snapper.c revision 1.20.4.1 1 /* $NetBSD: snapper.c,v 1.20.4.1 2007/06/07 20:30:44 garbled Exp $ */
2 /* Id: snapper.c,v 1.11 2002/10/31 17:42:13 tsubai Exp */
3 /* Id: i2s.c,v 1.12 2005/01/15 14:32:35 tsubai Exp */
4 /*-
5 * Copyright (c) 2002, 2003 Tsubai Masanari. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 /*
31 * Datasheet is available from
32 * http://www.ti.com/sc/docs/products/analog/tas3004.html
33 */
34
35 #include <sys/param.h>
36 #include <sys/audioio.h>
37 #include <sys/device.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40
41 #include <dev/auconv.h>
42 #include <dev/audio_if.h>
43 #include <dev/mulaw.h>
44 #include <dev/ofw/openfirm.h>
45 #include <macppc/dev/dbdma.h>
46
47 #include <uvm/uvm_extern.h>
48 #include <dev/i2c/i2cvar.h>
49
50 #include <machine/autoconf.h>
51 #include <machine/pio.h>
52
53 #include <macppc/dev/deqvar.h>
54
55 #ifdef SNAPPER_DEBUG
56 # define DPRINTF printf
57 #else
58 # define DPRINTF while (0) printf
59 #endif
60
61 struct snapper_softc {
62 struct device sc_dev;
63 int sc_flags;
64 int sc_node;
65
66 void (*sc_ointr)(void *); /* dma completion intr handler */
67 void *sc_oarg; /* arg for sc_ointr() */
68 int sc_opages; /* # of output pages */
69
70 void (*sc_iintr)(void *); /* dma completion intr handler */
71 void *sc_iarg; /* arg for sc_iintr() */
72 int sc_ipages; /* # of input pages */
73
74 u_int sc_record_source; /* recording source mask */
75 u_int sc_output_mask; /* output source mask */
76
77 bus_space_tag_t sc_tag;
78 bus_space_handle_t sc_bsh;
79 i2c_addr_t sc_deqaddr;
80 i2c_tag_t sc_i2c;
81
82 int sc_rate; /* current sampling rate */
83 int sc_bitspersample;
84 int sc_swvol;
85
86 u_int sc_vol_l;
87 u_int sc_vol_r;
88 u_int sc_treble;
89 u_int sc_bass;
90 u_int mixer[6]; /* s1_l, s2_l, an_l, s1_r, s2_r, an_r */
91
92 bus_space_handle_t sc_odmah;
93 bus_space_handle_t sc_idmah;
94 dbdma_regmap_t *sc_odma;
95 dbdma_regmap_t *sc_idma;
96 unsigned char dbdma_cmdspace[sizeof(struct dbdma_command) * 40 + 15];
97 struct dbdma_command *sc_odmacmd;
98 struct dbdma_command *sc_idmacmd;
99 };
100
101 int snapper_match(struct device *, struct cfdata *, void *);
102 void snapper_attach(struct device *, struct device *, void *);
103 void snapper_defer(struct device *);
104 int snapper_intr(void *);
105 void snapper_close(void *);
106 int snapper_query_encoding(void *, struct audio_encoding *);
107 int snapper_set_params(void *, int, int, audio_params_t *,
108 audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
109 int snapper_round_blocksize(void *, int, int, const audio_params_t *);
110 int snapper_halt_output(void *);
111 int snapper_halt_input(void *);
112 int snapper_getdev(void *, struct audio_device *);
113 int snapper_set_port(void *, mixer_ctrl_t *);
114 int snapper_get_port(void *, mixer_ctrl_t *);
115 int snapper_query_devinfo(void *, mixer_devinfo_t *);
116 size_t snapper_round_buffersize(void *, int, size_t);
117 paddr_t snapper_mappage(void *, void *, off_t, int);
118 int snapper_get_props(void *);
119 int snapper_trigger_output(void *, void *, void *, int, void (*)(void *),
120 void *, const audio_params_t *);
121 int snapper_trigger_input(void *, void *, void *, int, void (*)(void *),
122 void *, const audio_params_t *);
123 void snapper_set_volume(struct snapper_softc *, int, int);
124 int snapper_set_rate(struct snapper_softc *);
125 void snapper_set_treble(struct snapper_softc *, int);
126 void snapper_set_bass(struct snapper_softc *, int);
127 void snapper_write_mixers(struct snapper_softc *);
128
129 int tas3004_write(struct snapper_softc *, u_int, const void *);
130 static int gpio_read(char *);
131 static void gpio_write(char *, int);
132 void snapper_mute_speaker(struct snapper_softc *, int);
133 void snapper_mute_headphone(struct snapper_softc *, int);
134 int snapper_cint(void *);
135 int tas3004_init(struct snapper_softc *);
136 void snapper_init(struct snapper_softc *, int);
137
138 struct snapper_codecvar {
139 stream_filter_t base;
140 };
141
142 static stream_filter_t *snapper_factory
143 (int (*)(stream_fetcher_t *, audio_stream_t *, int));
144 static void snapper_dtor(stream_filter_t *);
145
146 #define SNAPPER_FCR ((volatile uint32_t *)0x8000003c)
147
148
149 /* XXX We can't access the hw device softc from our audio
150 * filter -- lame...
151 */
152 static u_int snapper_vol_l = 128, snapper_vol_r = 128;
153
154 /* XXX why doesn't auconv define this? */
155 #define DEFINE_FILTER(name) \
156 static int \
157 name##_fetch_to(stream_fetcher_t *, audio_stream_t *, int); \
158 stream_filter_t * name(struct audio_softc *, \
159 const audio_params_t *, const audio_params_t *); \
160 stream_filter_t * \
161 name(struct audio_softc *sc, const audio_params_t *from, \
162 const audio_params_t *to) \
163 { \
164 return snapper_factory(name##_fetch_to); \
165 } \
166 static int \
167 name##_fetch_to(stream_fetcher_t *self, audio_stream_t *dst, int max_used)
168
169 DEFINE_FILTER(snapper_volume)
170 {
171 stream_filter_t *this;
172 int16_t j;
173 int16_t *wp;
174 int m, err;
175
176 this = (stream_filter_t *)self;
177 max_used = (max_used + 1) & ~1;
178 if ((err = this->prev->fetch_to(this->prev, this->src, max_used)))
179 return err;
180 m = (dst->end - dst->start) & ~1;
181 m = min(m, max_used);
182 FILTER_LOOP_PROLOGUE(this->src, 2, dst, 2, m) {
183 j = (s[0] << 8 | s[1]);
184 wp = (int16_t *)d;
185 *wp = ((j * snapper_vol_l) / 255);
186 } FILTER_LOOP_EPILOGUE(this->src, dst);
187
188 return 0;
189 }
190
191 static stream_filter_t *
192 snapper_factory(int (*fetch_to)(stream_fetcher_t *, audio_stream_t *, int))
193 {
194 struct snapper_codecvar *this;
195
196 this = malloc(sizeof(*this), M_DEVBUF, M_WAITOK | M_ZERO);
197 this->base.base.fetch_to = fetch_to;
198 this->base.dtor = snapper_dtor;
199 this->base.set_fetcher = stream_filter_set_fetcher;
200 this->base.set_inputbuffer = stream_filter_set_inputbuffer;
201 return &this->base;
202 }
203
204 static void
205 snapper_dtor(stream_filter_t *this)
206 {
207 if (this != NULL)
208 free(this, M_DEVBUF);
209 }
210
211 struct cfattach snapper_ca = {
212 "snapper", {}, sizeof(struct snapper_softc),
213 snapper_match, snapper_attach
214 };
215
216 const struct audio_hw_if snapper_hw_if = {
217 NULL, /* open */
218 snapper_close,
219 NULL,
220 snapper_query_encoding,
221 snapper_set_params,
222 snapper_round_blocksize,
223 NULL,
224 NULL,
225 NULL,
226 NULL,
227 NULL,
228 snapper_halt_output,
229 snapper_halt_input,
230 NULL,
231 snapper_getdev,
232 NULL,
233 snapper_set_port,
234 snapper_get_port,
235 snapper_query_devinfo,
236 NULL,
237 NULL,
238 snapper_round_buffersize,
239 snapper_mappage,
240 snapper_get_props,
241 snapper_trigger_output,
242 snapper_trigger_input,
243 NULL
244 };
245
246 struct audio_device snapper_device = {
247 "SNAPPER",
248 "",
249 "snapper"
250 };
251
252 const uint8_t snapper_basstab[] = {
253 0x96, /* -18dB */
254 0x94, /* -17dB */
255 0x92, /* -16dB */
256 0x90, /* -15dB */
257 0x8e, /* -14dB */
258 0x8c, /* -13dB */
259 0x8a, /* -12dB */
260 0x88, /* -11dB */
261 0x86, /* -10dB */
262 0x84, /* -9dB */
263 0x82, /* -8dB */
264 0x80, /* -7dB */
265 0x7e, /* -6dB */
266 0x7c, /* -5dB */
267 0x7a, /* -4dB */
268 0x78, /* -3dB */
269 0x76, /* -2dB */
270 0x74, /* -1dB */
271 0x72, /* 0dB */
272 0x6f, /* 1dB */
273 0x6d, /* 2dB */
274 0x6a, /* 3dB */
275 0x67, /* 4dB */
276 0x65, /* 5dB */
277 0x62, /* 6dB */
278 0x5f, /* 7dB */
279 0x5b, /* 8dB */
280 0x55, /* 9dB */
281 0x4f, /* 10dB */
282 0x49, /* 11dB */
283 0x43, /* 12dB */
284 0x3b, /* 13dB */
285 0x33, /* 14dB */
286 0x29, /* 15dB */
287 0x1e, /* 16dB */
288 0x11, /* 17dB */
289 0x01, /* 18dB */
290 };
291
292 const uint8_t snapper_mixer_gain[178][3] = {
293 { 0x7f, 0x17, 0xaf }, /* 18.0 dB */
294 { 0x77, 0xfb, 0xaa }, /* 17.5 dB */
295 { 0x71, 0x45, 0x75 }, /* 17.0 dB */
296 { 0x6a, 0xef, 0x5d }, /* 16.5 dB */
297 { 0x64, 0xf4, 0x03 }, /* 16.0 dB */
298 { 0x5f, 0x4e, 0x52 }, /* 15.5 dB */
299 { 0x59, 0xf9, 0x80 }, /* 15.0 dB */
300 { 0x54, 0xf1, 0x06 }, /* 14.5 dB */
301 { 0x50, 0x30, 0xa1 }, /* 14.0 dB */
302 { 0x4b, 0xb4, 0x46 }, /* 13.5 dB */
303 { 0x47, 0x78, 0x28 }, /* 13.0 dB */
304 { 0x43, 0x78, 0xb0 }, /* 12.5 dB */
305 { 0x3f, 0xb2, 0x78 }, /* 12.0 dB */
306 { 0x3c, 0x22, 0x4c }, /* 11.5 dB */
307 { 0x38, 0xc5, 0x28 }, /* 11.0 dB */
308 { 0x35, 0x98, 0x2f }, /* 10.5 dB */
309 { 0x32, 0x98, 0xb0 }, /* 10.0 dB */
310 { 0x2f, 0xc4, 0x20 }, /* 9.5 dB */
311 { 0x2d, 0x18, 0x18 }, /* 9.0 dB */
312 { 0x2a, 0x92, 0x54 }, /* 8.5 dB */
313 { 0x28, 0x30, 0xaf }, /* 8.0 dB */
314 { 0x25, 0xf1, 0x25 }, /* 7.5 dB */
315 { 0x23, 0xd1, 0xcd }, /* 7.0 dB */
316 { 0x21, 0xd0, 0xd9 }, /* 6.5 dB */
317 { 0x1f, 0xec, 0x98 }, /* 6.0 dB */
318 { 0x1e, 0x23, 0x6d }, /* 5.5 dB */
319 { 0x1c, 0x73, 0xd5 }, /* 5.0 dB */
320 { 0x1a, 0xdc, 0x61 }, /* 4.5 dB */
321 { 0x19, 0x5b, 0xb8 }, /* 4.0 dB */
322 { 0x17, 0xf0, 0x94 }, /* 3.5 dB */
323 { 0x16, 0x99, 0xc0 }, /* 3.0 dB */
324 { 0x15, 0x56, 0x1a }, /* 2.5 dB */
325 { 0x14, 0x24, 0x8e }, /* 2.0 dB */
326 { 0x13, 0x04, 0x1a }, /* 1.5 dB */
327 { 0x11, 0xf3, 0xc9 }, /* 1.0 dB */
328 { 0x10, 0xf2, 0xb4 }, /* 0.5 dB */
329 { 0x10, 0x00, 0x00 }, /* 0.0 dB */
330 { 0x0f, 0x1a, 0xdf }, /* -0.5 dB */
331 { 0x0e, 0x42, 0x90 }, /* -1.0 dB */
332 { 0x0d, 0x76, 0x5a }, /* -1.5 dB */
333 { 0x0c, 0xb5, 0x91 }, /* -2.0 dB */
334 { 0x0b, 0xff, 0x91 }, /* -2.5 dB */
335 { 0x0b, 0x53, 0xbe }, /* -3.0 dB */
336 { 0x0a, 0xb1, 0x89 }, /* -3.5 dB */
337 { 0x0a, 0x18, 0x66 }, /* -4.0 dB */
338 { 0x09, 0x87, 0xd5 }, /* -4.5 dB */
339 { 0x08, 0xff, 0x59 }, /* -5.0 dB */
340 { 0x08, 0x7e, 0x80 }, /* -5.5 dB */
341 { 0x08, 0x04, 0xdc }, /* -6.0 dB */
342 { 0x07, 0x92, 0x07 }, /* -6.5 dB */
343 { 0x07, 0x25, 0x9d }, /* -7.0 dB */
344 { 0x06, 0xbf, 0x44 }, /* -7.5 dB */
345 { 0x06, 0x5e, 0xa5 }, /* -8.0 dB */
346 { 0x06, 0x03, 0x6e }, /* -8.5 dB */
347 { 0x05, 0xad, 0x50 }, /* -9.0 dB */
348 { 0x05, 0x5c, 0x04 }, /* -9.5 dB */
349 { 0x05, 0x0f, 0x44 }, /* -10.0 dB */
350 { 0x04, 0xc6, 0xd0 }, /* -10.5 dB */
351 { 0x04, 0x82, 0x68 }, /* -11.0 dB */
352 { 0x04, 0x41, 0xd5 }, /* -11.5 dB */
353 { 0x04, 0x04, 0xde }, /* -12.0 dB */
354 { 0x03, 0xcb, 0x50 }, /* -12.5 dB */
355 { 0x03, 0x94, 0xfa }, /* -13.0 dB */
356 { 0x03, 0x61, 0xaf }, /* -13.5 dB */
357 { 0x03, 0x31, 0x42 }, /* -14.0 dB */
358 { 0x03, 0x03, 0x8a }, /* -14.5 dB */
359 { 0x02, 0xd8, 0x62 }, /* -15.0 dB */
360 { 0x02, 0xaf, 0xa3 }, /* -15.5 dB */
361 { 0x02, 0x89, 0x2c }, /* -16.0 dB */
362 { 0x02, 0x64, 0xdb }, /* -16.5 dB */
363 { 0x02, 0x42, 0x93 }, /* -17.0 dB */
364 { 0x02, 0x22, 0x35 }, /* -17.5 dB */
365 { 0x02, 0x03, 0xa7 }, /* -18.0 dB */
366 { 0x01, 0xe6, 0xcf }, /* -18.5 dB */
367 { 0x01, 0xcb, 0x94 }, /* -19.0 dB */
368 { 0x01, 0xb1, 0xde }, /* -19.5 dB */
369 { 0x01, 0x99, 0x99 }, /* -20.0 dB */
370 { 0x01, 0x82, 0xaf }, /* -20.5 dB */
371 { 0x01, 0x6d, 0x0e }, /* -21.0 dB */
372 { 0x01, 0x58, 0xa2 }, /* -21.5 dB */
373 { 0x01, 0x45, 0x5b }, /* -22.0 dB */
374 { 0x01, 0x33, 0x28 }, /* -22.5 dB */
375 { 0x01, 0x21, 0xf9 }, /* -23.0 dB */
376 { 0x01, 0x11, 0xc0 }, /* -23.5 dB */
377 { 0x01, 0x02, 0x70 }, /* -24.0 dB */
378 { 0x00, 0xf3, 0xfb }, /* -24.5 dB */
379 { 0x00, 0xe6, 0x55 }, /* -25.0 dB */
380 { 0x00, 0xd9, 0x73 }, /* -25.5 dB */
381 { 0x00, 0xcd, 0x49 }, /* -26.0 dB */
382 { 0x00, 0xc1, 0xcd }, /* -26.5 dB */
383 { 0x00, 0xb6, 0xf6 }, /* -27.0 dB */
384 { 0x00, 0xac, 0xba }, /* -27.5 dB */
385 { 0x00, 0xa3, 0x10 }, /* -28.0 dB */
386 { 0x00, 0x99, 0xf1 }, /* -28.5 dB */
387 { 0x00, 0x91, 0x54 }, /* -29.0 dB */
388 { 0x00, 0x89, 0x33 }, /* -29.5 dB */
389 { 0x00, 0x81, 0x86 }, /* -30.0 dB */
390 { 0x00, 0x7a, 0x48 }, /* -30.5 dB */
391 { 0x00, 0x73, 0x70 }, /* -31.0 dB */
392 { 0x00, 0x6c, 0xfb }, /* -31.5 dB */
393 { 0x00, 0x66, 0xe3 }, /* -32.0 dB */
394 { 0x00, 0x61, 0x21 }, /* -32.5 dB */
395 { 0x00, 0x5b, 0xb2 }, /* -33.0 dB */
396 { 0x00, 0x56, 0x91 }, /* -33.5 dB */
397 { 0x00, 0x51, 0xb9 }, /* -34.0 dB */
398 { 0x00, 0x4d, 0x27 }, /* -34.5 dB */
399 { 0x00, 0x48, 0xd6 }, /* -35.0 dB */
400 { 0x00, 0x44, 0xc3 }, /* -35.5 dB */
401 { 0x00, 0x40, 0xea }, /* -36.0 dB */
402 { 0x00, 0x3d, 0x49 }, /* -36.5 dB */
403 { 0x00, 0x39, 0xdb }, /* -37.0 dB */
404 { 0x00, 0x36, 0x9e }, /* -37.5 dB */
405 { 0x00, 0x33, 0x90 }, /* -38.0 dB */
406 { 0x00, 0x30, 0xae }, /* -38.5 dB */
407 { 0x00, 0x2d, 0xf5 }, /* -39.0 dB */
408 { 0x00, 0x2b, 0x63 }, /* -39.5 dB */
409 { 0x00, 0x28, 0xf5 }, /* -40.0 dB */
410 { 0x00, 0x26, 0xab }, /* -40.5 dB */
411 { 0x00, 0x24, 0x81 }, /* -41.0 dB */
412 { 0x00, 0x22, 0x76 }, /* -41.5 dB */
413 { 0x00, 0x20, 0x89 }, /* -42.0 dB */
414 { 0x00, 0x1e, 0xb7 }, /* -42.5 dB */
415 { 0x00, 0x1c, 0xff }, /* -43.0 dB */
416 { 0x00, 0x1b, 0x60 }, /* -43.5 dB */
417 { 0x00, 0x19, 0xd8 }, /* -44.0 dB */
418 { 0x00, 0x18, 0x65 }, /* -44.5 dB */
419 { 0x00, 0x17, 0x08 }, /* -45.0 dB */
420 { 0x00, 0x15, 0xbe }, /* -45.5 dB */
421 { 0x00, 0x14, 0x87 }, /* -46.0 dB */
422 { 0x00, 0x13, 0x61 }, /* -46.5 dB */
423 { 0x00, 0x12, 0x4b }, /* -47.0 dB */
424 { 0x00, 0x11, 0x45 }, /* -47.5 dB */
425 { 0x00, 0x10, 0x4e }, /* -48.0 dB */
426 { 0x00, 0x0f, 0x64 }, /* -48.5 dB */
427 { 0x00, 0x0e, 0x88 }, /* -49.0 dB */
428 { 0x00, 0x0d, 0xb8 }, /* -49.5 dB */
429 { 0x00, 0x0c, 0xf3 }, /* -50.0 dB */
430 { 0x00, 0x0c, 0x3a }, /* -50.5 dB */
431 { 0x00, 0x0b, 0x8b }, /* -51.0 dB */
432 { 0x00, 0x0a, 0xe5 }, /* -51.5 dB */
433 { 0x00, 0x0a, 0x49 }, /* -52.0 dB */
434 { 0x00, 0x09, 0xb6 }, /* -52.5 dB */
435 { 0x00, 0x09, 0x2b }, /* -53.0 dB */
436 { 0x00, 0x08, 0xa8 }, /* -53.5 dB */
437 { 0x00, 0x08, 0x2c }, /* -54.0 dB */
438 { 0x00, 0x07, 0xb7 }, /* -54.5 dB */
439 { 0x00, 0x07, 0x48 }, /* -55.0 dB */
440 { 0x00, 0x06, 0xe0 }, /* -55.5 dB */
441 { 0x00, 0x06, 0x7d }, /* -56.0 dB */
442 { 0x00, 0x06, 0x20 }, /* -56.5 dB */
443 { 0x00, 0x05, 0xc9 }, /* -57.0 dB */
444 { 0x00, 0x05, 0x76 }, /* -57.5 dB */
445 { 0x00, 0x05, 0x28 }, /* -58.0 dB */
446 { 0x00, 0x04, 0xde }, /* -58.5 dB */
447 { 0x00, 0x04, 0x98 }, /* -59.0 dB */
448 { 0x00, 0x04, 0x56 }, /* -59.5 dB */
449 { 0x00, 0x04, 0x18 }, /* -60.0 dB */
450 { 0x00, 0x03, 0xdd }, /* -60.5 dB */
451 { 0x00, 0x03, 0xa6 }, /* -61.0 dB */
452 { 0x00, 0x03, 0x72 }, /* -61.5 dB */
453 { 0x00, 0x03, 0x40 }, /* -62.0 dB */
454 { 0x00, 0x03, 0x12 }, /* -62.5 dB */
455 { 0x00, 0x02, 0xe6 }, /* -63.0 dB */
456 { 0x00, 0x02, 0xbc }, /* -63.5 dB */
457 { 0x00, 0x02, 0x95 }, /* -64.0 dB */
458 { 0x00, 0x02, 0x70 }, /* -64.5 dB */
459 { 0x00, 0x02, 0x4d }, /* -65.0 dB */
460 { 0x00, 0x02, 0x2c }, /* -65.5 dB */
461 { 0x00, 0x02, 0x0d }, /* -66.0 dB */
462 { 0x00, 0x01, 0xf0 }, /* -66.5 dB */
463 { 0x00, 0x01, 0xd4 }, /* -67.0 dB */
464 { 0x00, 0x01, 0xba }, /* -67.5 dB */
465 { 0x00, 0x01, 0xa1 }, /* -68.0 dB */
466 { 0x00, 0x01, 0x8a }, /* -68.5 dB */
467 { 0x00, 0x01, 0x74 }, /* -69.0 dB */
468 { 0x00, 0x01, 0x5f }, /* -69.5 dB */
469 { 0x00, 0x01, 0x4b }, /* -70.0 dB */
470 { 0x00, 0x00, 0x00 } /* Mute */
471 };
472
473 #define SNAPPER_NFORMATS 2
474 static const struct audio_format snapper_formats[SNAPPER_NFORMATS] = {
475 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
476 2, AUFMT_STEREO, 3, {32000, 44100, 48000}},
477 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 24, 24,
478 2, AUFMT_STEREO, 3, {32000, 44100, 48000}},
479 };
480
481 static u_char *amp_mute;
482 static u_char *headphone_mute;
483 static u_char *audio_hw_reset;
484 static u_char *headphone_detect;
485 static int headphone_detect_active;
486
487
488 /* I2S registers */
489 #define I2S_INT 0x00
490 #define I2S_FORMAT 0x10
491 #define I2S_FRAMECOUNT 0x40
492 #define I2S_FRAMEMATCH 0x50
493 #define I2S_WORDSIZE 0x60
494
495 /* I2S_INT register definitions */
496 #define I2S_INT_CLKSTOPPEND 0x01000000 /* clock-stop interrupt pending */
497
498 /* FCR(0x3c) bits */
499 #define I2S0CLKEN 0x1000
500 #define I2S0EN 0x2000
501 #define I2S1CLKEN 0x080000
502 #define I2S1EN 0x100000
503 #define FCR3C_BITMASK "\020\25I2S1EN\24I2S1CLKEN\16I2S0EN\15I2S0CLKEN"
504
505 /* TAS3004 registers */
506 #define DEQ_MCR1 0x01 /* Main control register 1 (1byte) */
507 #define DEQ_DRC 0x02 /* Dynamic range compression (6bytes?) */
508 #define DEQ_VOLUME 0x04 /* Volume (6bytes) */
509 #define DEQ_TREBLE 0x05 /* Treble control (1byte) */
510 #define DEQ_BASS 0x06 /* Bass control (1byte) */
511 #define DEQ_MIXER_L 0x07 /* Mixer left gain (9bytes) */
512 #define DEQ_MIXER_R 0x08 /* Mixer right gain (9bytes) */
513 #define DEQ_LB0 0x0a /* Left biquad 0 (15bytes) */
514 #define DEQ_LB1 0x0b /* Left biquad 1 (15bytes) */
515 #define DEQ_LB2 0x0c /* Left biquad 2 (15bytes) */
516 #define DEQ_LB3 0x0d /* Left biquad 3 (15bytes) */
517 #define DEQ_LB4 0x0e /* Left biquad 4 (15bytes) */
518 #define DEQ_LB5 0x0f /* Left biquad 5 (15bytes) */
519 #define DEQ_LB6 0x10 /* Left biquad 6 (15bytes) */
520 #define DEQ_RB0 0x13 /* Right biquad 0 (15bytes) */
521 #define DEQ_RB1 0x14 /* Right biquad 1 (15bytes) */
522 #define DEQ_RB2 0x15 /* Right biquad 2 (15bytes) */
523 #define DEQ_RB3 0x16 /* Right biquad 3 (15bytes) */
524 #define DEQ_RB4 0x17 /* Right biquad 4 (15bytes) */
525 #define DEQ_RB5 0x18 /* Right biquad 5 (15bytes) */
526 #define DEQ_RB6 0x19 /* Right biquad 6 (15bytes) */
527 #define DEQ_LLB 0x21 /* Left loudness biquad (15bytes) */
528 #define DEQ_RLB 0x22 /* Right loudness biquad (15bytes) */
529 #define DEQ_LLB_GAIN 0x23 /* Left loudness biquad gain (3bytes) */
530 #define DEQ_RLB_GAIN 0x24 /* Right loudness biquad gain (3bytes) */
531 #define DEQ_ACR 0x40 /* Analog control register (1byte) */
532 #define DEQ_MCR2 0x43 /* Main control register 2 (1byte) */
533
534 #define DEQ_MCR1_FL 0x80 /* Fast load */
535 #define DEQ_MCR1_SC 0x40 /* SCLK frequency */
536 #define DEQ_MCR1_SC_32 0x00 /* 32fs */
537 #define DEQ_MCR1_SC_64 0x40 /* 64fs */
538 #define DEQ_MCR1_SM 0x30 /* Output serial port mode */
539 #define DEQ_MCR1_SM_L 0x00 /* Left justified */
540 #define DEQ_MCR1_SM_R 0x10 /* Right justified */
541 #define DEQ_MCR1_SM_I2S 0x20 /* I2S */
542 #define DEQ_MCR1_W 0x03 /* Serial port word length */
543 #define DEQ_MCR1_W_16 0x00 /* 16 bit */
544 #define DEQ_MCR1_W_18 0x01 /* 18 bit */
545 #define DEQ_MCR1_W_20 0x02 /* 20 bit */
546 #define DEQ_MCR1_W_24 0x03 /* 20 bit */
547
548 #define DEQ_MCR2_DL 0x80 /* Download */
549 #define DEQ_MCR2_AP 0x02 /* All pass mode */
550
551 #define DEQ_ACR_ADM 0x80 /* ADC output mode */
552 #define DEQ_ACR_LRB 0x40 /* Select B input */
553 #define DEQ_ACR_DM 0x0c /* De-emphasis control */
554 #define DEQ_ACR_DM_OFF 0x00 /* off */
555 #define DEQ_ACR_DM_48 0x04 /* fs = 48kHz */
556 #define DEQ_ACR_DM_44 0x08 /* fs = 44.1kHz */
557 #define DEQ_ACR_INP 0x02 /* Analog input select */
558 #define DEQ_ACR_INP_A 0x00 /* A */
559 #define DEQ_ACR_INP_B 0x02 /* B */
560 #define DEQ_ACR_APD 0x01 /* Analog power down */
561
562 struct tas3004_reg {
563 u_char MCR1[1];
564 u_char DRC[6];
565 u_char VOLUME[6];
566 u_char TREBLE[1];
567 u_char BASS[1];
568 u_char MIXER_L[9];
569 u_char MIXER_R[9];
570 u_char LB0[15];
571 u_char LB1[15];
572 u_char LB2[15];
573 u_char LB3[15];
574 u_char LB4[15];
575 u_char LB5[15];
576 u_char LB6[15];
577 u_char RB0[15];
578 u_char RB1[15];
579 u_char RB2[15];
580 u_char RB3[15];
581 u_char RB4[15];
582 u_char RB5[15];
583 u_char RB6[15];
584 u_char LLB[15];
585 u_char RLB[15];
586 u_char LLB_GAIN[3];
587 u_char RLB_GAIN[3];
588 u_char ACR[1];
589 u_char MCR2[1];
590 };
591
592 #define GPIO_OUTSEL 0xf0 /* Output select */
593 /* 0x00 GPIO bit0 is output
594 0x10 media-bay power
595 0x20 reserved
596 0x30 MPIC */
597
598 #define GPIO_ALTOE 0x08 /* Alternate output enable */
599 /* 0x00 Use DDR
600 0x08 Use output select */
601
602 #define GPIO_DDR 0x04 /* Data direction */
603 #define GPIO_DDR_OUTPUT 0x04 /* Output */
604 #define GPIO_DDR_INPUT 0x00 /* Input */
605
606 #define GPIO_LEVEL 0x02 /* Pin level (RO) */
607
608 #define GPIO_DATA 0x01 /* Data */
609
610 int
611 snapper_match(struct device *parent, struct cfdata *match, void *aux)
612 {
613 struct confargs *ca;
614 int soundbus, soundchip, soundcodec;
615 char compat[32];
616
617 ca = aux;
618 if (strcmp(ca->ca_name, "i2s") != 0)
619 return 0;
620
621 if ((soundbus = OF_child(ca->ca_node)) == 0 ||
622 (soundchip = OF_child(soundbus)) == 0)
623 return 0;
624
625 bzero(compat, sizeof compat);
626 OF_getprop(soundchip, "compatible", compat, sizeof compat);
627
628 if (strcmp(compat, "snapper") == 0)
629 return 1;
630
631 if (strcmp(compat, "AOAKeylargo") == 0)
632 return 1;
633
634 if (strcmp(compat, "AOAK2") == 0)
635 return 1;
636
637 if (OF_getprop(soundchip,"platform-tas-codec-ref",
638 &soundcodec, sizeof soundcodec) == sizeof soundcodec)
639 return 1;
640
641 return 0;
642 }
643
644 void
645 snapper_attach(struct device *parent, struct device *self, void *aux)
646 {
647 struct snapper_softc *sc;
648 struct confargs *ca;
649 unsigned long v;
650 int cirq, oirq, iirq, cirq_type, oirq_type, iirq_type;
651 int soundbus, intr[6];
652
653 sc = (struct snapper_softc *)self;
654 ca = aux;
655
656 v = (((unsigned long) &sc->dbdma_cmdspace[0]) + 0xf) & ~0xf;
657 sc->sc_odmacmd = (struct dbdma_command *) v;
658 sc->sc_idmacmd = sc->sc_odmacmd + 20;
659
660 #ifdef DIAGNOSTIC
661 if ((vaddr_t)sc->sc_odmacmd & 0x0f) {
662 printf(": bad dbdma alignment\n");
663 return;
664 }
665 #endif
666
667 ca->ca_reg[0] += ca->ca_baseaddr;
668 ca->ca_reg[2] += ca->ca_baseaddr;
669 ca->ca_reg[4] += ca->ca_baseaddr;
670
671 sc->sc_node = ca->ca_node;
672 sc->sc_tag = ca->ca_tag;
673 bus_space_map(sc->sc_tag, ca->ca_reg[0], PAGE_SIZE, 0, &sc->sc_bsh);
674 bus_space_map(sc->sc_tag, ca->ca_reg[2], PAGE_SIZE,
675 BUS_SPACE_MAP_LINEAR, &sc->sc_odmah);
676 bus_space_map(sc->sc_tag, ca->ca_reg[4], PAGE_SIZE,
677 BUS_SPACE_MAP_LINEAR, &sc->sc_idmah);
678 sc->sc_odma = bus_space_vaddr(sc->sc_tag, sc->sc_odmah);
679 sc->sc_idma = bus_space_vaddr(sc->sc_tag, sc->sc_idmah);
680
681 soundbus = OF_child(ca->ca_node);
682 OF_getprop(soundbus, "interrupts", intr, sizeof intr);
683 cirq = intr[0];
684 oirq = intr[2];
685 iirq = intr[4];
686 cirq_type = intr[1] ? IST_LEVEL : IST_EDGE;
687 oirq_type = intr[3] ? IST_LEVEL : IST_EDGE;
688 iirq_type = intr[5] ? IST_LEVEL : IST_EDGE;
689
690 /* intr_establish(cirq, cirq_type, IPL_AUDIO, snapper_intr, sc); */
691 intr_establish(oirq, oirq_type, IPL_AUDIO, snapper_intr, sc);
692 intr_establish(iirq, iirq_type, IPL_AUDIO, snapper_intr, sc);
693
694 printf(": irq %d,%d,%d\n", cirq, oirq, iirq);
695
696 config_interrupts(self, snapper_defer);
697 }
698
699 void
700 snapper_defer(struct device *dev)
701 {
702 struct snapper_softc *sc;
703 struct device *dv;
704 struct deq_softc *deq;
705
706 sc = (struct snapper_softc *)dev;
707 /*
708 for (dv = alldevs.tqh_first; dv; dv=dv->dv_list.tqe_next)
709 if (strncmp(dv->dv_xname, "ki2c", 4) == 0 &&
710 strncmp(device_parent(dv)->dv_xname, "obio", 4) == 0)
711 sc->sc_i2c = dv;
712 */
713 for (dv = alldevs.tqh_first; dv; dv=dv->dv_list.tqe_next)
714 if (strncmp(dv->dv_xname, "deq", 3) == 0 &&
715 strncmp(device_parent(dv)->dv_xname, "ki2c", 4) == 0) {
716 deq=(struct deq_softc *)dv;
717 sc->sc_i2c = deq->sc_i2c;
718 sc->sc_deqaddr=deq->sc_address;
719 }
720
721 /* If we don't find a codec, it's not the end of the world;
722 * we can control the volume in software in this case.
723 */
724 if (sc->sc_i2c == NULL) {
725 aprint_verbose("%s: software codec\n",
726 sc->sc_dev.dv_xname);
727 sc->sc_swvol = 1;
728 } else
729 sc->sc_swvol = 0;
730
731 audio_attach_mi(&snapper_hw_if, sc, &sc->sc_dev);
732
733 /* ki2c_setmode(sc->sc_i2c, I2C_STDSUBMODE); */
734 snapper_init(sc, sc->sc_node);
735 }
736
737 int
738 snapper_intr(void *v)
739 {
740 struct snapper_softc *sc;
741 struct dbdma_command *cmd;
742 int count;
743 int status;
744
745 sc = v;
746 cmd = sc->sc_odmacmd;
747 count = sc->sc_opages;
748 /* Fill used buffer(s). */
749 while (count-- > 0) {
750 if ((in16rb(&cmd->d_command) & 0x30) == 0x30) {
751 status = in16rb(&cmd->d_status);
752 cmd->d_status = 0;
753 if (status) /* status == 0x8400 */
754 if (sc->sc_ointr)
755 (*sc->sc_ointr)(sc->sc_oarg);
756 }
757 cmd++;
758 }
759
760 cmd = sc->sc_idmacmd;
761 count = sc->sc_ipages;
762 while (count-- > 0) {
763 if ((in16rb(&cmd->d_command) & 0x30) == 0x30) {
764 status = in16rb(&cmd->d_status);
765 cmd->d_status = 0;
766 if (status) /* status == 0x8400 */
767 if (sc->sc_iintr)
768 (*sc->sc_iintr)(sc->sc_iarg);
769 }
770 cmd++;
771 }
772
773
774 return 1;
775 }
776
777 /*
778 * Close function is called at splaudio().
779 */
780 void
781 snapper_close(void *h)
782 {
783 struct snapper_softc *sc;
784
785 sc = h;
786 snapper_halt_output(sc);
787 snapper_halt_input(sc);
788
789 sc->sc_ointr = 0;
790 sc->sc_iintr = 0;
791 }
792
793 int
794 snapper_query_encoding(void *h, struct audio_encoding *ae)
795 {
796
797 ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
798 switch (ae->index) {
799 case 0:
800 strcpy(ae->name, AudioEslinear);
801 ae->encoding = AUDIO_ENCODING_SLINEAR;
802 ae->precision = 16;
803 ae->flags = 0;
804 return 0;
805 case 1:
806 strcpy(ae->name, AudioEslinear_be);
807 ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
808 ae->precision = 16;
809 ae->flags = 0;
810 return 0;
811 case 2:
812 strcpy(ae->name, AudioEslinear_le);
813 ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
814 ae->precision = 16;
815 return 0;
816 case 3:
817 strcpy(ae->name, AudioEulinear_be);
818 ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
819 ae->precision = 16;
820 return 0;
821 case 4:
822 strcpy(ae->name, AudioEulinear_le);
823 ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
824 ae->precision = 16;
825 return 0;
826 case 5:
827 strcpy(ae->name, AudioEmulaw);
828 ae->encoding = AUDIO_ENCODING_ULAW;
829 ae->precision = 8;
830 return 0;
831 case 6:
832 strcpy(ae->name, AudioEalaw);
833 ae->encoding = AUDIO_ENCODING_ALAW;
834 ae->precision = 8;
835 return 0;
836 default:
837 DPRINTF("snapper_query_encoding: invalid encoding %d\n", ae->index);
838 return EINVAL;
839 }
840 }
841
842 int
843 snapper_set_params(void *h, int setmode, int usemode,
844 audio_params_t *play, audio_params_t *rec,
845 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
846 {
847 struct snapper_softc *sc;
848 audio_params_t *p;
849 stream_filter_list_t *fil;
850 int mode;
851
852 sc = h;
853 p = NULL;
854
855 /*
856 * This device only has one clock, so make the sample rates match.
857 */
858 if (play->sample_rate != rec->sample_rate &&
859 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
860 if (setmode == AUMODE_PLAY) {
861 rec->sample_rate = play->sample_rate;
862 setmode |= AUMODE_RECORD;
863 } else if (setmode == AUMODE_RECORD) {
864 play->sample_rate = rec->sample_rate;
865 setmode |= AUMODE_PLAY;
866 } else
867 return EINVAL;
868 }
869
870 for (mode = AUMODE_RECORD; mode != -1;
871 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
872 if ((setmode & mode) == 0)
873 continue;
874
875 p = mode == AUMODE_PLAY ? play : rec;
876 if (p->sample_rate < 4000 || p->sample_rate > 50000) {
877 DPRINTF("snapper_set_params: invalid rate %d\n",
878 p->sample_rate);
879 return EINVAL;
880 }
881
882 fil = mode == AUMODE_PLAY ? pfil : rfil;
883 if (auconv_set_converter(snapper_formats, SNAPPER_NFORMATS,
884 mode, p, true, fil) < 0) {
885 DPRINTF("snapper_set_params: auconv_set_converter failed\n");
886 return EINVAL;
887 }
888 if (sc->sc_swvol)
889 fil->append(fil, snapper_volume, p);
890 if (fil->req_size > 0)
891 p = &fil->filters[0].param;
892 }
893
894 /* Set the speed. p points HW encoding. */
895 if (p) {
896 sc->sc_rate = p->sample_rate;
897 sc->sc_bitspersample = p->precision;
898 }
899 return 0;
900 }
901
902 int
903 snapper_round_blocksize(void *h, int size, int mode,
904 const audio_params_t *param)
905 {
906
907 if (size < NBPG)
908 size = NBPG;
909 return size & ~PGOFSET;
910 }
911
912 int
913 snapper_halt_output(void *h)
914 {
915 struct snapper_softc *sc;
916
917 sc = h;
918 dbdma_stop(sc->sc_odma);
919 dbdma_reset(sc->sc_odma);
920 return 0;
921 }
922
923 int
924 snapper_halt_input(void *h)
925 {
926 struct snapper_softc *sc;
927
928 sc = h;
929 dbdma_stop(sc->sc_idma);
930 dbdma_reset(sc->sc_idma);
931 return 0;
932 }
933
934 int
935 snapper_getdev(void *h, struct audio_device *retp)
936 {
937
938 *retp = snapper_device;
939 return 0;
940 }
941
942 enum {
943 SNAPPER_MONITOR_CLASS,
944 SNAPPER_OUTPUT_CLASS,
945 SNAPPER_RECORD_CLASS,
946 SNAPPER_OUTPUT_SELECT,
947 SNAPPER_VOL_OUTPUT,
948 SNAPPER_DIGI1,
949 SNAPPER_DIGI2,
950 SNAPPER_ANALOG,
951 SNAPPER_INPUT_SELECT,
952 SNAPPER_VOL_INPUT,
953 SNAPPER_TREBLE,
954 SNAPPER_BASS,
955 SNAPPER_ENUM_LAST
956 };
957
958 int
959 snapper_set_port(void *h, mixer_ctrl_t *mc)
960 {
961 struct snapper_softc *sc;
962 int l, r;
963 u_char data;
964
965 DPRINTF("snapper_set_port dev = %d, type = %d\n", mc->dev, mc->type);
966 sc = h;
967 l = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
968 r = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
969
970 switch (mc->dev) {
971 case SNAPPER_OUTPUT_SELECT:
972 /* No change necessary? */
973 if (mc->un.mask == sc->sc_output_mask)
974 return 0;
975
976 snapper_mute_speaker(sc, 1);
977 snapper_mute_headphone(sc, 1);
978 if (mc->un.mask & 1 << 0)
979 snapper_mute_speaker(sc, 0);
980 if (mc->un.mask & 1 << 1)
981 snapper_mute_headphone(sc, 0);
982
983 sc->sc_output_mask = mc->un.mask;
984 return 0;
985
986 case SNAPPER_VOL_OUTPUT:
987 snapper_set_volume(sc, l, r);
988 return 0;
989
990 case SNAPPER_INPUT_SELECT:
991 /* no change necessary? */
992 if (mc->un.mask == sc->sc_record_source)
993 return 0;
994 switch (mc->un.mask) {
995 case 1 << 0: /* microphone */
996 /* Select right channel of B input */
997 data = DEQ_ACR_ADM | DEQ_ACR_LRB | DEQ_ACR_INP_B;
998 tas3004_write(sc, DEQ_ACR, &data);
999 break;
1000 case 1 << 1: /* line in */
1001 /* Select both channels of A input */
1002 data = 0;
1003 tas3004_write(sc, DEQ_ACR, &data);
1004 break;
1005 default: /* invalid argument */
1006 return EINVAL;
1007 }
1008 sc->sc_record_source = mc->un.mask;
1009 return 0;
1010
1011 case SNAPPER_VOL_INPUT:
1012 /* XXX TO BE DONE */
1013 return 0;
1014
1015 case SNAPPER_BASS:
1016 snapper_set_bass(sc,l);
1017 return 0;
1018 case SNAPPER_TREBLE:
1019 snapper_set_treble(sc,l);
1020 return 0;
1021 case SNAPPER_DIGI1:
1022 sc->mixer[0]=l;
1023 sc->mixer[3]=r;
1024 snapper_write_mixers(sc);
1025 return 0;
1026 case SNAPPER_DIGI2:
1027 sc->mixer[1]=l;
1028 sc->mixer[4]=r;
1029 snapper_write_mixers(sc);
1030 return 0;
1031 case SNAPPER_ANALOG:
1032 sc->mixer[2]=l;
1033 sc->mixer[5]=r;
1034 snapper_write_mixers(sc);
1035 return 0;
1036 }
1037 return ENXIO;
1038 }
1039
1040 int
1041 snapper_get_port(void *h, mixer_ctrl_t *mc)
1042 {
1043 struct snapper_softc *sc;
1044
1045 DPRINTF("snapper_get_port dev = %d, type = %d\n", mc->dev, mc->type);
1046 sc = h;
1047 switch (mc->dev) {
1048 case SNAPPER_OUTPUT_SELECT:
1049 mc->un.mask = sc->sc_output_mask;
1050 return 0;
1051
1052 case SNAPPER_VOL_OUTPUT:
1053 if (sc->sc_swvol) {
1054 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = snapper_vol_l;
1055 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = snapper_vol_r;
1056 } else {
1057 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_vol_l;
1058 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_vol_r;
1059 }
1060 return 0;
1061
1062 case SNAPPER_INPUT_SELECT:
1063 mc->un.mask = sc->sc_record_source;
1064 return 0;
1065
1066 case SNAPPER_VOL_INPUT:
1067 /* XXX TO BE DONE */
1068 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 0;
1069 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 0;
1070 return 0;
1071 case SNAPPER_TREBLE:
1072 mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_treble;
1073 return 0;
1074 case SNAPPER_BASS:
1075 mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_bass;
1076 return 0;
1077 case SNAPPER_DIGI1:
1078 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[0];
1079 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[3];
1080 return 0;
1081 case SNAPPER_DIGI2:
1082 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[1];
1083 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[4];
1084 return 0;
1085 case SNAPPER_ANALOG:
1086 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[2];
1087 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[5];
1088 return 0;
1089 default:
1090 return ENXIO;
1091 }
1092
1093 return 0;
1094 }
1095
1096 int
1097 snapper_query_devinfo(void *h, mixer_devinfo_t *dip)
1098 {
1099 switch (dip->index) {
1100
1101 case SNAPPER_OUTPUT_SELECT:
1102 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1103 strcpy(dip->label.name, AudioNoutput);
1104 dip->type = AUDIO_MIXER_SET;
1105 dip->prev = dip->next = AUDIO_MIXER_LAST;
1106 dip->un.s.num_mem = 2;
1107 strcpy(dip->un.s.member[0].label.name, AudioNspeaker);
1108 dip->un.s.member[0].mask = 1 << 0;
1109 strcpy(dip->un.s.member[1].label.name, AudioNheadphone);
1110 dip->un.s.member[1].mask = 1 << 1;
1111 return 0;
1112
1113 case SNAPPER_VOL_OUTPUT:
1114 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1115 strcpy(dip->label.name, AudioNmaster);
1116 dip->type = AUDIO_MIXER_VALUE;
1117 dip->prev = dip->next = AUDIO_MIXER_LAST;
1118 dip->un.v.num_channels = 2;
1119 strcpy(dip->un.v.units.name, AudioNvolume);
1120 return 0;
1121
1122 case SNAPPER_INPUT_SELECT:
1123 dip->mixer_class = SNAPPER_RECORD_CLASS;
1124 strcpy(dip->label.name, AudioNsource);
1125 dip->type = AUDIO_MIXER_SET;
1126 dip->prev = dip->next = AUDIO_MIXER_LAST;
1127 dip->un.s.num_mem = 2;
1128 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1129 dip->un.s.member[0].mask = 1 << 0;
1130 strcpy(dip->un.s.member[1].label.name, AudioNline);
1131 dip->un.s.member[1].mask = 1 << 1;
1132 return 0;
1133
1134 case SNAPPER_VOL_INPUT:
1135 dip->mixer_class = SNAPPER_RECORD_CLASS;
1136 strcpy(dip->label.name, AudioNrecord);
1137 dip->type = AUDIO_MIXER_VALUE;
1138 dip->prev = dip->next = AUDIO_MIXER_LAST;
1139 dip->un.v.num_channels = 2;
1140 strcpy(dip->un.v.units.name, AudioNvolume);
1141 return 0;
1142
1143 case SNAPPER_MONITOR_CLASS:
1144 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1145 strcpy(dip->label.name, AudioCmonitor);
1146 dip->type = AUDIO_MIXER_CLASS;
1147 dip->next = dip->prev = AUDIO_MIXER_LAST;
1148 return 0;
1149
1150 case SNAPPER_OUTPUT_CLASS:
1151 dip->mixer_class = SNAPPER_OUTPUT_CLASS;
1152 strcpy(dip->label.name, AudioCoutputs);
1153 dip->type = AUDIO_MIXER_CLASS;
1154 dip->next = dip->prev = AUDIO_MIXER_LAST;
1155 return 0;
1156
1157 case SNAPPER_RECORD_CLASS:
1158 dip->mixer_class = SNAPPER_RECORD_CLASS;
1159 strcpy(dip->label.name, AudioCrecord);
1160 dip->type = AUDIO_MIXER_CLASS;
1161 dip->next = dip->prev = AUDIO_MIXER_LAST;
1162 return 0;
1163
1164 case SNAPPER_TREBLE:
1165 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1166 strcpy(dip->label.name, AudioNtreble);
1167 dip->type = AUDIO_MIXER_VALUE;
1168 dip->prev = dip->next = AUDIO_MIXER_LAST;
1169 dip->un.v.num_channels = 1;
1170 return 0;
1171
1172 case SNAPPER_BASS:
1173 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1174 strcpy(dip->label.name, AudioNbass);
1175 dip->type = AUDIO_MIXER_VALUE;
1176 dip->prev = dip->next = AUDIO_MIXER_LAST;
1177 dip->un.v.num_channels = 1;
1178 return 0;
1179
1180 case SNAPPER_DIGI1:
1181 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1182 strcpy(dip->label.name, AudioNdac);
1183 dip->type = AUDIO_MIXER_VALUE;
1184 dip->prev = dip->next = AUDIO_MIXER_LAST;
1185 dip->un.v.num_channels = 2;
1186 return 0;
1187 case SNAPPER_DIGI2:
1188 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1189 strcpy(dip->label.name, AudioNline);
1190 dip->type = AUDIO_MIXER_VALUE;
1191 dip->prev = dip->next = AUDIO_MIXER_LAST;
1192 dip->un.v.num_channels = 2;
1193 return 0;
1194 case SNAPPER_ANALOG:
1195 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1196 strcpy(dip->label.name, AudioNmicrophone);
1197 dip->type = AUDIO_MIXER_VALUE;
1198 dip->prev = dip->next = AUDIO_MIXER_LAST;
1199 dip->un.v.num_channels = 2;
1200 return 0;
1201 }
1202
1203 return ENXIO;
1204 }
1205
1206 size_t
1207 snapper_round_buffersize(void *h, int dir, size_t size)
1208 {
1209
1210 if (size > 65536)
1211 size = 65536;
1212 return size;
1213 }
1214
1215 paddr_t
1216 snapper_mappage(void *h, void *mem, off_t off, int prot)
1217 {
1218
1219 if (off < 0)
1220 return -1;
1221 return -1; /* XXX */
1222 }
1223
1224 int
1225 snapper_get_props(void *h)
1226 {
1227 return AUDIO_PROP_FULLDUPLEX /* | AUDIO_PROP_MMAP */;
1228 }
1229
1230 int
1231 snapper_trigger_output(void *h, void *start, void *end, int bsize,
1232 void (*intr)(void *), void *arg,
1233 const audio_params_t *param)
1234 {
1235 struct snapper_softc *sc;
1236 struct dbdma_command *cmd;
1237 vaddr_t va;
1238 int i, len, intmode;
1239 int res;
1240
1241 DPRINTF("trigger_output %p %p 0x%x\n", start, end, bsize);
1242 sc = h;
1243
1244 if ((res = snapper_set_rate(sc)) != 0)
1245 return res;
1246
1247 cmd = sc->sc_odmacmd;
1248 sc->sc_ointr = intr;
1249 sc->sc_oarg = arg;
1250 sc->sc_opages = ((char *)end - (char *)start) / NBPG;
1251
1252 #ifdef DIAGNOSTIC
1253 if (sc->sc_opages > 16)
1254 panic("snapper_trigger_output");
1255 #endif
1256
1257 va = (vaddr_t)start;
1258 len = 0;
1259 for (i = sc->sc_opages; i > 0; i--) {
1260 len += NBPG;
1261 if (len < bsize)
1262 intmode = 0;
1263 else {
1264 len = 0;
1265 intmode = DBDMA_INT_ALWAYS;
1266 }
1267
1268 DBDMA_BUILD(cmd, DBDMA_CMD_OUT_MORE, 0, NBPG, vtophys(va),
1269 intmode, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
1270 cmd++;
1271 va += NBPG;
1272 }
1273
1274 DBDMA_BUILD(cmd, DBDMA_CMD_NOP, 0, 0,
1275 0/*vtophys((vaddr_t)sc->sc_odmacmd)*/, 0, DBDMA_WAIT_NEVER,
1276 DBDMA_BRANCH_ALWAYS);
1277
1278 out32rb(&cmd->d_cmddep, vtophys((vaddr_t)sc->sc_odmacmd));
1279
1280 dbdma_start(sc->sc_odma, sc->sc_odmacmd);
1281
1282 return 0;
1283 }
1284
1285 int
1286 snapper_trigger_input(void *h, void *start, void *end, int bsize,
1287 void (*intr)(void *), void *arg,
1288 const audio_params_t *param)
1289 {
1290 struct snapper_softc *sc;
1291 struct dbdma_command *cmd;
1292 vaddr_t va;
1293 int i, len, intmode;
1294 int res;
1295
1296 DPRINTF("trigger_input %p %p 0x%x\n", start, end, bsize);
1297 sc = h;
1298
1299 if ((res = snapper_set_rate(sc)) != 0)
1300 return res;
1301
1302 cmd = sc->sc_idmacmd;
1303 sc->sc_iintr = intr;
1304 sc->sc_iarg = arg;
1305 sc->sc_ipages = ((char *)end - (char *)start) / NBPG;
1306
1307 #ifdef DIAGNOSTIC
1308 if (sc->sc_ipages > 16)
1309 panic("snapper_trigger_input");
1310 #endif
1311
1312 va = (vaddr_t)start;
1313 len = 0;
1314 for (i = sc->sc_ipages; i > 0; i--) {
1315 len += NBPG;
1316 if (len < bsize)
1317 intmode = 0;
1318 else {
1319 len = 0;
1320 intmode = DBDMA_INT_ALWAYS;
1321 }
1322
1323 DBDMA_BUILD(cmd, DBDMA_CMD_IN_MORE, 0, NBPG, vtophys(va),
1324 intmode, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
1325 cmd++;
1326 va += NBPG;
1327 }
1328
1329 DBDMA_BUILD(cmd, DBDMA_CMD_NOP, 0, 0,
1330 0/*vtophys((vaddr_t)sc->sc_odmacmd)*/, 0, DBDMA_WAIT_NEVER,
1331 DBDMA_BRANCH_ALWAYS);
1332
1333 out32rb(&cmd->d_cmddep, vtophys((vaddr_t)sc->sc_idmacmd));
1334
1335 dbdma_start(sc->sc_idma, sc->sc_idmacmd);
1336
1337 return 0;
1338 }
1339
1340 void
1341 snapper_set_volume(struct snapper_softc *sc, int left, int right)
1342 {
1343 u_char regs[6];
1344 int l, r;
1345
1346 if (sc->sc_swvol) {
1347 snapper_vol_l = left;
1348 snapper_vol_r = right;
1349 return;
1350 }
1351
1352 /*
1353 * for some insane reason the gain table for master volume and the
1354 * mixer channels is almost identical - just shifted by 4 bits
1355 * so we use the mixer_gain table and bit-twiddle it...
1356 */
1357 if ((left >= 0) && (left < 256) && (right >= 0) && (right < 256)) {
1358 l = 177 - (left * 177 / 255);
1359 regs[0] = (snapper_mixer_gain[l][0] >> 4);
1360 regs[1] = ((snapper_mixer_gain[l][0] & 0x0f) << 4) |
1361 (snapper_mixer_gain[l][1] >> 4);
1362 regs[2] = ((snapper_mixer_gain[l][1] & 0x0f) << 4) |
1363 (snapper_mixer_gain[l][2] >> 4);
1364
1365 r = 177 - (right * 177 / 255);
1366 regs[3] = (snapper_mixer_gain[r][0] >> 4);
1367 regs[4] = ((snapper_mixer_gain[r][0] & 0x0f) << 4) |
1368 (snapper_mixer_gain[r][1] >> 4);
1369 regs[5] = ((snapper_mixer_gain[r][1] & 0x0f) << 4) |
1370 (snapper_mixer_gain[r][2] >> 4);
1371
1372 tas3004_write(sc, DEQ_VOLUME, regs);
1373
1374 sc->sc_vol_l = left;
1375 sc->sc_vol_r = right;
1376
1377 DPRINTF("%d %02x %02x %02x : %d %02x %02x %02x\n", l, regs[0],
1378 regs[1], regs[2], r, regs[3], regs[4], regs[5]);
1379 }
1380 }
1381
1382 void snapper_set_treble(struct snapper_softc *sc, int stuff)
1383 {
1384 uint8_t reg;
1385 if ((stuff >= 0) && (stuff <= 255) && (sc->sc_treble != stuff)) {
1386 reg = snapper_basstab[(stuff >> 3) + 2];
1387 sc->sc_treble = stuff;
1388 tas3004_write(sc, DEQ_TREBLE, ®);
1389 }
1390 }
1391
1392 void snapper_set_bass(struct snapper_softc *sc, int stuff)
1393 {
1394 uint8_t reg;
1395 if ((stuff >= 0) && (stuff <= 255) && (stuff != sc->sc_bass)) {
1396 reg = snapper_basstab[(stuff >> 3) + 2];
1397 sc->sc_bass = stuff;
1398 tas3004_write(sc, DEQ_BASS, ®);
1399 }
1400 }
1401
1402 void snapper_write_mixers(struct snapper_softc *sc)
1403 {
1404 uint8_t regs[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
1405 int i;
1406
1407 /* Left channel of SDIN1 */
1408 i = 177 - (sc->mixer[0] * 177 / 255);
1409 regs[0] = snapper_mixer_gain[i][0];
1410 regs[1] = snapper_mixer_gain[i][1];
1411 regs[2] = snapper_mixer_gain[i][2];
1412
1413 /* Left channel of SDIN2 */
1414 i = 177 - (sc->mixer[1] * 177 / 255);
1415 regs[3] = snapper_mixer_gain[i][0];
1416 regs[4] = snapper_mixer_gain[i][1];
1417 regs[5] = snapper_mixer_gain[i][2];
1418
1419 /* Left channel of analog input */
1420 i = 177 - (sc->mixer[2] * 177 / 255);
1421 regs[6] = snapper_mixer_gain[i][0];
1422 regs[7] = snapper_mixer_gain[i][1];
1423 regs[8] = snapper_mixer_gain[i][2];
1424
1425 tas3004_write(sc, DEQ_MIXER_L, regs);
1426
1427 /* Right channel of SDIN1 */
1428 i = 177 - (sc->mixer[3] * 177 / 255);
1429 regs[0] = snapper_mixer_gain[i][0];
1430 regs[1] = snapper_mixer_gain[i][1];
1431 regs[2] = snapper_mixer_gain[i][2];
1432
1433 /* Right channel of SDIN2 */
1434 i = 177 - (sc->mixer[4] * 177 / 255);
1435 regs[3] = snapper_mixer_gain[i][0];
1436 regs[4] = snapper_mixer_gain[i][1];
1437 regs[5] = snapper_mixer_gain[i][2];
1438
1439 /* Right channel of analog input */
1440 i = 177 - (sc->mixer[5] * 177 / 255);
1441 regs[6] = snapper_mixer_gain[i][0];
1442 regs[7] = snapper_mixer_gain[i][1];
1443 regs[8] = snapper_mixer_gain[i][2];
1444
1445 tas3004_write(sc, DEQ_MIXER_R, regs);
1446 }
1447
1448 #define CLKSRC_49MHz 0x80000000 /* Use 49152000Hz Osc. */
1449 #define CLKSRC_45MHz 0x40000000 /* Use 45158400Hz Osc. */
1450 #define CLKSRC_18MHz 0x00000000 /* Use 18432000Hz Osc. */
1451 #define MCLK_DIV 0x1f000000 /* MCLK = SRC / DIV */
1452 #define MCLK_DIV1 0x14000000 /* MCLK = SRC */
1453 #define MCLK_DIV3 0x13000000 /* MCLK = SRC / 3 */
1454 #define MCLK_DIV5 0x12000000 /* MCLK = SRC / 5 */
1455 #define SCLK_DIV 0x00f00000 /* SCLK = MCLK / DIV */
1456 #define SCLK_DIV1 0x00800000
1457 #define SCLK_DIV3 0x00900000
1458 #define SCLK_MASTER 0x00080000 /* Master mode */
1459 #define SCLK_SLAVE 0x00000000 /* Slave mode */
1460 #define SERIAL_FORMAT 0x00070000
1461 #define SERIAL_SONY 0x00000000
1462 #define SERIAL_64x 0x00010000
1463 #define SERIAL_32x 0x00020000
1464 #define SERIAL_DAV 0x00040000
1465 #define SERIAL_SILICON 0x00050000
1466
1467 /*
1468 * rate = fs = LRCLK
1469 * SCLK = 64*LRCLK (I2S)
1470 * MCLK = 256fs (typ. -- changeable)
1471 *
1472 * MCLK = clksrc / mdiv
1473 * SCLK = MCLK / sdiv
1474 * rate = SCLK / 64 ( = LRCLK = fs)
1475 */
1476
1477 int
1478 snapper_set_rate(struct snapper_softc *sc)
1479 {
1480 u_int reg = 0, x;
1481 u_int rate = sc->sc_rate;
1482 uint32_t wordsize, ows;
1483 int MCLK;
1484 int clksrc, mdiv, sdiv;
1485 int mclk_fs;
1486 int timo;
1487 uint8_t mcr1;
1488
1489 switch (rate) {
1490 case 44100:
1491 clksrc = 45158400; /* 45MHz */
1492 reg = CLKSRC_45MHz;
1493 mclk_fs = 256;
1494 break;
1495
1496 case 32000:
1497 case 48000:
1498 clksrc = 49152000; /* 49MHz */
1499 reg = CLKSRC_49MHz;
1500 mclk_fs = 256;
1501 break;
1502
1503 default:
1504 DPRINTF("snapper_set_rate: invalid rate %u\n", rate);
1505 return EINVAL;
1506 }
1507
1508 MCLK = rate * mclk_fs;
1509 mdiv = clksrc / MCLK; /* 4 */
1510 sdiv = mclk_fs / 64; /* 4 */
1511
1512 switch (mdiv) {
1513 case 1:
1514 reg |= MCLK_DIV1;
1515 break;
1516 case 3:
1517 reg |= MCLK_DIV3;
1518 break;
1519 case 5:
1520 reg |= MCLK_DIV5;
1521 break;
1522 default:
1523 reg |= ((mdiv / 2 - 1) << 24) & 0x1f000000;
1524 break;
1525 }
1526
1527 switch (sdiv) {
1528 case 1:
1529 reg |= SCLK_DIV1;
1530 break;
1531 case 3:
1532 reg |= SCLK_DIV3;
1533 break;
1534 default:
1535 reg |= ((sdiv / 2 - 1) << 20) & 0x00f00000;
1536 break;
1537 }
1538
1539 reg |= SCLK_MASTER; /* XXX master mode */
1540
1541 reg |= SERIAL_64x;
1542
1543 /* stereo input and output */
1544
1545 DPRINTF("precision: %d\n", sc->sc_bitspersample);
1546 switch(sc->sc_bitspersample) {
1547 case 16:
1548 wordsize = 0x02000200;
1549 mcr1 = DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_16;
1550 break;
1551 case 24:
1552 wordsize = 0x03000300;
1553 mcr1 = DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_24;
1554 break;
1555 default:
1556 printf("%s: unsupported sample size %d\n",
1557 sc->sc_dev.dv_xname, sc->sc_bitspersample);
1558 return EINVAL;
1559 }
1560
1561 ows = bus_space_read_4(sc->sc_tag, sc->sc_bsh, I2S_WORDSIZE);
1562 DPRINTF("I2SSetDataWordSizeReg 0x%08x -> 0x%08x\n",
1563 ows, wordsize);
1564 if (ows != wordsize) {
1565 bus_space_write_4(sc->sc_tag, sc->sc_bsh, I2S_WORDSIZE, wordsize);
1566 tas3004_write(sc, DEQ_MCR1, &mcr1);
1567 }
1568
1569 x = bus_space_read_4(sc->sc_tag, sc->sc_bsh, I2S_FORMAT);
1570 if (x == reg)
1571 return 0; /* No change; do nothing. */
1572
1573 DPRINTF("I2SSetSerialFormatReg 0x%x -> 0x%x\n",
1574 bus_space_read_4(sc->sc_tag, sc->sc_bsh, + I2S_FORMAT), reg);
1575
1576 /* Clear CLKSTOPPEND. */
1577 bus_space_write_4(sc->sc_tag, sc->sc_bsh, I2S_INT, I2S_INT_CLKSTOPPEND);
1578
1579 x = in32rb(SNAPPER_FCR); /* FCR */
1580 x &= ~I2S0CLKEN; /* XXX I2S0 */
1581 out32rb(SNAPPER_FCR, x);
1582
1583 /* Wait until clock is stopped. */
1584 for (timo = 1000; timo > 0; timo--) {
1585 if (bus_space_read_4(sc->sc_tag, sc->sc_bsh, I2S_INT) & I2S_INT_CLKSTOPPEND)
1586 goto done;
1587 delay(1);
1588 }
1589 DPRINTF("snapper_set_rate: timeout\n");
1590 done:
1591 bus_space_write_4(sc->sc_tag, sc->sc_bsh, I2S_FORMAT, reg);
1592
1593 x = in32rb(SNAPPER_FCR);
1594 x |= I2S0CLKEN;
1595 out32rb(SNAPPER_FCR, x);
1596
1597 return 0;
1598 }
1599
1600 const struct tas3004_reg tas3004_initdata = {
1601 { DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_16 }, /* MCR1 */
1602 { 1, 0, 0, 0, 0, 0 }, /* DRC */
1603 { 0, 0, 0, 0, 0, 0 }, /* VOLUME */
1604 { 0x72 }, /* TREBLE */
1605 { 0x72 }, /* BASS */
1606 { 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 }, /* MIXER_L */
1607 { 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 }, /* MIXER_R */
1608 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1609 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1610 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1611 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1612 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1613 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1614 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1615 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1616 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1617 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1618 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1619 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1620 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1621 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1622 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1623 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1624 { 0, 0, 0 }, /* LLB_GAIN */
1625 { 0, 0, 0 }, /* RLB_GAIN */
1626 { DEQ_ACR_ADM | DEQ_ACR_LRB | DEQ_ACR_INP_B }, /* ACR - right channel of input B is the microphone */
1627 { 2 } /* MCR2 - AllPass mode since we don't use the equalizer anyway */
1628 };
1629
1630 const char tas3004_regsize[] = {
1631 0, /* 0x00 */
1632 sizeof tas3004_initdata.MCR1, /* 0x01 */
1633 sizeof tas3004_initdata.DRC, /* 0x02 */
1634 0, /* 0x03 */
1635 sizeof tas3004_initdata.VOLUME, /* 0x04 */
1636 sizeof tas3004_initdata.TREBLE, /* 0x05 */
1637 sizeof tas3004_initdata.BASS, /* 0x06 */
1638 sizeof tas3004_initdata.MIXER_L, /* 0x07 */
1639 sizeof tas3004_initdata.MIXER_R, /* 0x08 */
1640 0, /* 0x09 */
1641 sizeof tas3004_initdata.LB0, /* 0x0a */
1642 sizeof tas3004_initdata.LB1, /* 0x0b */
1643 sizeof tas3004_initdata.LB2, /* 0x0c */
1644 sizeof tas3004_initdata.LB3, /* 0x0d */
1645 sizeof tas3004_initdata.LB4, /* 0x0e */
1646 sizeof tas3004_initdata.LB5, /* 0x0f */
1647 sizeof tas3004_initdata.LB6, /* 0x10 */
1648 0, /* 0x11 */
1649 0, /* 0x12 */
1650 sizeof tas3004_initdata.RB0, /* 0x13 */
1651 sizeof tas3004_initdata.RB1, /* 0x14 */
1652 sizeof tas3004_initdata.RB2, /* 0x15 */
1653 sizeof tas3004_initdata.RB3, /* 0x16 */
1654 sizeof tas3004_initdata.RB4, /* 0x17 */
1655 sizeof tas3004_initdata.RB5, /* 0x18 */
1656 sizeof tas3004_initdata.RB6, /* 0x19 */
1657 0,0,0,0, 0,0,
1658 0, /* 0x20 */
1659 sizeof tas3004_initdata.LLB, /* 0x21 */
1660 sizeof tas3004_initdata.RLB, /* 0x22 */
1661 sizeof tas3004_initdata.LLB_GAIN, /* 0x23 */
1662 sizeof tas3004_initdata.RLB_GAIN, /* 0x24 */
1663 0,0,0,0, 0,0,0,0, 0,0,0,
1664 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,
1665 sizeof tas3004_initdata.ACR, /* 0x40 */
1666 0, /* 0x41 */
1667 0, /* 0x42 */
1668 sizeof tas3004_initdata.MCR2 /* 0x43 */
1669 };
1670
1671 int
1672 tas3004_write(struct snapper_softc *sc, u_int reg, const void *data)
1673 {
1674 int size;
1675 static char regblock[sizeof(struct tas3004_reg)+1];
1676
1677 if (sc->sc_i2c == NULL)
1678 return 0;
1679
1680 KASSERT(reg < sizeof tas3004_regsize);
1681 size = tas3004_regsize[reg];
1682 KASSERT(size > 0);
1683
1684 DPRINTF("reg: %x, %d %d\n", reg, size, ((const char*)data)[0]);
1685
1686 regblock[0] = reg;
1687 memcpy(®block[1], data, size);
1688 iic_acquire_bus(sc->sc_i2c, 0);
1689 iic_exec(sc->sc_i2c, I2C_OP_WRITE, sc->sc_deqaddr, regblock, size + 1,
1690 NULL, 0, 0);
1691 iic_release_bus(sc->sc_i2c, 0);
1692
1693 return 0;
1694 }
1695
1696 int
1697 gpio_read(char *addr)
1698 {
1699
1700 if (*addr & GPIO_DATA)
1701 return 1;
1702 return 0;
1703 }
1704
1705 void
1706 gpio_write(char *addr, int val)
1707 {
1708 u_int data;
1709
1710 data = GPIO_DDR_OUTPUT;
1711 if (val)
1712 data |= GPIO_DATA;
1713 *addr = data;
1714 __asm volatile ("eieio");
1715 }
1716
1717 #define headphone_active 0 /* XXX OF */
1718 #define amp_active 0 /* XXX OF */
1719
1720 void
1721 snapper_mute_speaker(struct snapper_softc *sc, int mute)
1722 {
1723 u_int x;
1724
1725 DPRINTF("ampmute %d --> ", gpio_read(amp_mute));
1726
1727 if (mute)
1728 x = amp_active; /* mute */
1729 else
1730 x = !amp_active; /* unmute */
1731 if (x != gpio_read(amp_mute))
1732 gpio_write(amp_mute, x);
1733
1734 DPRINTF("%d\n", gpio_read(amp_mute));
1735 }
1736
1737 void
1738 snapper_mute_headphone(struct snapper_softc *sc, int mute)
1739 {
1740 u_int x;
1741
1742 DPRINTF("headphonemute %d --> ", gpio_read(headphone_mute));
1743
1744 if (mute)
1745 x = headphone_active; /* mute */
1746 else
1747 x = !headphone_active; /* unmute */
1748 if (x != gpio_read(headphone_mute))
1749 gpio_write(headphone_mute, x);
1750
1751 DPRINTF("%d\n", gpio_read(headphone_mute));
1752 }
1753
1754 int
1755 snapper_cint(void *v)
1756 {
1757 struct snapper_softc *sc;
1758 u_int sense;
1759
1760 sc = v;
1761 sense = *headphone_detect;
1762 DPRINTF("headphone detect = 0x%x\n", sense);
1763
1764 if (((sense & 0x02) >> 1) == headphone_detect_active) {
1765 DPRINTF("headphone is inserted\n");
1766 snapper_mute_speaker(sc, 1);
1767 snapper_mute_headphone(sc, 0);
1768 sc->sc_output_mask = 1 << 1;
1769 } else {
1770 DPRINTF("headphone is NOT inserted\n");
1771 snapper_mute_speaker(sc, 0);
1772 snapper_mute_headphone(sc, 1);
1773 sc->sc_output_mask = 1 << 0;
1774 }
1775
1776 return 1;
1777 }
1778
1779 #define reset_active 0 /* XXX OF */
1780
1781 #define DEQ_WRITE(sc, reg, addr) \
1782 if (tas3004_write(sc, reg, addr)) goto err
1783
1784 int
1785 tas3004_init(struct snapper_softc *sc)
1786 {
1787
1788 /* No reset port. Nothing to do. */
1789 if (audio_hw_reset == NULL)
1790 goto noreset;
1791
1792 /* Reset TAS3004. */
1793 gpio_write(audio_hw_reset, !reset_active); /* Negate RESET */
1794 delay(100000); /* XXX Really needed? */
1795
1796 gpio_write(audio_hw_reset, reset_active); /* Assert RESET */
1797 delay(1);
1798
1799 gpio_write(audio_hw_reset, !reset_active); /* Negate RESET */
1800 delay(10000);
1801
1802 noreset:
1803 DEQ_WRITE(sc, DEQ_LB0, tas3004_initdata.LB0);
1804 DEQ_WRITE(sc, DEQ_LB1, tas3004_initdata.LB1);
1805 DEQ_WRITE(sc, DEQ_LB2, tas3004_initdata.LB2);
1806 DEQ_WRITE(sc, DEQ_LB3, tas3004_initdata.LB3);
1807 DEQ_WRITE(sc, DEQ_LB4, tas3004_initdata.LB4);
1808 DEQ_WRITE(sc, DEQ_LB5, tas3004_initdata.LB5);
1809 DEQ_WRITE(sc, DEQ_LB6, tas3004_initdata.LB6);
1810 DEQ_WRITE(sc, DEQ_RB0, tas3004_initdata.RB0);
1811 DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1);
1812 DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1);
1813 DEQ_WRITE(sc, DEQ_RB2, tas3004_initdata.RB2);
1814 DEQ_WRITE(sc, DEQ_RB3, tas3004_initdata.RB3);
1815 DEQ_WRITE(sc, DEQ_RB4, tas3004_initdata.RB4);
1816 DEQ_WRITE(sc, DEQ_RB5, tas3004_initdata.RB5);
1817 DEQ_WRITE(sc, DEQ_MCR1, tas3004_initdata.MCR1);
1818 DEQ_WRITE(sc, DEQ_MCR2, tas3004_initdata.MCR2);
1819 DEQ_WRITE(sc, DEQ_DRC, tas3004_initdata.DRC);
1820 DEQ_WRITE(sc, DEQ_VOLUME, tas3004_initdata.VOLUME);
1821 DEQ_WRITE(sc, DEQ_TREBLE, tas3004_initdata.TREBLE);
1822 DEQ_WRITE(sc, DEQ_BASS, tas3004_initdata.BASS);
1823 DEQ_WRITE(sc, DEQ_MIXER_L, tas3004_initdata.MIXER_L);
1824 DEQ_WRITE(sc, DEQ_MIXER_R, tas3004_initdata.MIXER_R);
1825 DEQ_WRITE(sc, DEQ_LLB, tas3004_initdata.LLB);
1826 DEQ_WRITE(sc, DEQ_RLB, tas3004_initdata.RLB);
1827 DEQ_WRITE(sc, DEQ_LLB_GAIN, tas3004_initdata.LLB_GAIN);
1828 DEQ_WRITE(sc, DEQ_RLB_GAIN, tas3004_initdata.RLB_GAIN);
1829 DEQ_WRITE(sc, DEQ_ACR, tas3004_initdata.ACR);
1830
1831 return 0;
1832 err:
1833 printf("tas3004_init: error\n");
1834 return -1;
1835 }
1836
1837 void
1838 snapper_init(struct snapper_softc *sc, int node)
1839 {
1840 int gpio;
1841 int headphone_detect_intr, headphone_detect_intrtype;
1842 #ifdef SNAPPER_DEBUG
1843 char fcr[32];
1844
1845 bitmask_snprintf(in32rb(0x8000003c), FCR3C_BITMASK, fcr, sizeof fcr);
1846 printf("FCR(0x3c) 0x%s\n", fcr);
1847 #endif
1848 headphone_detect_intr = -1;
1849
1850 gpio = getnodebyname(OF_parent(node), "gpio");
1851 DPRINTF(" /gpio 0x%x\n", gpio);
1852 gpio = OF_child(gpio);
1853 while (gpio) {
1854 char name[64], audio_gpio[64];
1855 int intr[2];
1856 char *addr;
1857
1858 bzero(name, sizeof name);
1859 bzero(audio_gpio, sizeof audio_gpio);
1860 addr = 0;
1861 OF_getprop(gpio, "name", name, sizeof name);
1862 OF_getprop(gpio, "audio-gpio", audio_gpio, sizeof audio_gpio);
1863 OF_getprop(gpio, "AAPL,address", &addr, sizeof addr);
1864 DPRINTF(" 0x%x %s %s\n", gpio, name, audio_gpio);
1865
1866 /* gpio5 */
1867 if (strcmp(audio_gpio, "headphone-mute") == 0)
1868 headphone_mute = addr;
1869 /* gpio6 */
1870 if (strcmp(audio_gpio, "amp-mute") == 0)
1871 amp_mute = addr;
1872 /* extint-gpio15 */
1873 if (strcmp(audio_gpio, "headphone-detect") == 0) {
1874 headphone_detect = addr;
1875 OF_getprop(gpio, "audio-gpio-active-state",
1876 &headphone_detect_active, 4);
1877 OF_getprop(gpio, "interrupts", intr, 8);
1878 headphone_detect_intr = intr[0];
1879 headphone_detect_intrtype = intr[1];
1880 }
1881 /* gpio11 (keywest-11) */
1882 if (strcmp(audio_gpio, "audio-hw-reset") == 0)
1883 audio_hw_reset = addr;
1884 gpio = OF_peer(gpio);
1885 }
1886 DPRINTF(" headphone-mute %p\n", headphone_mute);
1887 DPRINTF(" amp-mute %p\n", amp_mute);
1888 DPRINTF(" headphone-detect %p\n", headphone_detect);
1889 DPRINTF(" headphone-detect active %x\n", headphone_detect_active);
1890 DPRINTF(" headphone-detect intr %x\n", headphone_detect_intr);
1891 DPRINTF(" audio-hw-reset %p\n", audio_hw_reset);
1892
1893 if (headphone_detect_intr != -1)
1894 intr_establish(headphone_detect_intr, IST_EDGE, IPL_AUDIO,
1895 snapper_cint, sc);
1896
1897 sc->sc_rate = 44100; /* default rate */
1898 sc->sc_bitspersample = 16;
1899
1900 /* Enable headphone interrupt? */
1901 *headphone_detect |= 0x80;
1902 __asm volatile ("eieio");
1903
1904 /* i2c_set_port(port); */
1905
1906 if (tas3004_init(sc))
1907 return;
1908
1909 /* Update headphone status. */
1910 snapper_cint(sc);
1911
1912 snapper_set_volume(sc, 128, 128);
1913
1914 sc->sc_bass = 128;
1915 sc->sc_treble = 128;
1916
1917 /* Record source defaults to microphone. This reflects the
1918 * default value for the ACR (see tas3004_initdata).
1919 */
1920 sc->sc_record_source = 1 << 0;
1921
1922 /* We mute the analog input for now */
1923 sc->mixer[0] = 80;
1924 sc->mixer[1] = 80;
1925 sc->mixer[2] = 0;
1926 sc->mixer[3] = 80;
1927 sc->mixer[4] = 80;
1928 sc->mixer[5] = 0;
1929 snapper_write_mixers(sc);
1930 }
1931