14dB */
281 0x29, /* 15dB */
282 0x1e, /* 16dB */
283 0x11, /* 17dB */
284 0x01, /* 18dB */
285 };
286
287 const uint8_t snapper_mixer_gain[178][3] = {
288 { 0x7f, 0x17, 0xaf }, /* 18.0 dB */
289 { 0x77, 0xfb, 0xaa }, /* 17.5 dB */
290 { 0x71, 0x45, 0x75 }, /* 17.0 dB */
291 { 0x6a, 0xef, 0x5d }, /* 16.5 dB */
292 { 0x64, 0xf4, 0x03 }, /* 16.0 dB */
293 { 0x5f, 0x4e, 0x52 }, /* 15.5 dB */
294 { 0x59, 0xf9, 0x80 }, /* 15.0 dB */
295 { 0x54, 0xf1, 0x06 }, /* 14.5 dB */
296 { 0x50, 0x30, 0xa1 }, /* 14.0 dB */
297 { 0x4b, 0xb4, 0x46 }, /* 13.5 dB */
298 { 0x47, 0x78, 0x28 }, /* 13.0 dB */
299 { 0x43, 0x78, 0xb0 }, /* 12.5 dB */
300 { 0x3f, 0xb2, 0x78 }, /* 12.0 dB */
301 { 0x3c, 0x22, 0x4c }, /* 11.5 dB */
302 { 0x38, 0xc5, 0x28 }, /* 11.0 dB */
303 { 0x35, 0x98, 0x2f }, /* 10.5 dB */
304 { 0x32, 0x98, 0xb0 }, /* 10.0 dB */
305 { 0x2f, 0xc4, 0x20 }, /* 9.5 dB */
306 { 0x2d, 0x18, 0x18 }, /* 9.0 dB */
307 { 0x2a, 0x92, 0x54 }, /* 8.5 dB */
308 { 0x28, 0x30, 0xaf }, /* 8.0 dB */
309 { 0x25, 0xf1, 0x25 }, /* 7.5 dB */
310 { 0x23, 0xd1, 0xcd }, /* 7.0 dB */
311 { 0x21, 0xd0, 0xd9 }, /* 6.5 dB */
312 { 0x1f, 0xec, 0x98 }, /* 6.0 dB */
313 { 0x1e, 0x23, 0x6d }, /* 5.5 dB */
314 { 0x1c, 0x73, 0xd5 }, /* 5.0 dB */
315 { 0x1a, 0xdc, 0x61 }, /* 4.5 dB */
316 { 0x19, 0x5b, 0xb8 }, /* 4.0 dB */
317 { 0x17, 0xf0, 0x94 }, /* 3.5 dB */
318 { 0x16, 0x99, 0xc0 }, /* 3.0 dB */
319 { 0x15, 0x56, 0x1a }, /* 2.5 dB */
320 { 0x14, 0x24, 0x8e }, /* 2.0 dB */
321 { 0x13, 0x04, 0x1a }, /* 1.5 dB */
322 { 0x11, 0xf3, 0xc9 }, /* 1.0 dB */
323 { 0x10, 0xf2, 0xb4 }, /* 0.5 dB */
324 { 0x10, 0x00, 0x00 }, /* 0.0 dB */
325 { 0x0f, 0x1a, 0xdf }, /* -0.5 dB */
326 { 0x0e, 0x42, 0x90 }, /* -1.0 dB */
327 { 0x0d, 0x76, 0x5a }, /* -1.5 dB */
328 { 0x0c, 0xb5, 0x91 }, /* -2.0 dB */
329 { 0x0b, 0xff, 0x91 }, /* -2.5 dB */
330 { 0x0b, 0x53, 0xbe }, /* -3.0 dB */
331 { 0x0a, 0xb1, 0x89 }, /* -3.5 dB */
332 { 0x0a, 0x18, 0x66 }, /* -4.0 dB */
333 { 0x09, 0x87, 0xd5 }, /* -4.5 dB */
334 { 0x08, 0xff, 0x59 }, /* -5.0 dB */
335 { 0x08, 0x7e, 0x80 }, /* -5.5 dB */
336 { 0x08, 0x04, 0xdc }, /* -6.0 dB */
337 { 0x07, 0x92, 0x07 }, /* -6.5 dB */
338 { 0x07, 0x25, 0x9d }, /* -7.0 dB */
339 { 0x06, 0xbf, 0x44 }, /* -7.5 dB */
340 { 0x06, 0x5e, 0xa5 }, /* -8.0 dB */
341 { 0x06, 0x03, 0x6e }, /* -8.5 dB */
342 { 0x05, 0xad, 0x50 }, /* -9.0 dB */
343 { 0x05, 0x5c, 0x04 }, /* -9.5 dB */
344 { 0x05, 0x0f, 0x44 }, /* -10.0 dB */
345 { 0x04, 0xc6, 0xd0 }, /* -10.5 dB */
346 { 0x04, 0x82, 0x68 }, /* -11.0 dB */
347 { 0x04, 0x41, 0xd5 }, /* -11.5 dB */
348 { 0x04, 0x04, 0xde }, /* -12.0 dB */
349 { 0x03, 0xcb, 0x50 }, /* -12.5 dB */
350 { 0x03, 0x94, 0xfa }, /* -13.0 dB */
351 { 0x03, 0x61, 0xaf }, /* -13.5 dB */
352 { 0x03, 0x31, 0x42 }, /* -14.0 dB */
353 { 0x03, 0x03, 0x8a }, /* -14.5 dB */
354 { 0x02, 0xd8, 0x62 }, /* -15.0 dB */
355 { 0x02, 0xaf, 0xa3 }, /* -15.5 dB */
356 { 0x02, 0x89, 0x2c }, /* -16.0 dB */
357 { 0x02, 0x64, 0xdb }, /* -16.5 dB */
358 { 0x02, 0x42, 0x93 }, /* -17.0 dB */
359 { 0x02, 0x22, 0x35 }, /* -17.5 dB */
360 { 0x02, 0x03, 0xa7 }, /* -18.0 dB */
361 { 0x01, 0xe6, 0xcf }, /* -18.5 dB */
362 { 0x01, 0xcb, 0x94 }, /* -19.0 dB */
363 { 0x01, 0xb1, 0xde }, /* -19.5 dB */
364 { 0x01, 0x99, 0x99 }, /* -20.0 dB */
365 { 0x01, 0x82, 0xaf }, /* -20.5 dB */
366 { 0x01, 0x6d, 0x0e }, /* -21.0 dB */
367 { 0x01, 0x58, 0xa2 }, /* -21.5 dB */
368 { 0x01, 0x45, 0x5b }, /* -22.0 dB */
369 { 0x01, 0x33, 0x28 }, /* -22.5 dB */
370 { 0x01, 0x21, 0xf9 }, /* -23.0 dB */
371 { 0x01, 0x11, 0xc0 }, /* -23.5 dB */
372 { 0x01, 0x02, 0x70 }, /* -24.0 dB */
373 { 0x00, 0xf3, 0xfb }, /* -24.5 dB */
374 { 0x00, 0xe6, 0x55 }, /* -25.0 dB */
375 { 0x00, 0xd9, 0x73 }, /* -25.5 dB */
376 { 0x00, 0xcd, 0x49 }, /* -26.0 dB */
377 { 0x00, 0xc1, 0xcd }, /* -26.5 dB */
378 { 0x00, 0xb6, 0xf6 }, /* -27.0 dB */
379 { 0x00, 0xac, 0xba }, /* -27.5 dB */
380 { 0x00, 0xa3, 0x10 }, /* -28.0 dB */
381 { 0x00, 0x99, 0xf1 }, /* -28.5 dB */
382 { 0x00, 0x91, 0x54 }, /* -29.0 dB */
383 { 0x00, 0x89, 0x33 }, /* -29.5 dB */
384 { 0x00, 0x81, 0x86 }, /* -30.0 dB */
385 { 0x00, 0x7a, 0x48 }, /* -30.5 dB */
386 { 0x00, 0x73, 0x70 }, /* -31.0 dB */
387 { 0x00, 0x6c, 0xfb }, /* -31.5 dB */
388 { 0x00, 0x66, 0xe3 }, /* -32.0 dB */
389 { 0x00, 0x61, 0x21 }, /* -32.5 dB */
390 { 0x00, 0x5b, 0xb2 }, /* -33.0 dB */
391 { 0x00, 0x56, 0x91 }, /* -33.5 dB */
392 { 0x00, 0x51, 0xb9 }, /* -34.0 dB */
393 { 0x00, 0x4d, 0x27 }, /* -34.5 dB */
394 { 0x00, 0x48, 0xd6 }, /* -35.0 dB */
395 { 0x00, 0x44, 0xc3 }, /* -35.5 dB */
396 { 0x00, 0x40, 0xea }, /* -36.0 dB */
397 { 0x00, 0x3d, 0x49 }, /* -36.5 dB */
398 { 0x00, 0x39, 0xdb }, /* -37.0 dB */
399 { 0x00, 0x36, 0x9e }, /* -37.5 dB */
400 { 0x00, 0x33, 0x90 }, /* -38.0 dB */
401 { 0x00, 0x30, 0xae }, /* -38.5 dB */
402 { 0x00, 0x2d, 0xf5 }, /* -39.0 dB */
403 { 0x00, 0x2b, 0x63 }, /* -39.5 dB */
404 { 0x00, 0x28, 0xf5 }, /* -40.0 dB */
405 { 0x00, 0x26, 0xab }, /* -40.5 dB */
406 { 0x00, 0x24, 0x81 }, /* -41.0 dB */
407 { 0x00, 0x22, 0x76 }, /* -41.5 dB */
408 { 0x00, 0x20, 0x89 }, /* -42.0 dB */
409 { 0x00, 0x1e, 0xb7 }, /* -42.5 dB */
410 { 0x00, 0x1c, 0xff }, /* -43.0 dB */
411 { 0x00, 0x1b, 0x60 }, /* -43.5 dB */
412 { 0x00, 0x19, 0xd8 }, /* -44.0 dB */
413 { 0x00, 0x18, 0x65 }, /* -44.5 dB */
414 { 0x00, 0x17, 0x08 }, /* -45.0 dB */
415 { 0x00, 0x15, 0xbe }, /* -45.5 dB */
416 { 0x00, 0x14, 0x87 }, /* -46.0 dB */
417 { 0x00, 0x13, 0x61 }, /* -46.5 dB */
418 { 0x00, 0x12, 0x4b }, /* -47.0 dB */
419 { 0x00, 0x11, 0x45 }, /* -47.5 dB */
420 { 0x00, 0x10, 0x4e }, /* -48.0 dB */
421 { 0x00, 0x0f, 0x64 }, /* -48.5 dB */
422 { 0x00, 0x0e, 0x88 }, /* -49.0 dB */
423 { 0x00, 0x0d, 0xb8 }, /* -49.5 dB */
424 { 0x00, 0x0c, 0xf3 }, /* -50.0 dB */
425 { 0x00, 0x0c, 0x3a }, /* -50.5 dB */
426 { 0x00, 0x0b, 0x8b }, /* -51.0 dB */
427 { 0x00, 0x0a, 0xe5 }, /* -51.5 dB */
428 { 0x00, 0x0a, 0x49 }, /* -52.0 dB */
429 { 0x00, 0x09, 0xb6 }, /* -52.5 dB */
430 { 0x00, 0x09, 0x2b }, /* -53.0 dB */
431 { 0x00, 0x08, 0xa8 }, /* -53.5 dB */
432 { 0x00, 0x08, 0x2c }, /* -54.0 dB */
433 { 0x00, 0x07, 0xb7 }, /* -54.5 dB */
434 { 0x00, 0x07, 0x48 }, /* -55.0 dB */
435 { 0x00, 0x06, 0xe0 }, /* -55.5 dB */
436 { 0x00, 0x06, 0x7d }, /* -56.0 dB */
437 { 0x00, 0x06, 0x20 }, /* -56.5 dB */
438 { 0x00, 0x05, 0xc9 }, /* -57.0 dB */
439 { 0x00, 0x05, 0x76 }, /* -57.5 dB */
440 { 0x00, 0x05, 0x28 }, /* -58.0 dB */
441 { 0x00, 0x04, 0xde }, /* -58.5 dB */
442 { 0x00, 0x04, 0x98 }, /* -59.0 dB */
443 { 0x00, 0x04, 0x56 }, /* -59.5 dB */
444 { 0x00, 0x04, 0x18 }, /* -60.0 dB */
445 { 0x00, 0x03, 0xdd }, /* -60.5 dB */
446 { 0x00, 0x03, 0xa6 }, /* -61.0 dB */
447 { 0x00, 0x03, 0x72 }, /* -61.5 dB */
448 { 0x00, 0x03, 0x40 }, /* -62.0 dB */
449 { 0x00, 0x03, 0x12 }, /* -62.5 dB */
450 { 0x00, 0x02, 0xe6 }, /* -63.0 dB */
451 { 0x00, 0x02, 0xbc }, /* -63.5 dB */
452 { 0x00, 0x02, 0x95 }, /* -64.0 dB */
453 { 0x00, 0x02, 0x70 }, /* -64.5 dB */
454 { 0x00, 0x02, 0x4d }, /* -65.0 dB */
455 { 0x00, 0x02, 0x2c }, /* -65.5 dB */
456 { 0x00, 0x02, 0x0d }, /* -66.0 dB */
457 { 0x00, 0x01, 0xf0 }, /* -66.5 dB */
458 { 0x00, 0x01, 0xd4 }, /* -67.0 dB */
459 { 0x00, 0x01, 0xba }, /* -67.5 dB */
460 { 0x00, 0x01, 0xa1 }, /* -68.0 dB */
461 { 0x00, 0x01, 0x8a }, /* -68.5 dB */
462 { 0x00, 0x01, 0x74 }, /* -69.0 dB */
463 { 0x00, 0x01, 0x5f }, /* -69.5 dB */
464 { 0x00, 0x01, 0x4b }, /* -70.0 dB */
465 { 0x00, 0x00, 0x00 } /* Mute */
466 };
467
468 #define SNAPPER_NFORMATS 2
469 static const struct audio_format snapper_formats[SNAPPER_NFORMATS] = {
470 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
471 2, AUFMT_STEREO, 3, {32000, 44100, 48000}},
472 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 24, 24,
473 2, AUFMT_STEREO, 3, {32000, 44100, 48000}},
474 };
475
476 static u_char *amp_mute;
477 static u_char *headphone_mute;
478 static u_char *audio_hw_reset;
479 static u_char *headphone_detect;
480 static int headphone_detect_active;
481
482
483 /* I2S registers */
484 #define I2S_INT 0x00
485 #define I2S_FORMAT 0x10
486 #define I2S_FRAMECOUNT 0x40
487 #define I2S_FRAMEMATCH 0x50
488 #define I2S_WORDSIZE 0x60
489
490 /* I2S_INT register definitions */
491 #define I2S_INT_CLKSTOPPEND 0x01000000 /* clock-stop interrupt pending */
492
493 /* FCR(0x3c) bits */
494 #define I2S0CLKEN 0x1000
495 #define I2S0EN 0x2000
496 #define I2S1CLKEN 0x080000
497 #define I2S1EN 0x100000
498 #define FCR3C_BITMASK "\020\25I2S1EN\24I2S1CLKEN\16I2S0EN\15I2S0CLKEN"
499
500 /* TAS3004 registers */
501 #define DEQ_MCR1 0x01 /* Main control register 1 (1byte) */
502 #define DEQ_DRC 0x02 /* Dynamic range compression (6bytes?) */
503 #define DEQ_VOLUME 0x04 /* Volume (6bytes) */
504 #define DEQ_TREBLE 0x05 /* Treble control (1byte) */
505 #define DEQ_BASS 0x06 /* Bass control (1byte) */
506 #define DEQ_MIXER_L 0x07 /* Mixer left gain (9bytes) */
507 #define DEQ_MIXER_R 0x08 /* Mixer right gain (9bytes) */
508 #define DEQ_LB0 0x0a /* Left biquad 0 (15bytes) */
509 #define DEQ_LB1 0x0b /* Left biquad 1 (15bytes) */
510 #define DEQ_LB2 0x0c /* Left biquad 2 (15bytes) */
511 #define DEQ_LB3 0x0d /* Left biquad 3 (15bytes) */
512 #define DEQ_LB4 0x0e /* Left biquad 4 (15bytes) */
513 #define DEQ_LB5 0x0f /* Left biquad 5 (15bytes) */
514 #define DEQ_LB6 0x10 /* Left biquad 6 (15bytes) */
515 #define DEQ_RB0 0x13 /* Right biquad 0 (15bytes) */
516 #define DEQ_RB1 0x14 /* Right biquad 1 (15bytes) */
517 #define DEQ_RB2 0x15 /* Right biquad 2 (15bytes) */
518 #define DEQ_RB3 0x16 /* Right biquad 3 (15bytes) */
519 #define DEQ_RB4 0x17 /* Right biquad 4 (15bytes) */
520 #define DEQ_RB5 0x18 /* Right biquad 5 (15bytes) */
521 #define DEQ_RB6 0x19 /* Right biquad 6 (15bytes) */
522 #define DEQ_LLB 0x21 /* Left loudness biquad (15bytes) */
523 #define DEQ_RLB 0x22 /* Right loudness biquad (15bytes) */
524 #define DEQ_LLB_GAIN 0x23 /* Left loudness biquad gain (3bytes) */
525 #define DEQ_RLB_GAIN 0x24 /* Right loudness biquad gain (3bytes) */
526 #define DEQ_ACR 0x40 /* Analog control register (1byte) */
527 #define DEQ_MCR2 0x43 /* Main control register 2 (1byte) */
528
529 #define DEQ_MCR1_FL 0x80 /* Fast load */
530 #define DEQ_MCR1_SC 0x40 /* SCLK frequency */
531 #define DEQ_MCR1_SC_32 0x00 /* 32fs */
532 #define DEQ_MCR1_SC_64 0x40 /* 64fs */
533 #define DEQ_MCR1_SM 0x30 /* Output serial port mode */
534 #define DEQ_MCR1_SM_L 0x00 /* Left justified */
535 #define DEQ_MCR1_SM_R 0x10 /* Right justified */
536 #define DEQ_MCR1_SM_I2S 0x20 /* I2S */
537 #define DEQ_MCR1_W 0x03 /* Serial port word length */
538 #define DEQ_MCR1_W_16 0x00 /* 16 bit */
539 #define DEQ_MCR1_W_18 0x01 /* 18 bit */
540 #define DEQ_MCR1_W_20 0x02 /* 20 bit */
541 #define DEQ_MCR1_W_24 0x03 /* 20 bit */
542
543 #define DEQ_MCR2_DL 0x80 /* Download */
544 #define DEQ_MCR2_AP 0x02 /* All pass mode */
545
546 #define DEQ_ACR_ADM 0x80 /* ADC output mode */
547 #define DEQ_ACR_LRB 0x40 /* Select B input */
548 #define DEQ_ACR_DM 0x0c /* De-emphasis control */
549 #define DEQ_ACR_DM_OFF 0x00 /* off */
550 #define DEQ_ACR_DM_48 0x04 /* fs = 48kHz */
551 #define DEQ_ACR_DM_44 0x08 /* fs = 44.1kHz */
552 #define DEQ_ACR_INP 0x02 /* Analog input select */
553 #define DEQ_ACR_INP_A 0x00 /* A */
554 #define DEQ_ACR_INP_B 0x02 /* B */
555 #define DEQ_ACR_APD 0x01 /* Analog power down */
556
557 struct tas3004_reg {
558 u_char MCR1[1];
559 u_char DRC[6];
560 u_char VOLUME[6];
561 u_char TREBLE[1];
562 u_char BASS[1];
563 u_char MIXER_L[9];
564 u_char MIXER_R[9];
565 u_char LB0[15];
566 u_char LB1[15];
567 u_char LB2[15];
568 u_char LB3[15];
569 u_char LB4[15];
570 u_char LB5[15];
571 u_char LB6[15];
572 u_char RB0[15];
573 u_char RB1[15];
574 u_char RB2[15];
575 u_char RB3[15];
576 u_char RB4[15];
577 u_char RB5[15];
578 u_char RB6[15];
579 u_char LLB[15];
580 u_char RLB[15];
581 u_char LLB_GAIN[3];
582 u_char RLB_GAIN[3];
583 u_char ACR[1];
584 u_char MCR2[1];
585 };
586
587 #define GPIO_OUTSEL 0xf0 /* Output select */
588 /* 0x00 GPIO bit0 is output
589 0x10 media-bay power
590 0x20 reserved
591 0x30 MPIC */
592
593 #define GPIO_ALTOE 0x08 /* Alternate output enable */
594 /* 0x00 Use DDR
595 0x08 Use output select */
596
597 #define GPIO_DDR 0x04 /* Data direction */
598 #define GPIO_DDR_OUTPUT 0x04 /* Output */
599 #define GPIO_DDR_INPUT 0x00 /* Input */
600
601 #define GPIO_LEVEL 0x02 /* Pin level (RO) */
602
603 #define GPIO_DATA 0x01 /* Data */
604
605 int
606 snapper_match(struct device *parent, struct cfdata *match, void *aux)
607 {
608 struct confargs *ca;
609 int soundbus, soundchip, soundcodec;
610 char compat[32];
611
612 ca = aux;
613 if (strcmp(ca->ca_name, "i2s") != 0)
614 return 0;
615
616 if ((soundbus = OF_child(ca->ca_node)) == 0 ||
617 (soundchip = OF_child(soundbus)) == 0)
618 return 0;
619
620 bzero(compat, sizeof compat);
621 OF_getprop(soundchip, "compatible", compat, sizeof compat);
622
623 if (strcmp(compat, "snapper") == 0)
624 return 1;
625
626 if (strcmp(compat, "AOAKeylargo") == 0)
627 return 1;
628
629 if (strcmp(compat, "AOAK2") == 0)
630 return 1;
631
632 if (OF_getprop(soundchip,"platform-tas-codec-ref",
633 &soundcodec, sizeof soundcodec) == sizeof soundcodec)
634 return 1;
635
636 return 0;
637 }
638
639 void
640 snapper_attach(struct device *parent, struct device *self, void *aux)
641 {
642 struct snapper_softc *sc;
643 struct confargs *ca;
644 unsigned long v;
645 int cirq, oirq, iirq, cirq_type, oirq_type, iirq_type;
646 int soundbus, intr[6];
647
648 sc = (struct snapper_softc *)self;
649 ca = aux;
650
651 v = (((unsigned long) &sc->dbdma_cmdspace[0]) + 0xf) & ~0xf;
652 sc->sc_odmacmd = (struct dbdma_command *) v;
653 sc->sc_idmacmd = sc->sc_odmacmd + 20;
654
655 #ifdef DIAGNOSTIC
656 if ((vaddr_t)sc->sc_odmacmd & 0x0f) {
657 printf(": bad dbdma alignment\n");
658 return;
659 }
660 #endif
661
662 ca->ca_reg[0] += ca->ca_baseaddr;
663 ca->ca_reg[2] += ca->ca_baseaddr;
664 ca->ca_reg[4] += ca->ca_baseaddr;
665
666 sc->sc_node = ca->ca_node;
667 sc->sc_reg = (void *)ca->ca_reg[0];
668 sc->sc_odma = (void *)ca->ca_reg[2];
669 sc->sc_idma = (void *)ca->ca_reg[4];
670
671 soundbus = OF_child(ca->ca_node);
672 OF_getprop(soundbus, "interrupts", intr, sizeof intr);
673 cirq = intr[0];
674 oirq = intr[2];
675 iirq = intr[4];
676 cirq_type = intr[1] ? IST_LEVEL : IST_EDGE;
677 oirq_type = intr[3] ? IST_LEVEL : IST_EDGE;
678 iirq_type = intr[5] ? IST_LEVEL : IST_EDGE;
679
680 /* intr_establish(cirq, cirq_type, IPL_AUDIO, snapper_intr, sc); */
681 intr_establish(oirq, oirq_type, IPL_AUDIO, snapper_intr, sc);
682 intr_establish(iirq, iirq_type, IPL_AUDIO, snapper_intr, sc);
683
684 printf(": irq %d,%d,%d\n", cirq, oirq, iirq);
685
686 config_interrupts(self, snapper_defer);
687 }
688
689 void
690 snapper_defer(struct device *dev)
691 {
692 struct snapper_softc *sc;
693 struct device *dv;
694 struct deq_softc *deq;
695
696 sc = (struct snapper_softc *)dev;
697 /*
698 for (dv = alldevs.tqh_first; dv; dv=dv->dv_list.tqe_next)
699 if (strncmp(dv->dv_xname, "ki2c", 4) == 0 &&
700 strncmp(device_parent(dv)->dv_xname, "obio", 4) == 0)
701 sc->sc_i2c = dv;
702 */
703 for (dv = alldevs.tqh_first; dv; dv=dv->dv_list.tqe_next)
704 if (strncmp(dv->dv_xname, "deq", 3) == 0 &&
705 strncmp(device_parent(dv)->dv_xname, "ki2c", 4) == 0) {
706 deq=(struct deq_softc *)dv;
707 sc->sc_i2c = deq->sc_i2c;
708 sc->sc_deqaddr=deq->sc_address;
709 }
710
711 /* If we don't find a codec, it's not the end of the world;
712 * we can control the volume in software in this case.
713 */
714 if (sc->sc_i2c == NULL) {
715 aprint_verbose("%s: software codec\n",
716 sc->sc_dev.dv_xname);
717 sc->sc_swvol = 1;
718 } else
719 sc->sc_swvol = 0;
720
721 audio_attach_mi(&snapper_hw_if, sc, &sc->sc_dev);
722
723 /* ki2c_setmode(sc->sc_i2c, I2C_STDSUBMODE); */
724 snapper_init(sc, sc->sc_node);
725 }
726
727 int
728 snapper_intr(void *v)
729 {
730 struct snapper_softc *sc;
731 struct dbdma_command *cmd;
732 int count;
733 int status;
734
735 sc = v;
736 cmd = sc->sc_odmacmd;
737 count = sc->sc_opages;
738 /* Fill used buffer(s). */
739 while (count-- > 0) {
740 if ((dbdma_ld16(&cmd->d_command) & 0x30) == 0x30) {
741 status = dbdma_ld16(&cmd->d_status);
742 cmd->d_status = 0;
743 if (status) /* status == 0x8400 */
744 if (sc->sc_ointr)
745 (*sc->sc_ointr)(sc->sc_oarg);
746 }
747 cmd++;
748 }
749
750 cmd = sc->sc_idmacmd;
751 count = sc->sc_ipages;
752 while (count-- > 0) {
753 if ((dbdma_ld16(&cmd->d_command) & 0x30) == 0x30) {
754 status = dbdma_ld16(&cmd->d_status);
755 cmd->d_status = 0;
756 if (status) /* status == 0x8400 */
757 if (sc->sc_iintr)
758 (*sc->sc_iintr)(sc->sc_iarg);
759 }
760 cmd++;
761 }
762
763
764 return 1;
765 }
766
767 /*
768 * Close function is called at splaudio().
769 */
770 void
771 snapper_close(void *h)
772 {
773 struct snapper_softc *sc;
774
775 sc = h;
776 snapper_halt_output(sc);
777 snapper_halt_input(sc);
778
779 sc->sc_ointr = 0;
780 sc->sc_iintr = 0;
781 }
782
783 int
784 snapper_query_encoding(void *h, struct audio_encoding *ae)
785 {
786
787 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
788 switch (ae->index) {
789 case 0:
790 strcpy(ae->name, AudioEslinear);
791 ae->encoding = AUDIO_ENCODING_SLINEAR;
792 ae->precision = 16;
793 ae->flags = 0;
794 return 0;
795 case 1:
796 strcpy(ae->name, AudioEslinear_be);
797 ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
798 ae->precision = 16;
799 ae->flags = 0;
800 return 0;
801 case 2:
802 strcpy(ae->name, AudioEslinear_le);
803 ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
804 ae->precision = 16;
805 return 0;
806 case 3:
807 strcpy(ae->name, AudioEulinear_be);
808 ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
809 ae->precision = 16;
810 return 0;
811 case 4:
812 strcpy(ae->name, AudioEulinear_le);
813 ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
814 ae->precision = 16;
815 return 0;
816 case 5:
817 strcpy(ae->name, AudioEmulaw);
818 ae->encoding = AUDIO_ENCODING_ULAW;
819 ae->precision = 8;
820 return 0;
821 case 6:
822 strcpy(ae->name, AudioEalaw);
823 ae->encoding = AUDIO_ENCODING_ALAW;
824 ae->precision = 8;
825 return 0;
826 default:
827 DPRINTF("snapper_query_encoding: invalid encoding %d\n", ae->index);
828 return EINVAL;
829 }
830 }
831
832 int
833 snapper_set_params(void *h, int setmode, int usemode,
834 audio_params_t *play, audio_params_t *rec,
835 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
836 {
837 struct snapper_softc *sc;
838 audio_params_t *p;
839 stream_filter_list_t *fil;
840 int mode;
841
842 sc = h;
843 p = NULL;
844
845 /*
846 * This device only has one clock, so make the sample rates match.
847 */
848 if (play->sample_rate != rec->sample_rate &&
849 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
850 if (setmode == AUMODE_PLAY) {
851 rec->sample_rate = play->sample_rate;
852 setmode |= AUMODE_RECORD;
853 } else if (setmode == AUMODE_RECORD) {
854 play->sample_rate = rec->sample_rate;
855 setmode |= AUMODE_PLAY;
856 } else
857 return EINVAL;
858 }
859
860 for (mode = AUMODE_RECORD; mode != -1;
861 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
862 if ((setmode & mode) == 0)
863 continue;
864
865 p = mode == AUMODE_PLAY ? play : rec;
866 if (p->sample_rate < 4000 || p->sample_rate > 50000) {
867 DPRINTF("snapper_set_params: invalid rate %d\n",
868 p->sample_rate);
869 return EINVAL;
870 }
871
872 fil = mode == AUMODE_PLAY ? pfil : rfil;
873 if (auconv_set_converter(snapper_formats, SNAPPER_NFORMATS,
874 mode, p, true, fil) < 0) {
875 DPRINTF("snapper_set_params: auconv_set_converter failed\n");
876 return EINVAL;
877 }
878 if (sc->sc_swvol)
879 fil->append(fil, snapper_volume, p);
880 if (fil->req_size > 0)
881 p = &fil->filters[0].param;
882 }
883
884 /* Set the speed. p points HW encoding. */
885 if (p) {
886 sc->sc_rate = p->sample_rate;
887 sc->sc_bitspersample = p->precision;
888 }
889 return 0;
890 }
891
892 int
893 snapper_round_blocksize(void *h, int size, int mode,
894 const audio_params_t *param)
895 {
896
897 if (size < NBPG)
898 size = NBPG;
899 return size & ~PGOFSET;
900 }
901
902 int
903 snapper_halt_output(void *h)
904 {
905 struct snapper_softc *sc;
906
907 sc = h;
908 dbdma_stop(sc->sc_odma);
909 dbdma_reset(sc->sc_odma);
910 return 0;
911 }
912
913 int
914 snapper_halt_input(void *h)
915 {
916 struct snapper_softc *sc;
917
918 sc = h;
919 dbdma_stop(sc->sc_idma);
920 dbdma_reset(sc->sc_idma);
921 return 0;
922 }
923
924 int
925 snapper_getdev(void *h, struct audio_device *retp)
926 {
927
928 *retp = snapper_device;
929 return 0;
930 }
931
932 enum {
933 SNAPPER_MONITOR_CLASS,
934 SNAPPER_OUTPUT_CLASS,
935 SNAPPER_RECORD_CLASS,
936 SNAPPER_OUTPUT_SELECT,
937 SNAPPER_VOL_OUTPUT,
938 SNAPPER_DIGI1,
939 SNAPPER_DIGI2,
940 SNAPPER_ANALOG,
941 SNAPPER_INPUT_SELECT,
942 SNAPPER_VOL_INPUT,
943 SNAPPER_TREBLE,
944 SNAPPER_BASS,
945 SNAPPER_ENUM_LAST
946 };
947
948 int
949 snapper_set_port(void *h, mixer_ctrl_t *mc)
950 {
951 struct snapper_softc *sc;
952 int l, r;
953 u_char data;
954
955 DPRINTF("snapper_set_port dev = %d, type = %d\n", mc->dev, mc->type);
956 sc = h;
957 l = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
958 r = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
959
960 switch (mc->dev) {
961 case SNAPPER_OUTPUT_SELECT:
962 /* No change necessary? */
963 if (mc->un.mask == sc->sc_output_mask)
964 return 0;
965
966 snapper_mute_speaker(sc, 1);
967 snapper_mute_headphone(sc, 1);
968 if (mc->un.mask & 1 << 0)
969 snapper_mute_speaker(sc, 0);
970 if (mc->un.mask & 1 << 1)
971 snapper_mute_headphone(sc, 0);
972
973 sc->sc_output_mask = mc->un.mask;
974 return 0;
975
976 case SNAPPER_VOL_OUTPUT:
977 snapper_set_volume(sc, l, r);
978 return 0;
979
980 case SNAPPER_INPUT_SELECT:
981 /* no change necessary? */
982 if (mc->un.mask == sc->sc_record_source)
983 return 0;
984 switch (mc->un.mask) {
985 case 1 << 0: /* microphone */
986 /* Select right channel of B input */
987 data = DEQ_ACR_ADM | DEQ_ACR_LRB | DEQ_ACR_INP_B;
988 tas3004_write(sc, DEQ_ACR, &data);
989 break;
990 case 1 << 1: /* line in */
991 /* Select both channels of A input */
992 data = 0;
993 tas3004_write(sc, DEQ_ACR, &data);
994 break;
995 default: /* invalid argument */
996 return EINVAL;
997 }
998 sc->sc_record_source = mc->un.mask;
999 return 0;
1000
1001 case SNAPPER_VOL_INPUT:
1002 /* XXX TO BE DONE */
1003 return 0;
1004
1005 case SNAPPER_BASS:
1006 snapper_set_bass(sc,l);
1007 return 0;
1008 case SNAPPER_TREBLE:
1009 snapper_set_treble(sc,l);
1010 return 0;
1011 case SNAPPER_DIGI1:
1012 sc->mixer[0]=l;
1013 sc->mixer[3]=r;
1014 snapper_write_mixers(sc);
1015 return 0;
1016 case SNAPPER_DIGI2:
1017 sc->mixer[1]=l;
1018 sc->mixer[4]=r;
1019 snapper_write_mixers(sc);
1020 return 0;
1021 case SNAPPER_ANALOG:
1022 sc->mixer[2]=l;
1023 sc->mixer[5]=r;
1024 snapper_write_mixers(sc);
1025 return 0;
1026 }
1027 return ENXIO;
1028 }
1029
1030 int
1031 snapper_get_port(void *h, mixer_ctrl_t *mc)
1032 {
1033 struct snapper_softc *sc;
1034
1035 DPRINTF("snapper_get_port dev = %d, type = %d\n", mc->dev, mc->type);
1036 sc = h;
1037 switch (mc->dev) {
1038 case SNAPPER_OUTPUT_SELECT:
1039 mc->un.mask = sc->sc_output_mask;
1040 return 0;
1041
1042 case SNAPPER_VOL_OUTPUT:
1043 if (sc->sc_swvol) {
1044 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = snapper_vol_l;
1045 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = snapper_vol_r;
1046 } else {
1047 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_vol_l;
1048 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_vol_r;
1049 }
1050 return 0;
1051
1052 case SNAPPER_INPUT_SELECT:
1053 mc->un.mask = sc->sc_record_source;
1054 return 0;
1055
1056 case SNAPPER_VOL_INPUT:
1057 /* XXX TO BE DONE */
1058 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 0;
1059 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 0;
1060 return 0;
1061 case SNAPPER_TREBLE:
1062 mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_treble;
1063 return 0;
1064 case SNAPPER_BASS:
1065 mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_bass;
1066 return 0;
1067 case SNAPPER_DIGI1:
1068 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[0];
1069 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[3];
1070 return 0;
1071 case SNAPPER_DIGI2:
1072 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[1];
1073 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[4];
1074 return 0;
1075 case SNAPPER_ANALOG:
1076 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[2];
1077 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[5];
1078 return 0;
1079 default:
1080 return ENXIO;
1081 }
1082
1083 return 0;
1084 }
1085
1086 int
1087 snapper_query_devinfo(void *h, mixer_devinfo_t *dip)
1088 {
1089 switch (dip->index) {
1090
1091 case SNAPPER_OUTPUT_SELECT:
1092 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1093 strcpy(dip->label.name, AudioNoutput);
1094 dip->type = AUDIO_MIXER_SET;
1095 dip->prev = dip->next = AUDIO_MIXER_LAST;
1096 dip->un.s.num_mem = 2;
1097 strcpy(dip->un.s.member[0].label.name, AudioNspeaker);
1098 dip->un.s.member[0].mask = 1 << 0;
1099 strcpy(dip->un.s.member[1].label.name, AudioNheadphone);
1100 dip->un.s.member[1].mask = 1 << 1;
1101 return 0;
1102
1103 case SNAPPER_VOL_OUTPUT:
1104 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1105 strcpy(dip->label.name, AudioNmaster);
1106 dip->type = AUDIO_MIXER_VALUE;
1107 dip->prev = dip->next = AUDIO_MIXER_LAST;
1108 dip->un.v.num_channels = 2;
1109 strcpy(dip->un.v.units.name, AudioNvolume);
1110 return 0;
1111
1112 case SNAPPER_INPUT_SELECT:
1113 dip->mixer_class = SNAPPER_RECORD_CLASS;
1114 strcpy(dip->label.name, AudioNsource);
1115 dip->type = AUDIO_MIXER_SET;
1116 dip->prev = dip->next = AUDIO_MIXER_LAST;
1117 dip->un.s.num_mem = 2;
1118 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1119 dip->un.s.member[0].mask = 1 << 0;
1120 strcpy(dip->un.s.member[1].label.name, AudioNline);
1121 dip->un.s.member[1].mask = 1 << 1;
1122 return 0;
1123
1124 case SNAPPER_VOL_INPUT:
1125 dip->mixer_class = SNAPPER_RECORD_CLASS;
1126 strcpy(dip->label.name, AudioNrecord);
1127 dip->type = AUDIO_MIXER_VALUE;
1128 dip->prev = dip->next = AUDIO_MIXER_LAST;
1129 dip->un.v.num_channels = 2;
1130 strcpy(dip->un.v.units.name, AudioNvolume);
1131 return 0;
1132
1133 case SNAPPER_MONITOR_CLASS:
1134 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1135 strcpy(dip->label.name, AudioCmonitor);
1136 dip->type = AUDIO_MIXER_CLASS;
1137 dip->next = dip->prev = AUDIO_MIXER_LAST;
1138 return 0;
1139
1140 case SNAPPER_OUTPUT_CLASS:
1141 dip->mixer_class = SNAPPER_OUTPUT_CLASS;
1142 strcpy(dip->label.name, AudioCoutputs);
1143 dip->type = AUDIO_MIXER_CLASS;
1144 dip->next = dip->prev = AUDIO_MIXER_LAST;
1145 return 0;
1146
1147 case SNAPPER_RECORD_CLASS:
1148 dip->mixer_class = SNAPPER_RECORD_CLASS;
1149 strcpy(dip->label.name, AudioCrecord);
1150 dip->type = AUDIO_MIXER_CLASS;
1151 dip->next = dip->prev = AUDIO_MIXER_LAST;
1152 return 0;
1153
1154 case SNAPPER_TREBLE:
1155 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1156 strcpy(dip->label.name, AudioNtreble);
1157 dip->type = AUDIO_MIXER_VALUE;
1158 dip->prev = dip->next = AUDIO_MIXER_LAST;
1159 dip->un.v.num_channels = 1;
1160 return 0;
1161
1162 case SNAPPER_BASS:
1163 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1164 strcpy(dip->label.name, AudioNbass);
1165 dip->type = AUDIO_MIXER_VALUE;
1166 dip->prev = dip->next = AUDIO_MIXER_LAST;
1167 dip->un.v.num_channels = 1;
1168 return 0;
1169
1170 case SNAPPER_DIGI1:
1171 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1172 strcpy(dip->label.name, AudioNdac);
1173 dip->type = AUDIO_MIXER_VALUE;
1174 dip->prev = dip->next = AUDIO_MIXER_LAST;
1175 dip->un.v.num_channels = 2;
1176 return 0;
1177 case SNAPPER_DIGI2:
1178 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1179 strcpy(dip->label.name, AudioNline);
1180 dip->type = AUDIO_MIXER_VALUE;
1181 dip->prev = dip->next = AUDIO_MIXER_LAST;
1182 dip->un.v.num_channels = 2;
1183 return 0;
1184 case SNAPPER_ANALOG:
1185 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1186 strcpy(dip->label.name, AudioNmicrophone);
1187 dip->type = AUDIO_MIXER_VALUE;
1188 dip->prev = dip->next = AUDIO_MIXER_LAST;
1189 dip->un.v.num_channels = 2;
1190 return 0;
1191 }
1192
1193 return ENXIO;
1194 }
1195
1196 size_t
1197 snapper_round_buffersize(void *h, int dir, size_t size)
1198 {
1199
1200 if (size > 65536)
1201 size = 65536;
1202 return size;
1203 }
1204
1205 paddr_t
1206 snapper_mappage(void *h, void *mem, off_t off, int prot)
1207 {
1208
1209 if (off < 0)
1210 return -1;
1211 return -1; /* XXX */
1212 }
1213
1214 int
1215 snapper_get_props(void *h)
1216 {
1217 return AUDIO_PROP_FULLDUPLEX /* | AUDIO_PROP_MMAP */;
1218 }
1219
1220 int
1221 snapper_trigger_output(void *h, void *start, void *end, int bsize,
1222 void (*intr)(void *), void *arg,
1223 const audio_params_t *param)
1224 {
1225 struct snapper_softc *sc;
1226 struct dbdma_command *cmd;
1227 vaddr_t va;
1228 int i, len, intmode;
1229 int res;
1230
1231 DPRINTF("trigger_output %p %p 0x%x\n", start, end, bsize);
1232 sc = h;
1233
1234 if ((res = snapper_set_rate(sc)) != 0)
1235 return res;
1236
1237 cmd = sc->sc_odmacmd;
1238 sc->sc_ointr = intr;
1239 sc->sc_oarg = arg;
1240 sc->sc_opages = ((char *)end - (char *)start) / NBPG;
1241
1242 #ifdef DIAGNOSTIC
1243 if (sc->sc_opages > 16)
1244 panic("snapper_trigger_output");
1245 #endif
1246
1247 va = (vaddr_t)start;
1248 len = 0;
1249 for (i = sc->sc_opages; i > 0; i--) {
1250 len += NBPG;
1251 if (len < bsize)
1252 intmode = 0;
1253 else {
1254 len = 0;
1255 intmode = DBDMA_INT_ALWAYS;
1256 }
1257
1258 DBDMA_BUILD(cmd, DBDMA_CMD_OUT_MORE, 0, NBPG, vtophys(va),
1259 intmode, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
1260 cmd++;
1261 va += NBPG;
1262 }
1263
1264 DBDMA_BUILD(cmd, DBDMA_CMD_NOP, 0, 0,
1265 0/*vtophys((vaddr_t)sc->sc_odmacmd)*/, 0, DBDMA_WAIT_NEVER,
1266 DBDMA_BRANCH_ALWAYS);
1267
1268 dbdma_st32(&cmd->d_cmddep, vtophys((vaddr_t)sc->sc_odmacmd));
1269
1270 dbdma_start(sc->sc_odma, sc->sc_odmacmd);
1271
1272 return 0;
1273 }
1274
1275 int
1276 snapper_trigger_input(void *h, void *start, void *end, int bsize,
1277 void (*intr)(void *), void *arg,
1278 const audio_params_t *param)
1279 {
1280 struct snapper_softc *sc;
1281 struct dbdma_command *cmd;
1282 vaddr_t va;
1283 int i, len, intmode;
1284 int res;
1285
1286 DPRINTF("trigger_input %p %p 0x%x\n", start, end, bsize);
1287 sc = h;
1288
1289 if ((res = snapper_set_rate(sc)) != 0)
1290 return res;
1291
1292 cmd = sc->sc_idmacmd;
1293 sc->sc_iintr = intr;
1294 sc->sc_iarg = arg;
1295 sc->sc_ipages = ((char *)end - (char *)start) / NBPG;
1296
1297 #ifdef DIAGNOSTIC
1298 if (sc->sc_ipages > 16)
1299 panic("snapper_trigger_input");
1300 #endif
1301
1302 va = (vaddr_t)start;
1303 len = 0;
1304 for (i = sc->sc_ipages; i > 0; i--) {
1305 len += NBPG;
1306 if (len < bsize)
1307 intmode = 0;
1308 else {
1309 len = 0;
1310 intmode = DBDMA_INT_ALWAYS;
1311 }
1312
1313 DBDMA_BUILD(cmd, DBDMA_CMD_IN_MORE, 0, NBPG, vtophys(va),
1314 intmode, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
1315 cmd++;
1316 va += NBPG;
1317 }
1318
1319 DBDMA_BUILD(cmd, DBDMA_CMD_NOP, 0, 0,
1320 0/*vtophys((vaddr_t)sc->sc_odmacmd)*/, 0, DBDMA_WAIT_NEVER,
1321 DBDMA_BRANCH_ALWAYS);
1322
1323 dbdma_st32(&cmd->d_cmddep, vtophys((vaddr_t)sc->sc_idmacmd));
1324
1325 dbdma_start(sc->sc_idma, sc->sc_idmacmd);
1326
1327 return 0;
1328 }
1329
1330 void
1331 snapper_set_volume(struct snapper_softc *sc, int left, int right)
1332 {
1333 u_char regs[6];
1334 int l, r;
1335
1336 if (sc->sc_swvol) {
1337 snapper_vol_l = left;
1338 snapper_vol_r = right;
1339 return;
1340 }
1341
1342 /*
1343 * for some insane reason the gain table for master volume and the
1344 * mixer channels is almost identical - just shifted by 4 bits
1345 * so we use the mixer_gain table and bit-twiddle it...
1346 */
1347 if ((left >= 0) && (left < 256) && (right >= 0) && (right < 256)) {
1348 l = 177 - (left * 177 / 255);
1349 regs[0] = (snapper_mixer_gain[l][0] >> 4);
1350 regs[1] = ((snapper_mixer_gain[l][0] & 0x0f) << 4) |
1351 (snapper_mixer_gain[l][1] >> 4);
1352 regs[2] = ((snapper_mixer_gain[l][1] & 0x0f) << 4) |
1353 (snapper_mixer_gain[l][2] >> 4);
1354
1355 r = 177 - (right * 177 / 255);
1356 regs[3] = (snapper_mixer_gain[r][0] >> 4);
1357 regs[4] = ((snapper_mixer_gain[r][0] & 0x0f) << 4) |
1358 (snapper_mixer_gain[r][1] >> 4);
1359 regs[5] = ((snapper_mixer_gain[r][1] & 0x0f) << 4) |
1360 (snapper_mixer_gain[r][2] >> 4);
1361
1362 tas3004_write(sc, DEQ_VOLUME, regs);
1363
1364 sc->sc_vol_l = left;
1365 sc->sc_vol_r = right;
1366
1367 DPRINTF("%d %02x %02x %02x : %d %02x %02x %02x\n", l, regs[0],
1368 regs[1], regs[2], r, regs[3], regs[4], regs[5]);
1369 }
1370 }
1371
1372 void snapper_set_treble(struct snapper_softc *sc, int stuff)
1373 {
1374 uint8_t reg;
1375 if ((stuff >= 0) && (stuff <= 255) && (sc->sc_treble != stuff)) {
1376 reg = snapper_basstab[(stuff >> 3) + 2];
1377 sc->sc_treble = stuff;
1378 tas3004_write(sc, DEQ_TREBLE, ®);
1379 }
1380 }
1381
1382 void snapper_set_bass(struct snapper_softc *sc, int stuff)
1383 {
1384 uint8_t reg;
1385 if ((stuff >= 0) && (stuff <= 255) && (stuff != sc->sc_bass)) {
1386 reg = snapper_basstab[(stuff >> 3) + 2];
1387 sc->sc_bass = stuff;
1388 tas3004_write(sc, DEQ_BASS, ®);
1389 }
1390 }
1391
1392 void snapper_write_mixers(struct snapper_softc *sc)
1393 {
1394 uint8_t regs[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
1395 int i;
1396
1397 /* Left channel of SDIN1 */
1398 i = 177 - (sc->mixer[0] * 177 / 255);
1399 regs[0] = snapper_mixer_gain[i][0];
1400 regs[1] = snapper_mixer_gain[i][1];
1401 regs[2] = snapper_mixer_gain[i][2];
1402
1403 /* Left channel of SDIN2 */
1404 i = 177 - (sc->mixer[1] * 177 / 255);
1405 regs[3] = snapper_mixer_gain[i][0];
1406 regs[4] = snapper_mixer_gain[i][1];
1407 regs[5] = snapper_mixer_gain[i][2];
1408
1409 /* Left channel of analog input */
1410 i = 177 - (sc->mixer[2] * 177 / 255);
1411 regs[6] = snapper_mixer_gain[i][0];
1412 regs[7] = snapper_mixer_gain[i][1];
1413 regs[8] = snapper_mixer_gain[i][2];
1414
1415 tas3004_write(sc, DEQ_MIXER_L, regs);
1416
1417 /* Right channel of SDIN1 */
1418 i = 177 - (sc->mixer[3] * 177 / 255);
1419 regs[0] = snapper_mixer_gain[i][0];
1420 regs[1] = snapper_mixer_gain[i][1];
1421 regs[2] = snapper_mixer_gain[i][2];
1422
1423 /* Right channel of SDIN2 */
1424 i = 177 - (sc->mixer[4] * 177 / 255);
1425 regs[3] = snapper_mixer_gain[i][0];
1426 regs[4] = snapper_mixer_gain[i][1];
1427 regs[5] = snapper_mixer_gain[i][2];
1428
1429 /* Right channel of analog input */
1430 i = 177 - (sc->mixer[5] * 177 / 255);
1431 regs[6] = snapper_mixer_gain[i][0];
1432 regs[7] = snapper_mixer_gain[i][1];
1433 regs[8] = snapper_mixer_gain[i][2];
1434
1435 tas3004_write(sc, DEQ_MIXER_R, regs);
1436 }
1437
1438 #define CLKSRC_49MHz 0x80000000 /* Use 49152000Hz Osc. */
1439 #define CLKSRC_45MHz 0x40000000 /* Use 45158400Hz Osc. */
1440 #define CLKSRC_18MHz 0x00000000 /* Use 18432000Hz Osc. */
1441 #define MCLK_DIV 0x1f000000 /* MCLK = SRC / DIV */
1442 #define MCLK_DIV1 0x14000000 /* MCLK = SRC */
1443 #define MCLK_DIV3 0x13000000 /* MCLK = SRC / 3 */
1444 #define MCLK_DIV5 0x12000000 /* MCLK = SRC / 5 */
1445 #define SCLK_DIV 0x00f00000 /* SCLK = MCLK / DIV */
1446 #define SCLK_DIV1 0x00800000
1447 #define SCLK_DIV3 0x00900000
1448 #define SCLK_MASTER 0x00080000 /* Master mode */
1449 #define SCLK_SLAVE 0x00000000 /* Slave mode */
1450 #define SERIAL_FORMAT 0x00070000
1451 #define SERIAL_SONY 0x00000000
1452 #define SERIAL_64x 0x00010000
1453 #define SERIAL_32x 0x00020000
1454 #define SERIAL_DAV 0x00040000
1455 #define SERIAL_SILICON 0x00050000
1456
1457 /*
1458 * rate = fs = LRCLK
1459 * SCLK = 64*LRCLK (I2S)
1460 * MCLK = 256fs (typ. -- changeable)
1461 *
1462 * MCLK = clksrc / mdiv
1463 * SCLK = MCLK / sdiv
1464 * rate = SCLK / 64 ( = LRCLK = fs)
1465 */
1466
1467 int
1468 snapper_set_rate(struct snapper_softc *sc)
1469 {
1470 u_int reg = 0, x;
1471 u_int rate = sc->sc_rate;
1472 uint32_t wordsize, ows;
1473 int MCLK;
1474 int clksrc, mdiv, sdiv;
1475 int mclk_fs;
1476 int timo;
1477 uint8_t mcr1;
1478
1479 switch (rate) {
1480 case 44100:
1481 clksrc = 45158400; /* 45MHz */
1482 reg = CLKSRC_45MHz;
1483 mclk_fs = 256;
1484 break;
1485
1486 case 32000:
1487 case 48000:
1488 clksrc = 49152000; /* 49MHz */
1489 reg = CLKSRC_49MHz;
1490 mclk_fs = 256;
1491 break;
1492
1493 default:
1494 DPRINTF("snapper_set_rate: invalid rate %u\n", rate);
1495 return EINVAL;
1496 }
1497
1498 MCLK = rate * mclk_fs;
1499 mdiv = clksrc / MCLK; /* 4 */
1500 sdiv = mclk_fs / 64; /* 4 */
1501
1502 switch (mdiv) {
1503 case 1:
1504 reg |= MCLK_DIV1;
1505 break;
1506 case 3:
1507 reg |= MCLK_DIV3;
1508 break;
1509 case 5:
1510 reg |= MCLK_DIV5;
1511 break;
1512 default:
1513 reg |= ((mdiv / 2 - 1) << 24) & 0x1f000000;
1514 break;
1515 }
1516
1517 switch (sdiv) {
1518 case 1:
1519 reg |= SCLK_DIV1;
1520 break;
1521 case 3:
1522 reg |= SCLK_DIV3;
1523 break;
1524 default:
1525 reg |= ((sdiv / 2 - 1) << 20) & 0x00f00000;
1526 break;
1527 }
1528
1529 reg |= SCLK_MASTER; /* XXX master mode */
1530
1531 reg |= SERIAL_64x;
1532
1533 /* stereo input and output */
1534
1535 DPRINTF("precision: %d\n", sc->sc_bitspersample);
1536 switch(sc->sc_bitspersample) {
1537 case 16:
1538 wordsize = 0x02000200;
1539 mcr1 = DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_16;
1540 break;
1541 case 24:
1542 wordsize = 0x03000300;
1543 mcr1 = DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_24;
1544 break;
1545 default:
1546 printf("%s: unsupported sample size %d\n",
1547 sc->sc_dev.dv_xname, sc->sc_bitspersample);
1548 return EINVAL;
1549 }
1550
1551 ows = in32rb(sc->sc_reg + I2S_WORDSIZE);
1552 DPRINTF("I2SSetDataWordSizeReg 0x%08x -> 0x%08x\n",
1553 ows, wordsize);
1554 if (ows != wordsize) {
1555 out32rb(sc->sc_reg + I2S_WORDSIZE, wordsize);
1556 tas3004_write(sc, DEQ_MCR1, &mcr1);
1557 }
1558
1559 x = in32rb(sc->sc_reg + I2S_FORMAT);
1560 if (x == reg)
1561 return 0; /* No change; do nothing. */
1562
1563 DPRINTF("I2SSetSerialFormatReg 0x%x -> 0x%x\n",
1564 in32rb(sc->sc_reg + I2S_FORMAT), reg);
1565
1566 /* Clear CLKSTOPPEND. */
1567 out32rb(sc->sc_reg + I2S_INT, I2S_INT_CLKSTOPPEND);
1568
1569 x = in32rb(0x8000003c); /* FCR */
1570 x &= ~I2S0CLKEN; /* XXX I2S0 */
1571 out32rb(0x8000003c, x);
1572
1573 /* Wait until clock is stopped. */
1574 for (timo = 1000; timo > 0; timo--) {
1575 if (in32rb(sc->sc_reg + I2S_INT) & I2S_INT_CLKSTOPPEND)
1576 goto done;
1577 delay(1);
1578 }
1579 DPRINTF("snapper_set_rate: timeout\n");
1580 done:
1581 out32rb(sc->sc_reg + I2S_FORMAT, reg);
1582
1583 x = in32rb(0x8000003c);
1584 x |= I2S0CLKEN;
1585 out32rb(0x8000003c, x);
1586
1587 return 0;
1588 }
1589
1590 const struct tas3004_reg tas3004_initdata = {
1591 { DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_16 }, /* MCR1 */
1592 { 1, 0, 0, 0, 0, 0 }, /* DRC */
1593 { 0, 0, 0, 0, 0, 0 }, /* VOLUME */
1594 { 0x72 }, /* TREBLE */
1595 { 0x72 }, /* BASS */
1596 { 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 }, /* MIXER_L */
1597 { 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 }, /* MIXER_R */
1598 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1599 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1600 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1601 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1602 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1603 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1604 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1605 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1606 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1607 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1608 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1609 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1610 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1611 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1612 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1613 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1614 { 0, 0, 0 }, /* LLB_GAIN */
1615 { 0, 0, 0 }, /* RLB_GAIN */
1616 { DEQ_ACR_ADM | DEQ_ACR_LRB | DEQ_ACR_INP_B }, /* ACR - right channel of input B is the microphone */
1617 { 2 } /* MCR2 - AllPass mode since we don't use the equalizer anyway */
1618 };
1619
1620 const char tas3004_regsize[] = {
1621 0, /* 0x00 */
1622 sizeof tas3004_initdata.MCR1, /* 0x01 */
1623 sizeof tas3004_initdata.DRC, /* 0x02 */
1624 0, /* 0x03 */
1625 sizeof tas3004_initdata.VOLUME, /* 0x04 */
1626 sizeof tas3004_initdata.TREBLE, /* 0x05 */
1627 sizeof tas3004_initdata.BASS, /* 0x06 */
1628 sizeof tas3004_initdata.MIXER_L, /* 0x07 */
1629 sizeof tas3004_initdata.MIXER_R, /* 0x08 */
1630 0, /* 0x09 */
1631 sizeof tas3004_initdata.LB0, /* 0x0a */
1632 sizeof tas3004_initdata.LB1, /* 0x0b */
1633 sizeof tas3004_initdata.LB2, /* 0x0c */
1634 sizeof tas3004_initdata.LB3, /* 0x0d */
1635 sizeof tas3004_initdata.LB4, /* 0x0e */
1636 sizeof tas3004_initdata.LB5, /* 0x0f */
1637 sizeof tas3004_initdata.LB6, /* 0x10 */
1638 0, /* 0x11 */
1639 0, /* 0x12 */
1640 sizeof tas3004_initdata.RB0, /* 0x13 */
1641 sizeof tas3004_initdata.RB1, /* 0x14 */
1642 sizeof tas3004_initdata.RB2, /* 0x15 */
1643 sizeof tas3004_initdata.RB3, /* 0x16 */
1644 sizeof tas3004_initdata.RB4, /* 0x17 */
1645 sizeof tas3004_initdata.RB5, /* 0x18 */
1646 sizeof tas3004_initdata.RB6, /* 0x19 */
1647 0,0,0,0, 0,0,
1648 0, /* 0x20 */
1649 sizeof tas3004_initdata.LLB, /* 0x21 */
1650 sizeof tas3004_initdata.RLB, /* 0x22 */
1651 sizeof tas3004_initdata.LLB_GAIN, /* 0x23 */
1652 sizeof tas3004_initdata.RLB_GAIN, /* 0x24 */
1653 0,0,0,0, 0,0,0,0, 0,0,0,
1654 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,
1655 sizeof tas3004_initdata.ACR, /* 0x40 */
1656 0, /* 0x41 */
1657 0, /* 0x42 */
1658 sizeof tas3004_initdata.MCR2 /* 0x43 */
1659 };
1660
1661 int
1662 tas3004_write(struct snapper_softc *sc, u_int reg, const void *data)
1663 {
1664 int size;
1665 static char regblock[sizeof(struct tas3004_reg)+1];
1666
1667 if (sc->sc_i2c == NULL)
1668 return 0;
1669
1670 KASSERT(reg < sizeof tas3004_regsize);
1671 size = tas3004_regsize[reg];
1672 KASSERT(size > 0);
1673
1674 DPRINTF("reg: %x, %d %d\n", reg, size, ((const char*)data)[0]);
1675
1676 regblock[0] = reg;
1677 memcpy(®block[1], data, size);
1678 iic_acquire_bus(sc->sc_i2c, 0);
1679 iic_exec(sc->sc_i2c, I2C_OP_WRITE, sc->sc_deqaddr, regblock, size + 1,
1680 NULL, 0, 0);
1681 iic_release_bus(sc->sc_i2c, 0);
1682
1683 return 0;
1684 }
1685
1686 int
1687 gpio_read(char *addr)
1688 {
1689
1690 if (*addr & GPIO_DATA)
1691 return 1;
1692 return 0;
1693 }
1694
1695 void
1696 gpio_write(char *addr, int val)
1697 {
1698 u_int data;
1699
1700 data = GPIO_DDR_OUTPUT;
1701 if (val)
1702 data |= GPIO_DATA;
1703 *addr = data;
1704 __asm volatile ("eieio");
1705 }
1706
1707 #define headphone_active 0 /* XXX OF */
1708 #define amp_active 0 /* XXX OF */
1709
1710 void
1711 snapper_mute_speaker(struct snapper_softc *sc, int mute)
1712 {
1713 u_int x;
1714
1715 DPRINTF("ampmute %d --> ", gpio_read(amp_mute));
1716
1717 if (mute)
1718 x = amp_active; /* mute */
1719 else
1720 x = !amp_active; /* unmute */
1721 if (x != gpio_read(amp_mute))
1722 gpio_write(amp_mute, x);
1723
1724 DPRINTF("%d\n", gpio_read(amp_mute));
1725 }
1726
1727 void
1728 snapper_mute_headphone(struct snapper_softc *sc, int mute)
1729 {
1730 u_int x;
1731
1732 DPRINTF("headphonemute %d --> ", gpio_read(headphone_mute));
1733
1734 if (mute)
1735 x = headphone_active; /* mute */
1736 else
1737 x = !headphone_active; /* unmute */
1738 if (x != gpio_read(headphone_mute))
1739 gpio_write(headphone_mute, x);
1740
1741 DPRINTF("%d\n", gpio_read(headphone_mute));
1742 }
1743
1744 int
1745 snapper_cint(void *v)
1746 {
1747 struct snapper_softc *sc;
1748 u_int sense;
1749
1750 sc = v;
1751 sense = *headphone_detect;
1752 DPRINTF("headphone detect = 0x%x\n", sense);
1753
1754 if (((sense & 0x02) >> 1) == headphone_detect_active) {
1755 DPRINTF("headphone is inserted\n");
1756 snapper_mute_speaker(sc, 1);
1757 snapper_mute_headphone(sc, 0);
1758 sc->sc_output_mask = 1 << 1;
1759 } else {
1760 DPRINTF("headphone is NOT inserted\n");
1761 snapper_mute_speaker(sc, 0);
1762 snapper_mute_headphone(sc, 1);
1763 sc->sc_output_mask = 1 << 0;
1764 }
1765
1766 return 1;
1767 }
1768
1769 #define reset_active 0 /* XXX OF */
1770
1771 #define DEQ_WRITE(sc, reg, addr) \
1772 if (tas3004_write(sc, reg, addr)) goto err
1773
1774 int
1775 tas3004_init(struct snapper_softc *sc)
1776 {
1777
1778 /* No reset port. Nothing to do. */
1779 if (audio_hw_reset == NULL)
1780 goto noreset;
1781
1782 /* Reset TAS3004. */
1783 gpio_write(audio_hw_reset, !reset_active); /* Negate RESET */
1784 delay(100000); /* XXX Really needed? */
1785
1786 gpio_write(audio_hw_reset, reset_active); /* Assert RESET */
1787 delay(1);
1788
1789 gpio_write(audio_hw_reset, !reset_active); /* Negate RESET */
1790 delay(10000);
1791
1792 noreset:
1793 DEQ_WRITE(sc, DEQ_LB0, tas3004_initdata.LB0);
1794 DEQ_WRITE(sc, DEQ_LB1, tas3004_initdata.LB1);
1795 DEQ_WRITE(sc, DEQ_LB2, tas3004_initdata.LB2);
1796 DEQ_WRITE(sc, DEQ_LB3, tas3004_initdata.LB3);
1797 DEQ_WRITE(sc, DEQ_LB4, tas3004_initdata.LB4);
1798 DEQ_WRITE(sc, DEQ_LB5, tas3004_initdata.LB5);
1799 DEQ_WRITE(sc, DEQ_LB6, tas3004_initdata.LB6);
1800 DEQ_WRITE(sc, DEQ_RB0, tas3004_initdata.RB0);
1801 DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1);
1802 DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1);
1803 DEQ_WRITE(sc, DEQ_RB2, tas3004_initdata.RB2);
1804 DEQ_WRITE(sc, DEQ_RB3, tas3004_initdata.RB3);
1805 DEQ_WRITE(sc, DEQ_RB4, tas3004_initdata.RB4);
1806 DEQ_WRITE(sc, DEQ_RB5, tas3004_initdata.RB5);
1807 DEQ_WRITE(sc, DEQ_MCR1, tas3004_initdata.MCR1);
1808 DEQ_WRITE(sc, DEQ_MCR2, tas3004_initdata.MCR2);
1809 DEQ_WRITE(sc, DEQ_DRC, tas3004_initdata.DRC);
1810 DEQ_WRITE(sc, DEQ_VOLUME, tas3004_initdata.VOLUME);
1811 DEQ_WRITE(sc, DEQ_TREBLE, tas3004_initdata.TREBLE);
1812 DEQ_WRITE(sc, DEQ_BASS, tas3004_initdata.BASS);
1813 DEQ_WRITE(sc, DEQ_MIXER_L, tas3004_initdata.MIXER_L);
1814 DEQ_WRITE(sc, DEQ_MIXER_R, tas3004_initdata.MIXER_R);
1815 DEQ_WRITE(sc, DEQ_LLB, tas3004_initdata.LLB);
1816 DEQ_WRITE(sc, DEQ_RLB, tas3004_initdata.RLB);
1817 DEQ_WRITE(sc, DEQ_LLB_GAIN, tas3004_initdata.LLB_GAIN);
1818 DEQ_WRITE(sc, DEQ_RLB_GAIN, tas3004_initdata.RLB_GAIN);
1819 DEQ_WRITE(sc, DEQ_ACR, tas3004_initdata.ACR);
1820
1821 return 0;
1822 err:
1823 printf("tas3004_init: error\n");
1824 return -1;
1825 }
1826
1827 void
1828 snapper_init(struct snapper_softc *sc, int node)
1829 {
1830 int gpio;
1831 int headphone_detect_intr, headphone_detect_intrtype;
1832 #ifdef SNAPPER_DEBUG
1833 char fcr[32];
1834
1835 bitmask_snprintf(in32rb(0x8000003c), FCR3C_BITMASK, fcr, sizeof fcr);
1836 printf("FCR(0x3c) 0x%s\n", fcr);
1837 #endif
1838 headphone_detect_intr = -1;
1839
1840 gpio = getnodebyname(OF_parent(node), "gpio");
1841 DPRINTF(" /gpio 0x%x\n", gpio);
1842 gpio = OF_child(gpio);
1843 while (gpio) {
1844 char name[64], audio_gpio[64];
1845 int intr[2];
1846 char *addr;
1847
1848 bzero(name, sizeof name);
1849 bzero(audio_gpio, sizeof audio_gpio);
1850 addr = 0;
1851 OF_getprop(gpio, "name", name, sizeof name);
1852 OF_getprop(gpio, "audio-gpio", audio_gpio, sizeof audio_gpio);
1853 OF_getprop(gpio, "AAPL,address", &addr, sizeof addr);
1854 DPRINTF(" 0x%x %s %s\n", gpio, name, audio_gpio);
1855
1856 /* gpio5 */
1857 if (strcmp(audio_gpio, "headphone-mute") == 0)
1858 headphone_mute = addr;
1859 /* gpio6 */
1860 if (strcmp(audio_gpio, "amp-mute") == 0)
1861 amp_mute = addr;
1862 /* extint-gpio15 */
1863 if (strcmp(audio_gpio, "headphone-detect") == 0) {
1864 headphone_detect = addr;
1865 OF_getprop(gpio, "audio-gpio-active-state",
1866 &headphone_detect_active, 4);
1867 OF_getprop(gpio, "interrupts", intr, 8);
1868 headphone_detect_intr = intr[0];
1869 headphone_detect_intrtype = intr[1];
1870 }
1871 /* gpio11 (keywest-11) */
1872 if (strcmp(audio_gpio, "audio-hw-reset") == 0)
1873 audio_hw_reset = addr;
1874 gpio = OF_peer(gpio);
1875 }
1876 DPRINTF(" headphone-mute %p\n", headphone_mute);
1877 DPRINTF(" amp-mute %p\n", amp_mute);
1878 DPRINTF(" headphone-detect %p\n", headphone_detect);
1879 DPRINTF(" headphone-detect active %x\n", headphone_detect_active);
1880 DPRINTF(" headphone-detect intr %x\n", headphone_detect_intr);
1881 DPRINTF(" audio-hw-reset %p\n", audio_hw_reset);
1882
1883 if (headphone_detect_intr != -1)
1884 intr_establish(headphone_detect_intr, IST_EDGE, IPL_AUDIO,
1885 snapper_cint, sc);
1886
1887 sc->sc_rate = 44100; /* default rate */
1888 sc->sc_bitspersample = 16;
1889
1890 /* Enable headphone interrupt? */
1891 *headphone_detect |= 0x80;
1892 __asm volatile ("eieio");
1893
1894 /* i2c_set_port(port); */
1895
1896 if (tas3004_init(sc))
1897 return;
1898
1899 /* Update headphone status. */
1900 snapper_cint(sc);
1901
1902 snapper_set_volume(sc, 128, 128);
1903
1904 sc->sc_bass = 128;
1905 sc->sc_treble = 128;
1906
1907 /* Record source defaults to microphone. This reflects the
1908 * default value for the ACR (see tas3004_initdata).
1909 */
1910 sc->sc_record_source = 1 << 0;
1911
1912 /* We mute the analog input for now */
1913 sc->mixer[0] = 80;
1914 sc->mixer[1] = 80;
1915 sc->mixer[2] = 0;
1916 sc->mixer[3] = 80;
1917 sc->mixer[4] = 80;
1918 sc->mixer[5] = 0;
1919 snapper_write_mixers(sc);
1920 }
1921