snapper.c revision 1.36 1 /* $NetBSD: snapper.c,v 1.36 2010/11/12 12:26:29 phx Exp $ */
2 /* Id: snapper.c,v 1.11 2002/10/31 17:42:13 tsubai Exp */
3 /* Id: i2s.c,v 1.12 2005/01/15 14:32:35 tsubai Exp */
4
5 /*-
6 * Copyright (c) 2002, 2003 Tsubai Masanari. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * Datasheet is available from
33 * http://www.ti.com/sc/docs/products/analog/tas3004.html
34 * http://www.ti.com/sc/docs/products/analog/tas3001.html
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: snapper.c,v 1.36 2010/11/12 12:26:29 phx Exp $");
39
40 #include <sys/param.h>
41 #include <sys/audioio.h>
42 #include <sys/device.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45
46 #include <dev/auconv.h>
47 #include <dev/audio_if.h>
48 #include <dev/mulaw.h>
49 #include <dev/ofw/openfirm.h>
50 #include <macppc/dev/dbdma.h>
51
52 #include <uvm/uvm_extern.h>
53 #include <dev/i2c/i2cvar.h>
54
55 #include <machine/autoconf.h>
56 #include <machine/pio.h>
57
58 #include <macppc/dev/deqvar.h>
59 #include <macppc/dev/obiovar.h>
60
61 #ifdef SNAPPER_DEBUG
62 # define DPRINTF printf
63 #else
64 # define DPRINTF while (0) printf
65 #endif
66
67 #define SNAPPER_MAXPAGES 16
68
69 struct snapper_softc {
70 device_t sc_dev;
71 int sc_mode; // 0 for TAS3004
72 #define SNAPPER_IS_TAS3001 1 // codec is TAS3001
73 #define SNAPPER_SWVOL 2 // software codec
74
75 int sc_node;
76
77 struct audio_encoding_set *sc_encodings;
78
79 void (*sc_ointr)(void *); /* dma completion intr handler */
80 void *sc_oarg; /* arg for sc_ointr() */
81 int sc_opages; /* # of output pages */
82
83 void (*sc_iintr)(void *); /* dma completion intr handler */
84 void *sc_iarg; /* arg for sc_iintr() */
85 int sc_ipages; /* # of input pages */
86
87 u_int sc_record_source; /* recording source mask */
88 u_int sc_output_mask; /* output source mask */
89
90 bus_space_tag_t sc_tag;
91 bus_space_handle_t sc_bsh;
92 i2c_addr_t sc_deqaddr;
93 i2c_tag_t sc_i2c;
94 uint32_t sc_baseaddr;
95
96 int sc_rate; /* current sampling rate */
97 int sc_bitspersample;
98
99 int sc_swvol;
100
101 u_int sc_vol_l;
102 u_int sc_vol_r;
103 u_int sc_treble;
104 u_int sc_bass;
105 u_int mixer[6]; /* s1_l, s2_l, an_l, s1_r, s2_r, an_r */
106
107 bus_space_handle_t sc_odmah;
108 bus_space_handle_t sc_idmah;
109 dbdma_regmap_t *sc_odma;
110 dbdma_regmap_t *sc_idma;
111 unsigned char dbdma_cmdspace[sizeof(struct dbdma_command) * 40 + 15];
112 struct dbdma_command *sc_odmacmd;
113 struct dbdma_command *sc_idmacmd;
114 };
115
116 static int snapper_match(device_t, struct cfdata *, void *);
117 static void snapper_attach(device_t, device_t, void *);
118 static void snapper_defer(device_t);
119 static int snapper_intr(void *);
120 static int snapper_query_encoding(void *, struct audio_encoding *);
121 static int snapper_set_params(void *, int, int, audio_params_t *,
122 audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
123 static int snapper_round_blocksize(void *, int, int, const audio_params_t *);
124 static int snapper_halt_output(void *);
125 static int snapper_halt_input(void *);
126 static int snapper_getdev(void *, struct audio_device *);
127 static int snapper_set_port(void *, mixer_ctrl_t *);
128 static int snapper_get_port(void *, mixer_ctrl_t *);
129 static int snapper_query_devinfo(void *, mixer_devinfo_t *);
130 static size_t snapper_round_buffersize(void *, int, size_t);
131 static paddr_t snapper_mappage(void *, void *, off_t, int);
132 static int snapper_get_props(void *);
133 static int snapper_trigger_output(void *, void *, void *, int, void (*)(void *),
134 void *, const audio_params_t *);
135 static int snapper_trigger_input(void *, void *, void *, int, void (*)(void *),
136 void *, const audio_params_t *);
137 static void snapper_set_volume(struct snapper_softc *, u_int, u_int);
138 static int snapper_set_rate(struct snapper_softc *);
139 static void snapper_set_treble(struct snapper_softc *, u_int);
140 static void snapper_set_bass(struct snapper_softc *, u_int);
141 static void snapper_write_mixers(struct snapper_softc *);
142
143 static int tas3004_write(struct snapper_softc *, u_int, const void *);
144 static int gpio_read(char *);
145 static void gpio_write(char *, int);
146 static void snapper_mute_speaker(struct snapper_softc *, int);
147 static void snapper_mute_headphone(struct snapper_softc *, int);
148 static int snapper_cint(void *);
149 static int tas3004_init(struct snapper_softc *);
150 static void snapper_init(struct snapper_softc *, int);
151
152 struct snapper_codecvar {
153 stream_filter_t base;
154
155 #ifdef DIAGNOSTIC
156 # define SNAPPER_CODECVAR_MAGIC 0xC0DEC
157 uint32_t magic;
158 #endif // DIAGNOSTIC
159
160 int16_t rval; // for snapper_fixphase
161 };
162
163 static stream_filter_t *snapper_filter_factory
164 (int (*)(stream_fetcher_t *, audio_stream_t *, int));
165 static void snapper_filter_dtor(stream_filter_t *);
166
167 /* XXX We can't access the hw device softc from our audio
168 * filter -- lame...
169 */
170 static u_int snapper_vol_l = 128, snapper_vol_r = 128;
171
172 /* XXX why doesn't auconv define this? */
173 #define DEFINE_FILTER(name) \
174 static int \
175 name##_fetch_to(stream_fetcher_t *, audio_stream_t *, int); \
176 stream_filter_t * name(struct audio_softc *, \
177 const audio_params_t *, const audio_params_t *); \
178 stream_filter_t * \
179 name(struct audio_softc *sc, const audio_params_t *from, \
180 const audio_params_t *to) \
181 { \
182 return snapper_filter_factory(name##_fetch_to); \
183 } \
184 static int \
185 name##_fetch_to(stream_fetcher_t *self, audio_stream_t *dst, int max_used)
186
187 DEFINE_FILTER(snapper_volume)
188 {
189 stream_filter_t *this;
190 int16_t j;
191 int16_t *wp;
192 int m, err;
193
194 this = (stream_filter_t *)self;
195 max_used = (max_used + 1) & ~1;
196 if ((err = this->prev->fetch_to(this->prev, this->src, max_used)))
197 return err;
198 m = (dst->end - dst->start) & ~1;
199 m = min(m, max_used);
200 FILTER_LOOP_PROLOGUE(this->src, 2, dst, 2, m) {
201 j = (s[0] << 8 | s[1]);
202 wp = (int16_t *)d;
203 *wp = ((j * snapper_vol_l) / 255);
204 } FILTER_LOOP_EPILOGUE(this->src, dst);
205
206 return 0;
207 }
208
209 /*
210 * A hardware bug in the TAS3004 I2S transport
211 * produces phase differences between channels
212 * (left channel appears delayed by one sample).
213 * Fix the phase difference by delaying the right channel
214 * by one sample.
215 */
216 DEFINE_FILTER(snapper_fixphase)
217 {
218 struct snapper_codecvar *cv = (struct snapper_codecvar *) self;
219 stream_filter_t *this = &cv->base;
220 int err, m;
221 const int16_t *rp;
222 int16_t *wp, rval = cv->rval;
223
224 #ifdef DIAGNOSTIC
225 if (cv->magic != SNAPPER_CODECVAR_MAGIC)
226 panic("snapper_fixphase");
227 #endif
228 max_used = (max_used + 3) & ~2;
229 if ((err = this->prev->fetch_to(this->prev, this->src, max_used)))
230 return err;
231
232 /* work in stereo frames (4 bytes) */
233 m = (dst->end - dst->start) & ~2;
234 m = min(m, max_used);
235 FILTER_LOOP_PROLOGUE(this->src, 4, dst, 4, m) {
236 rp = (const int16_t *) s;
237 wp = (int16_t *) d;
238 wp[0] = rp[0];
239 wp[1] = rval;
240 rval = rp[1];
241 } FILTER_LOOP_EPILOGUE(this->src, dst);
242 cv->rval = rval;
243
244 return 0;
245 }
246
247 static stream_filter_t *
248 snapper_filter_factory(int (*fetch_to)(stream_fetcher_t *, audio_stream_t *, int))
249 {
250 struct snapper_codecvar *this;
251
252 this = malloc(sizeof(*this), M_DEVBUF, M_WAITOK | M_ZERO);
253 this->base.base.fetch_to = fetch_to;
254 this->base.dtor = snapper_filter_dtor;
255 this->base.set_fetcher = stream_filter_set_fetcher;
256 this->base.set_inputbuffer = stream_filter_set_inputbuffer;
257
258 #ifdef DIAGNOSTIC
259 this->magic = SNAPPER_CODECVAR_MAGIC;
260 #endif
261 return (stream_filter_t *) this;
262 }
263
264 static void
265 snapper_filter_dtor(stream_filter_t *this)
266 {
267 if (this != NULL)
268 free(this, M_DEVBUF);
269 }
270
271 CFATTACH_DECL_NEW(snapper, sizeof(struct snapper_softc), snapper_match,
272 snapper_attach, NULL, NULL);
273
274 const struct audio_hw_if snapper_hw_if = {
275 NULL,
276 NULL,
277 NULL,
278 snapper_query_encoding,
279 snapper_set_params,
280 snapper_round_blocksize,
281 NULL,
282 NULL,
283 NULL,
284 NULL,
285 NULL,
286 snapper_halt_output,
287 snapper_halt_input,
288 NULL,
289 snapper_getdev,
290 NULL,
291 snapper_set_port,
292 snapper_get_port,
293 snapper_query_devinfo,
294 NULL,
295 NULL,
296 snapper_round_buffersize,
297 snapper_mappage,
298 snapper_get_props,
299 snapper_trigger_output,
300 snapper_trigger_input,
301 NULL,
302 NULL
303 };
304
305 struct audio_device snapper_device = {
306 "SNAPPER",
307 "",
308 "snapper"
309 };
310
311 #define SNAPPER_BASSTAB_0DB 18
312 const uint8_t snapper_basstab[] = {
313 0x96, /* -18dB */
314 0x94, /* -17dB */
315 0x92, /* -16dB */
316 0x90, /* -15dB */
317 0x8e, /* -14dB */
318 0x8c, /* -13dB */
319 0x8a, /* -12dB */
320 0x88, /* -11dB */
321 0x86, /* -10dB */
322 0x84, /* -9dB */
323 0x82, /* -8dB */
324 0x80, /* -7dB */
325 0x7e, /* -6dB */
326 0x7c, /* -5dB */
327 0x7a, /* -4dB */
328 0x78, /* -3dB */
329 0x76, /* -2dB */
330 0x74, /* -1dB */
331 0x72, /* 0dB */
332 0x6f, /* 1dB */
333 0x6d, /* 2dB */
334 0x6a, /* 3dB */
335 0x67, /* 4dB */
336 0x65, /* 5dB */
337 0x62, /* 6dB */
338 0x5f, /* 7dB */
339 0x5b, /* 8dB */
340 0x55, /* 9dB */
341 0x4f, /* 10dB */
342 0x49, /* 11dB */
343 0x43, /* 12dB */
344 0x3b, /* 13dB */
345 0x33, /* 14dB */
346 0x29, /* 15dB */
347 0x1e, /* 16dB */
348 0x11, /* 17dB */
349 0x01, /* 18dB */
350 };
351
352 #define SNAPPER_MIXER_GAIN_0DB 36
353 const uint8_t snapper_mixer_gain[178][3] = {
354 { 0x7f, 0x17, 0xaf }, /* 18.0 dB */
355 { 0x77, 0xfb, 0xaa }, /* 17.5 dB */
356 { 0x71, 0x45, 0x75 }, /* 17.0 dB */
357 { 0x6a, 0xef, 0x5d }, /* 16.5 dB */
358 { 0x64, 0xf4, 0x03 }, /* 16.0 dB */
359 { 0x5f, 0x4e, 0x52 }, /* 15.5 dB */
360 { 0x59, 0xf9, 0x80 }, /* 15.0 dB */
361 { 0x54, 0xf1, 0x06 }, /* 14.5 dB */
362 { 0x50, 0x30, 0xa1 }, /* 14.0 dB */
363 { 0x4b, 0xb4, 0x46 }, /* 13.5 dB */
364 { 0x47, 0x78, 0x28 }, /* 13.0 dB */
365 { 0x43, 0x78, 0xb0 }, /* 12.5 dB */
366 { 0x3f, 0xb2, 0x78 }, /* 12.0 dB */
367 { 0x3c, 0x22, 0x4c }, /* 11.5 dB */
368 { 0x38, 0xc5, 0x28 }, /* 11.0 dB */
369 { 0x35, 0x98, 0x2f }, /* 10.5 dB */
370 { 0x32, 0x98, 0xb0 }, /* 10.0 dB */
371 { 0x2f, 0xc4, 0x20 }, /* 9.5 dB */
372 { 0x2d, 0x18, 0x18 }, /* 9.0 dB */
373 { 0x2a, 0x92, 0x54 }, /* 8.5 dB */
374 { 0x28, 0x30, 0xaf }, /* 8.0 dB */
375 { 0x25, 0xf1, 0x25 }, /* 7.5 dB */
376 { 0x23, 0xd1, 0xcd }, /* 7.0 dB */
377 { 0x21, 0xd0, 0xd9 }, /* 6.5 dB */
378 { 0x1f, 0xec, 0x98 }, /* 6.0 dB */
379 { 0x1e, 0x23, 0x6d }, /* 5.5 dB */
380 { 0x1c, 0x73, 0xd5 }, /* 5.0 dB */
381 { 0x1a, 0xdc, 0x61 }, /* 4.5 dB */
382 { 0x19, 0x5b, 0xb8 }, /* 4.0 dB */
383 { 0x17, 0xf0, 0x94 }, /* 3.5 dB */
384 { 0x16, 0x99, 0xc0 }, /* 3.0 dB */
385 { 0x15, 0x56, 0x1a }, /* 2.5 dB */
386 { 0x14, 0x24, 0x8e }, /* 2.0 dB */
387 { 0x13, 0x04, 0x1a }, /* 1.5 dB */
388 { 0x11, 0xf3, 0xc9 }, /* 1.0 dB */
389 { 0x10, 0xf2, 0xb4 }, /* 0.5 dB */
390 { 0x10, 0x00, 0x00 }, /* 0.0 dB */
391 { 0x0f, 0x1a, 0xdf }, /* -0.5 dB */
392 { 0x0e, 0x42, 0x90 }, /* -1.0 dB */
393 { 0x0d, 0x76, 0x5a }, /* -1.5 dB */
394 { 0x0c, 0xb5, 0x91 }, /* -2.0 dB */
395 { 0x0b, 0xff, 0x91 }, /* -2.5 dB */
396 { 0x0b, 0x53, 0xbe }, /* -3.0 dB */
397 { 0x0a, 0xb1, 0x89 }, /* -3.5 dB */
398 { 0x0a, 0x18, 0x66 }, /* -4.0 dB */
399 { 0x09, 0x87, 0xd5 }, /* -4.5 dB */
400 { 0x08, 0xff, 0x59 }, /* -5.0 dB */
401 { 0x08, 0x7e, 0x80 }, /* -5.5 dB */
402 { 0x08, 0x04, 0xdc }, /* -6.0 dB */
403 { 0x07, 0x92, 0x07 }, /* -6.5 dB */
404 { 0x07, 0x25, 0x9d }, /* -7.0 dB */
405 { 0x06, 0xbf, 0x44 }, /* -7.5 dB */
406 { 0x06, 0x5e, 0xa5 }, /* -8.0 dB */
407 { 0x06, 0x03, 0x6e }, /* -8.5 dB */
408 { 0x05, 0xad, 0x50 }, /* -9.0 dB */
409 { 0x05, 0x5c, 0x04 }, /* -9.5 dB */
410 { 0x05, 0x0f, 0x44 }, /* -10.0 dB */
411 { 0x04, 0xc6, 0xd0 }, /* -10.5 dB */
412 { 0x04, 0x82, 0x68 }, /* -11.0 dB */
413 { 0x04, 0x41, 0xd5 }, /* -11.5 dB */
414 { 0x04, 0x04, 0xde }, /* -12.0 dB */
415 { 0x03, 0xcb, 0x50 }, /* -12.5 dB */
416 { 0x03, 0x94, 0xfa }, /* -13.0 dB */
417 { 0x03, 0x61, 0xaf }, /* -13.5 dB */
418 { 0x03, 0x31, 0x42 }, /* -14.0 dB */
419 { 0x03, 0x03, 0x8a }, /* -14.5 dB */
420 { 0x02, 0xd8, 0x62 }, /* -15.0 dB */
421 { 0x02, 0xaf, 0xa3 }, /* -15.5 dB */
422 { 0x02, 0x89, 0x2c }, /* -16.0 dB */
423 { 0x02, 0x64, 0xdb }, /* -16.5 dB */
424 { 0x02, 0x42, 0x93 }, /* -17.0 dB */
425 { 0x02, 0x22, 0x35 }, /* -17.5 dB */
426 { 0x02, 0x03, 0xa7 }, /* -18.0 dB */
427 { 0x01, 0xe6, 0xcf }, /* -18.5 dB */
428 { 0x01, 0xcb, 0x94 }, /* -19.0 dB */
429 { 0x01, 0xb1, 0xde }, /* -19.5 dB */
430 { 0x01, 0x99, 0x99 }, /* -20.0 dB */
431 { 0x01, 0x82, 0xaf }, /* -20.5 dB */
432 { 0x01, 0x6d, 0x0e }, /* -21.0 dB */
433 { 0x01, 0x58, 0xa2 }, /* -21.5 dB */
434 { 0x01, 0x45, 0x5b }, /* -22.0 dB */
435 { 0x01, 0x33, 0x28 }, /* -22.5 dB */
436 { 0x01, 0x21, 0xf9 }, /* -23.0 dB */
437 { 0x01, 0x11, 0xc0 }, /* -23.5 dB */
438 { 0x01, 0x02, 0x70 }, /* -24.0 dB */
439 { 0x00, 0xf3, 0xfb }, /* -24.5 dB */
440 { 0x00, 0xe6, 0x55 }, /* -25.0 dB */
441 { 0x00, 0xd9, 0x73 }, /* -25.5 dB */
442 { 0x00, 0xcd, 0x49 }, /* -26.0 dB */
443 { 0x00, 0xc1, 0xcd }, /* -26.5 dB */
444 { 0x00, 0xb6, 0xf6 }, /* -27.0 dB */
445 { 0x00, 0xac, 0xba }, /* -27.5 dB */
446 { 0x00, 0xa3, 0x10 }, /* -28.0 dB */
447 { 0x00, 0x99, 0xf1 }, /* -28.5 dB */
448 { 0x00, 0x91, 0x54 }, /* -29.0 dB */
449 { 0x00, 0x89, 0x33 }, /* -29.5 dB */
450 { 0x00, 0x81, 0x86 }, /* -30.0 dB */
451 { 0x00, 0x7a, 0x48 }, /* -30.5 dB */
452 { 0x00, 0x73, 0x70 }, /* -31.0 dB */
453 { 0x00, 0x6c, 0xfb }, /* -31.5 dB */
454 { 0x00, 0x66, 0xe3 }, /* -32.0 dB */
455 { 0x00, 0x61, 0x21 }, /* -32.5 dB */
456 { 0x00, 0x5b, 0xb2 }, /* -33.0 dB */
457 { 0x00, 0x56, 0x91 }, /* -33.5 dB */
458 { 0x00, 0x51, 0xb9 }, /* -34.0 dB */
459 { 0x00, 0x4d, 0x27 }, /* -34.5 dB */
460 { 0x00, 0x48, 0xd6 }, /* -35.0 dB */
461 { 0x00, 0x44, 0xc3 }, /* -35.5 dB */
462 { 0x00, 0x40, 0xea }, /* -36.0 dB */
463 { 0x00, 0x3d, 0x49 }, /* -36.5 dB */
464 { 0x00, 0x39, 0xdb }, /* -37.0 dB */
465 { 0x00, 0x36, 0x9e }, /* -37.5 dB */
466 { 0x00, 0x33, 0x90 }, /* -38.0 dB */
467 { 0x00, 0x30, 0xae }, /* -38.5 dB */
468 { 0x00, 0x2d, 0xf5 }, /* -39.0 dB */
469 { 0x00, 0x2b, 0x63 }, /* -39.5 dB */
470 { 0x00, 0x28, 0xf5 }, /* -40.0 dB */
471 { 0x00, 0x26, 0xab }, /* -40.5 dB */
472 { 0x00, 0x24, 0x81 }, /* -41.0 dB */
473 { 0x00, 0x22, 0x76 }, /* -41.5 dB */
474 { 0x00, 0x20, 0x89 }, /* -42.0 dB */
475 { 0x00, 0x1e, 0xb7 }, /* -42.5 dB */
476 { 0x00, 0x1c, 0xff }, /* -43.0 dB */
477 { 0x00, 0x1b, 0x60 }, /* -43.5 dB */
478 { 0x00, 0x19, 0xd8 }, /* -44.0 dB */
479 { 0x00, 0x18, 0x65 }, /* -44.5 dB */
480 { 0x00, 0x17, 0x08 }, /* -45.0 dB */
481 { 0x00, 0x15, 0xbe }, /* -45.5 dB */
482 { 0x00, 0x14, 0x87 }, /* -46.0 dB */
483 { 0x00, 0x13, 0x61 }, /* -46.5 dB */
484 { 0x00, 0x12, 0x4b }, /* -47.0 dB */
485 { 0x00, 0x11, 0x45 }, /* -47.5 dB */
486 { 0x00, 0x10, 0x4e }, /* -48.0 dB */
487 { 0x00, 0x0f, 0x64 }, /* -48.5 dB */
488 { 0x00, 0x0e, 0x88 }, /* -49.0 dB */
489 { 0x00, 0x0d, 0xb8 }, /* -49.5 dB */
490 { 0x00, 0x0c, 0xf3 }, /* -50.0 dB */
491 { 0x00, 0x0c, 0x3a }, /* -50.5 dB */
492 { 0x00, 0x0b, 0x8b }, /* -51.0 dB */
493 { 0x00, 0x0a, 0xe5 }, /* -51.5 dB */
494 { 0x00, 0x0a, 0x49 }, /* -52.0 dB */
495 { 0x00, 0x09, 0xb6 }, /* -52.5 dB */
496 { 0x00, 0x09, 0x2b }, /* -53.0 dB */
497 { 0x00, 0x08, 0xa8 }, /* -53.5 dB */
498 { 0x00, 0x08, 0x2c }, /* -54.0 dB */
499 { 0x00, 0x07, 0xb7 }, /* -54.5 dB */
500 { 0x00, 0x07, 0x48 }, /* -55.0 dB */
501 { 0x00, 0x06, 0xe0 }, /* -55.5 dB */
502 { 0x00, 0x06, 0x7d }, /* -56.0 dB */
503 { 0x00, 0x06, 0x20 }, /* -56.5 dB */
504 { 0x00, 0x05, 0xc9 }, /* -57.0 dB */
505 { 0x00, 0x05, 0x76 }, /* -57.5 dB */
506 { 0x00, 0x05, 0x28 }, /* -58.0 dB */
507 { 0x00, 0x04, 0xde }, /* -58.5 dB */
508 { 0x00, 0x04, 0x98 }, /* -59.0 dB */
509 { 0x00, 0x04, 0x56 }, /* -59.5 dB */
510 { 0x00, 0x04, 0x18 }, /* -60.0 dB */
511 { 0x00, 0x03, 0xdd }, /* -60.5 dB */
512 { 0x00, 0x03, 0xa6 }, /* -61.0 dB */
513 { 0x00, 0x03, 0x72 }, /* -61.5 dB */
514 { 0x00, 0x03, 0x40 }, /* -62.0 dB */
515 { 0x00, 0x03, 0x12 }, /* -62.5 dB */
516 { 0x00, 0x02, 0xe6 }, /* -63.0 dB */
517 { 0x00, 0x02, 0xbc }, /* -63.5 dB */
518 { 0x00, 0x02, 0x95 }, /* -64.0 dB */
519 { 0x00, 0x02, 0x70 }, /* -64.5 dB */
520 { 0x00, 0x02, 0x4d }, /* -65.0 dB */
521 { 0x00, 0x02, 0x2c }, /* -65.5 dB */
522 { 0x00, 0x02, 0x0d }, /* -66.0 dB */
523 { 0x00, 0x01, 0xf0 }, /* -66.5 dB */
524 { 0x00, 0x01, 0xd4 }, /* -67.0 dB */
525 { 0x00, 0x01, 0xba }, /* -67.5 dB */
526 { 0x00, 0x01, 0xa1 }, /* -68.0 dB */
527 { 0x00, 0x01, 0x8a }, /* -68.5 dB */
528 { 0x00, 0x01, 0x74 }, /* -69.0 dB */
529 { 0x00, 0x01, 0x5f }, /* -69.5 dB */
530 { 0x00, 0x01, 0x4b }, /* -70.0 dB */
531 { 0x00, 0x00, 0x00 } /* Mute */
532 };
533
534 #define SNAPPER_NFORMATS 2
535 static const struct audio_format snapper_formats[SNAPPER_NFORMATS] = {
536 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
537 2, AUFMT_STEREO, 3, {32000, 44100, 48000}},
538 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 24, 24,
539 2, AUFMT_STEREO, 3, {32000, 44100, 48000}},
540 };
541
542 #define TUMBLER_NFORMATS 1
543 static const struct audio_format tumbler_formats[TUMBLER_NFORMATS] = {
544 {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
545 2, AUFMT_STEREO, 4, {32000, 44100, 48000, 96000}},
546 };
547
548 static u_char *amp_mute;
549 static u_char *headphone_mute;
550 static u_char *audio_hw_reset;
551 static u_char *headphone_detect;
552 static int headphone_detect_active;
553
554
555 /* I2S registers */
556 #define I2S_INT 0x00
557 #define I2S_FORMAT 0x10
558 #define I2S_FRAMECOUNT 0x40
559 #define I2S_FRAMEMATCH 0x50
560 #define I2S_WORDSIZE 0x60
561
562 /* I2S_INT register definitions */
563 #define I2S_INT_CLKSTOPPEND 0x01000000 /* clock-stop interrupt pending */
564
565 /* FCR(0x3c) bits */
566 #define KEYLARGO_FCR1 0x3c
567 #define I2S0CLKEN 0x1000
568 #define I2S0EN 0x2000
569 #define I2S1CLKEN 0x080000
570 #define I2S1EN 0x100000
571 #define FCR3C_BITMASK "\020\25I2S1EN\24I2S1CLKEN\16I2S0EN\15I2S0CLKEN"
572
573 /* TAS3004/TAS3001 registers */
574 #define DEQ_MCR1 0x01 /* Main control register 1 (1byte) */
575 #define DEQ_DRC 0x02 /* Dynamic range compression (6bytes?)
576 2 bytes (reserved) on the TAS 3001 */
577 #define DEQ_VOLUME 0x04 /* Volume (6bytes) */
578 #define DEQ_TREBLE 0x05 /* Treble control (1byte) */
579 #define DEQ_BASS 0x06 /* Bass control (1byte) */
580 #define DEQ_MIXER_L 0x07 /* Mixer left gain (9bytes; 3 on TAS3001) */
581 #define DEQ_MIXER_R 0x08 /* Mixer right gain (9bytes; 3 on TAS3001) */
582 #define DEQ_LB0 0x0a /* Left biquad 0 (15bytes) */
583 #define DEQ_LB1 0x0b /* Left biquad 1 (15bytes) */
584 #define DEQ_LB2 0x0c /* Left biquad 2 (15bytes) */
585 #define DEQ_LB3 0x0d /* Left biquad 3 (15bytes) */
586 #define DEQ_LB4 0x0e /* Left biquad 4 (15bytes) */
587 #define DEQ_LB5 0x0f /* Left biquad 5 (15bytes) */
588 #define DEQ_LB6 0x10 /* Left biquad 6 (15bytes) */
589 #define DEQ_RB0 0x13 /* Right biquad 0 (15bytes) */
590 #define DEQ_RB1 0x14 /* Right biquad 1 (15bytes) */
591 #define DEQ_RB2 0x15 /* Right biquad 2 (15bytes) */
592 #define DEQ_RB3 0x16 /* Right biquad 3 (15bytes) */
593 #define DEQ_RB4 0x17 /* Right biquad 4 (15bytes) */
594 #define DEQ_RB5 0x18 /* Right biquad 5 (15bytes) */
595 #define DEQ_RB6 0x19 /* Right biquad 6 (15bytes) */
596 #define DEQ_LLB 0x21 /* Left loudness biquad (15bytes) */
597 #define DEQ_RLB 0x22 /* Right loudness biquad (15bytes) */
598 #define DEQ_LLB_GAIN 0x23 /* Left loudness biquad gain (3bytes) */
599 #define DEQ_RLB_GAIN 0x24 /* Right loudness biquad gain (3bytes) */
600 #define DEQ_ACR 0x40 /* [TAS3004] Analog control register (1byte) */
601 #define DEQ_MCR2 0x43 /* [TAS3004] Main control register 2 (1byte) */
602 #define DEQ_MCR1_FL 0x80 /* Fast load */
603 #define DEQ_MCR1_SC 0x40 /* SCLK frequency */
604 #define DEQ_MCR1_SC_32 0x00 /* 32fs */
605 #define DEQ_MCR1_SC_64 0x40 /* 64fs */
606 #define DEQ_MCR1_SM 0x30 /* Output serial port mode */
607 #define DEQ_MCR1_SM_L 0x00 /* Left justified */
608 #define DEQ_MCR1_SM_R 0x10 /* Right justified */
609 #define DEQ_MCR1_SM_I2S 0x20 /* I2S */
610 #define DEQ_MCR1_ISM 0x0c /* [TAS3001] Input serial port mode */
611 #define DEQ_MCR1_ISM_L 0x00 /* Left justified */
612 #define DEQ_MCR1_ISM_R 0x04 /* Right justified */
613 #define DEQ_MCR1_ISM_I2S 0x08 /* I2S */
614 #define DEQ_MCR1_W 0x03 /* Serial port word length */
615 #define DEQ_MCR1_W_16 0x00 /* 16 bit */
616 #define DEQ_MCR1_W_18 0x01 /* 18 bit */
617 #define DEQ_MCR1_W_20 0x02 /* 20 bit */
618 #define DEQ_MCR1_W_24 0x03 /* 24 bit */
619
620 #define DEQ_MCR2_DL 0x80 /* Download */
621 #define DEQ_MCR2_AP 0x02 /* All pass mode */
622
623 #define DEQ_ACR_ADM 0x80 /* ADC output mode */
624 #define DEQ_ACR_LRB 0x40 /* Select B input */
625 #define DEQ_ACR_DM 0x0c /* De-emphasis control */
626 #define DEQ_ACR_DM_OFF 0x00 /* off */
627 #define DEQ_ACR_DM_48 0x04 /* fs = 48kHz */
628 #define DEQ_ACR_DM_44 0x08 /* fs = 44.1kHz */
629 #define DEQ_ACR_INP 0x02 /* Analog input select */
630 #define DEQ_ACR_INP_A 0x00 /* A */
631 #define DEQ_ACR_INP_B 0x02 /* B */
632 #define DEQ_ACR_APD 0x01 /* Analog power down */
633
634 struct tas3004_reg {
635 u_char MCR1[1];
636 u_char DRC[6];
637 u_char VOLUME[6];
638 u_char TREBLE[1];
639 u_char BASS[1];
640 u_char MIXER_L[9];
641 u_char MIXER_R[9];
642 u_char LB0[15];
643 u_char LB1[15];
644 u_char LB2[15];
645 u_char LB3[15];
646 u_char LB4[15];
647 u_char LB5[15];
648 u_char LB6[15];
649 u_char RB0[15];
650 u_char RB1[15];
651 u_char RB2[15];
652 u_char RB3[15];
653 u_char RB4[15];
654 u_char RB5[15];
655 u_char RB6[15];
656 u_char LLB[15];
657 u_char RLB[15];
658 u_char LLB_GAIN[3];
659 u_char RLB_GAIN[3];
660 u_char ACR[1];
661 u_char MCR2[1];
662 };
663
664 #define GPIO_OUTSEL 0xf0 /* Output select */
665 /* 0x00 GPIO bit0 is output
666 0x10 media-bay power
667 0x20 reserved
668 0x30 MPIC */
669
670 #define GPIO_ALTOE 0x08 /* Alternate output enable */
671 /* 0x00 Use DDR
672 0x08 Use output select */
673
674 #define GPIO_DDR 0x04 /* Data direction */
675 #define GPIO_DDR_OUTPUT 0x04 /* Output */
676 #define GPIO_DDR_INPUT 0x00 /* Input */
677
678 #define GPIO_LEVEL 0x02 /* Pin level (RO) */
679
680 #define GPIO_DATA 0x01 /* Data */
681
682 static int
683 snapper_match(device_t parent, struct cfdata *match, void *aux)
684 {
685 struct confargs *ca;
686 int soundbus, soundchip, soundcodec;
687 char compat[32];
688
689 ca = aux;
690 if (strcmp(ca->ca_name, "i2s") != 0)
691 return 0;
692
693 if ((soundbus = OF_child(ca->ca_node)) == 0 ||
694 (soundchip = OF_child(soundbus)) == 0)
695 return 0;
696
697 memset(compat, 0, sizeof compat);
698 OF_getprop(soundchip, "compatible", compat, sizeof compat);
699
700 if (strcmp(compat, "snapper") == 0)
701 return 1;
702
703 if (strcmp(compat, "tumbler") == 0)
704 return 1;
705
706 if (strcmp(compat, "AOAKeylargo") == 0)
707 return 1;
708
709 if (strcmp(compat, "AOAK2") == 0)
710 return 1;
711
712 if (OF_getprop(soundchip, "platform-tas-codec-ref",
713 &soundcodec, sizeof soundcodec) == sizeof soundcodec)
714 return 1;
715
716 return 0;
717 }
718
719 static void
720 snapper_attach(device_t parent, device_t self, void *aux)
721 {
722 struct snapper_softc *sc;
723 struct confargs *ca;
724 int cirq, oirq, iirq, cirq_type, oirq_type, iirq_type, soundbus;
725 uint32_t intr[6], reg[6];
726 char compat[32];
727
728 sc = device_private(self);
729 sc->sc_dev = self;
730
731 ca = aux;
732
733 soundbus = OF_child(ca->ca_node);
734 memset(compat, 0, sizeof compat);
735 OF_getprop(OF_child(soundbus), "compatible", compat, sizeof compat);
736
737 if (strcmp(compat, "tumbler") == 0)
738 sc->sc_mode = SNAPPER_IS_TAS3001;
739
740 if (sc->sc_mode == SNAPPER_IS_TAS3001) {
741 if (auconv_create_encodings(tumbler_formats, TUMBLER_NFORMATS,
742 &sc->sc_encodings) != 0) {
743 aprint_normal("can't create encodings\n");
744 return;
745 }
746 } else {
747 if (auconv_create_encodings(snapper_formats, SNAPPER_NFORMATS,
748 &sc->sc_encodings) != 0) {
749 aprint_normal("can't create encodings\n");
750 return;
751 }
752 }
753
754 sc->sc_odmacmd = dbdma_alloc((SNAPPER_MAXPAGES + 4) *
755 sizeof(struct dbdma_command));
756 sc->sc_idmacmd = dbdma_alloc((SNAPPER_MAXPAGES + 4) *
757 sizeof(struct dbdma_command));
758
759 sc->sc_baseaddr = ca->ca_baseaddr;
760 OF_getprop(soundbus, "reg", reg, sizeof reg);
761 reg[0] += ca->ca_baseaddr;
762 reg[2] += ca->ca_baseaddr;
763 reg[4] += ca->ca_baseaddr;
764
765 sc->sc_node = ca->ca_node;
766 sc->sc_tag = ca->ca_tag;
767
768 bus_space_map(sc->sc_tag, reg[0], reg[1], 0, &sc->sc_bsh);
769 bus_space_map(sc->sc_tag, reg[2], reg[3],
770 BUS_SPACE_MAP_LINEAR, &sc->sc_odmah);
771 bus_space_map(sc->sc_tag, reg[4], reg[5],
772 BUS_SPACE_MAP_LINEAR, &sc->sc_idmah);
773
774 sc->sc_odma = bus_space_vaddr(sc->sc_tag, sc->sc_odmah);
775 sc->sc_idma = bus_space_vaddr(sc->sc_tag, sc->sc_idmah);
776
777 OF_getprop(soundbus, "interrupts", intr, sizeof intr);
778 cirq = intr[0];
779 oirq = intr[2];
780 iirq = intr[4];
781 cirq_type = intr[1] ? IST_LEVEL : IST_EDGE;
782 oirq_type = intr[3] ? IST_LEVEL : IST_EDGE;
783 iirq_type = intr[5] ? IST_LEVEL : IST_EDGE;
784
785 /* intr_establish(cirq, cirq_type, IPL_AUDIO, snapper_intr, sc); */
786 intr_establish(oirq, oirq_type, IPL_AUDIO, snapper_intr, sc);
787 intr_establish(iirq, iirq_type, IPL_AUDIO, snapper_intr, sc);
788
789 aprint_normal(": irq %d,%d,%d\n", cirq, oirq, iirq);
790
791 /* PMF event handler */
792 pmf_device_register(sc->sc_dev, NULL, NULL);
793
794 config_defer(self, snapper_defer);
795 }
796
797 static void
798 snapper_defer(device_t dev)
799 {
800 struct snapper_softc *sc;
801 device_t dv;
802 deviter_t di;
803 struct deq_softc *deq;
804
805 sc = device_private(dev);
806 for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST);
807 dv != NULL;
808 dv = deviter_next(&di)) {
809 if (device_is_a(dv, "deq")) {
810 deq = device_private(dv);
811 sc->sc_i2c = deq->sc_i2c;
812 sc->sc_deqaddr = deq->sc_address;
813 }
814 }
815 deviter_release(&di);
816
817 /* If we don't find a codec, it's not the end of the world;
818 * we can control the volume in software in this case.
819 */
820 if (sc->sc_i2c == NULL)
821 sc->sc_mode = SNAPPER_SWVOL;
822
823 switch (sc->sc_mode) {
824 case SNAPPER_SWVOL:
825 aprint_verbose("%s: software codec\n", device_xname(dev));
826 break;
827 case SNAPPER_IS_TAS3001:
828 aprint_verbose("%s: codec: TAS3001\n", device_xname(dev));
829 break;
830 case 0:
831 aprint_verbose("%s: codec: TAS3004\n", device_xname(dev));
832 break;
833 }
834
835 audio_attach_mi(&snapper_hw_if, sc, sc->sc_dev);
836
837 /* ki2c_setmode(sc->sc_i2c, I2C_STDSUBMODE); */
838 snapper_init(sc, sc->sc_node);
839 }
840
841 static int
842 snapper_intr(void *v)
843 {
844 struct snapper_softc *sc;
845 struct dbdma_command *cmd;
846 int count;
847 int status;
848
849 sc = v;
850 cmd = sc->sc_odmacmd;
851 count = sc->sc_opages;
852 /* Fill used buffer(s). */
853 while (count-- > 0) {
854 if ((in16rb(&cmd->d_command) & 0x30) == 0x30) {
855 status = in16rb(&cmd->d_status);
856 cmd->d_status = 0;
857 if (status) /* status == 0x8400 */
858 if (sc->sc_ointr)
859 (*sc->sc_ointr)(sc->sc_oarg);
860 }
861 cmd++;
862 }
863
864 cmd = sc->sc_idmacmd;
865 count = sc->sc_ipages;
866 while (count-- > 0) {
867 if ((in16rb(&cmd->d_command) & 0x30) == 0x30) {
868 status = in16rb(&cmd->d_status);
869 cmd->d_status = 0;
870 if (status) /* status == 0x8400 */
871 if (sc->sc_iintr)
872 (*sc->sc_iintr)(sc->sc_iarg);
873 }
874 cmd++;
875 }
876
877
878 return 1;
879 }
880
881
882 static int
883 snapper_query_encoding(void *h, struct audio_encoding *ae)
884 {
885
886 struct snapper_softc *sc = h;
887
888 return auconv_query_encoding(sc->sc_encodings, ae);
889 }
890
891 static int
892 snapper_set_params(void *h, int setmode, int usemode,
893 audio_params_t *play, audio_params_t *rec,
894 stream_filter_list_t *pfil, stream_filter_list_t *rfil)
895 {
896 struct snapper_softc *sc;
897 audio_params_t *p;
898 stream_filter_list_t *fil = NULL; /* XXX gcc */
899 int mode;
900
901 sc = h;
902 p = NULL;
903
904 /*
905 * This device only has one clock, so make the sample rates match.
906 */
907 if (play->sample_rate != rec->sample_rate &&
908 usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
909 if (setmode == AUMODE_PLAY) {
910 rec->sample_rate = play->sample_rate;
911 setmode |= AUMODE_RECORD;
912 } else if (setmode == AUMODE_RECORD) {
913 play->sample_rate = rec->sample_rate;
914 setmode |= AUMODE_PLAY;
915 } else
916 return EINVAL;
917 }
918
919 for (mode = AUMODE_RECORD; mode != -1;
920 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
921 if ((setmode & mode) == 0)
922 continue;
923
924 p = mode == AUMODE_PLAY ? play : rec;
925 fil = mode == AUMODE_PLAY ? pfil : rfil;
926 if (sc->sc_mode == SNAPPER_IS_TAS3001) {
927 if (auconv_set_converter(tumbler_formats,
928 TUMBLER_NFORMATS, mode, p, true, fil) < 0) {
929 DPRINTF("snapper_set_params: "
930 "auconv_set_converter failed\n");
931 return EINVAL;
932 }
933 } else { /* TAS 3004 */
934 if (auconv_set_converter(snapper_formats,
935 SNAPPER_NFORMATS, mode, p, true, fil) < 0) {
936 DPRINTF("snapper_set_params: "
937 "auconv_set_converter failed\n");
938 return EINVAL;
939 }
940 }
941
942 if (fil->req_size > 0)
943 p = &fil->filters[0].param;
944 if (p->precision == 16) {
945 if (sc->sc_mode == SNAPPER_SWVOL)
946 fil->prepend(fil, snapper_volume, p);
947 else if (sc->sc_mode == 0 && p->channels == 2) {
948 /*
949 * Fix phase problems on TAS3004.
950 * This filter must go last on the chain,
951 * so prepend it, not append it.
952 */
953 fil->prepend(fil, snapper_fixphase, p);
954 }
955 }
956 }
957
958 /* Set the speed. p points HW encoding. */
959 if (p) {
960 sc->sc_rate = p->sample_rate;
961 sc->sc_bitspersample = p->precision;
962 }
963 return 0;
964 }
965
966 static int
967 snapper_round_blocksize(void *h, int size, int mode,
968 const audio_params_t *param)
969 {
970
971 if (size < NBPG)
972 size = NBPG;
973 return size & ~PGOFSET;
974 }
975
976 static int
977 snapper_halt_output(void *h)
978 {
979 struct snapper_softc *sc;
980
981 sc = h;
982 dbdma_stop(sc->sc_odma);
983 dbdma_reset(sc->sc_odma);
984 sc->sc_ointr = NULL;
985 return 0;
986 }
987
988 static int
989 snapper_halt_input(void *h)
990 {
991 struct snapper_softc *sc;
992
993 sc = h;
994 dbdma_stop(sc->sc_idma);
995 dbdma_reset(sc->sc_idma);
996 sc->sc_iintr = NULL;
997 return 0;
998 }
999
1000 static int
1001 snapper_getdev(void *h, struct audio_device *retp)
1002 {
1003
1004 *retp = snapper_device;
1005 return 0;
1006 }
1007
1008 enum {
1009 SNAPPER_MONITOR_CLASS,
1010 SNAPPER_OUTPUT_CLASS,
1011 SNAPPER_RECORD_CLASS,
1012 SNAPPER_OUTPUT_SELECT,
1013 SNAPPER_VOL_OUTPUT,
1014 SNAPPER_DIGI1,
1015 SNAPPER_DIGI2,
1016 SNAPPER_VOL_INPUT,
1017 SNAPPER_TREBLE,
1018 SNAPPER_BASS,
1019 /* From this point, unsupported by the TAS 3001 */
1020 SNAPPER_ANALOG,
1021 SNAPPER_INPUT_SELECT,
1022 SNAPPER_ENUM_LAST
1023 };
1024
1025 static int
1026 snapper_set_port(void *h, mixer_ctrl_t *mc)
1027 {
1028 struct snapper_softc *sc;
1029 int l, r;
1030 u_char data;
1031
1032 DPRINTF("snapper_set_port dev = %d, type = %d\n", mc->dev, mc->type);
1033 sc = h;
1034 l = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
1035 r = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
1036
1037 switch (mc->dev) {
1038 case SNAPPER_OUTPUT_SELECT:
1039 /* No change necessary? */
1040 if (mc->un.mask == sc->sc_output_mask)
1041 return 0;
1042
1043 snapper_mute_speaker(sc, 1);
1044 snapper_mute_headphone(sc, 1);
1045 if (mc->un.mask & 1 << 0)
1046 snapper_mute_speaker(sc, 0);
1047 if (mc->un.mask & 1 << 1)
1048 snapper_mute_headphone(sc, 0);
1049
1050 sc->sc_output_mask = mc->un.mask;
1051 return 0;
1052
1053 case SNAPPER_VOL_OUTPUT:
1054 snapper_set_volume(sc, l, r);
1055 return 0;
1056
1057 case SNAPPER_INPUT_SELECT:
1058 if (sc->sc_mode != 0)
1059 return ENXIO;
1060
1061 /* no change necessary? */
1062 if (mc->un.mask == sc->sc_record_source)
1063 return 0;
1064 switch (mc->un.mask) {
1065 case 1 << 0: /* microphone */
1066 /* Select right channel of B input */
1067 data = DEQ_ACR_ADM | DEQ_ACR_LRB | DEQ_ACR_INP_B;
1068 tas3004_write(sc, DEQ_ACR, &data);
1069 break;
1070 case 1 << 1: /* line in */
1071 /* Select both channels of A input */
1072 data = 0;
1073 tas3004_write(sc, DEQ_ACR, &data);
1074 break;
1075 default: /* invalid argument */
1076 return EINVAL;
1077 }
1078 sc->sc_record_source = mc->un.mask;
1079 return 0;
1080
1081 case SNAPPER_VOL_INPUT:
1082 /* XXX TO BE DONE */
1083 return 0;
1084
1085 case SNAPPER_BASS:
1086 if (sc->sc_mode == SNAPPER_SWVOL)
1087 return ENXIO;
1088 snapper_set_bass(sc, l);
1089 return 0;
1090 case SNAPPER_TREBLE:
1091 if (sc->sc_mode == SNAPPER_SWVOL)
1092 return ENXIO;
1093 snapper_set_treble(sc, l);
1094 return 0;
1095 case SNAPPER_DIGI1:
1096 if (sc->sc_mode == SNAPPER_SWVOL)
1097 return ENXIO;
1098
1099 sc->mixer[0] = l;
1100 sc->mixer[3] = r;
1101 snapper_write_mixers(sc);
1102 return 0;
1103 case SNAPPER_DIGI2:
1104 if (sc->sc_mode == SNAPPER_SWVOL)
1105 return ENXIO;
1106
1107 if (sc->sc_mode == SNAPPER_IS_TAS3001)
1108 sc->mixer[3] = l;
1109 else {
1110 sc->mixer[1] = l;
1111 sc->mixer[4] = r;
1112 }
1113 snapper_write_mixers(sc);
1114 return 0;
1115 case SNAPPER_ANALOG:
1116 if (sc->sc_mode != 0)
1117 return ENXIO;
1118
1119 sc->mixer[2] = l;
1120 sc->mixer[5] = r;
1121 snapper_write_mixers(sc);
1122 return 0;
1123 }
1124 return ENXIO;
1125 }
1126
1127 static int
1128 snapper_get_port(void *h, mixer_ctrl_t *mc)
1129 {
1130 struct snapper_softc *sc;
1131
1132 DPRINTF("snapper_get_port dev = %d, type = %d\n", mc->dev, mc->type);
1133 sc = h;
1134 switch (mc->dev) {
1135 case SNAPPER_OUTPUT_SELECT:
1136 mc->un.mask = sc->sc_output_mask;
1137 return 0;
1138
1139 case SNAPPER_VOL_OUTPUT:
1140 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_vol_l;
1141 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_vol_r;
1142 return 0;
1143
1144 case SNAPPER_INPUT_SELECT:
1145 if (sc->sc_mode != 0)
1146 return ENXIO;
1147
1148 mc->un.mask = sc->sc_record_source;
1149 return 0;
1150
1151 case SNAPPER_VOL_INPUT:
1152 /* XXX TO BE DONE */
1153 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 0;
1154 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 0;
1155 return 0;
1156
1157 case SNAPPER_TREBLE:
1158 if (sc->sc_mode == SNAPPER_SWVOL)
1159 return ENXIO;
1160 mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_treble;
1161 return 0;
1162 case SNAPPER_BASS:
1163 if (sc->sc_mode == SNAPPER_SWVOL)
1164 return ENXIO;
1165 mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_bass;
1166 return 0;
1167
1168 case SNAPPER_DIGI1:
1169 if (sc->sc_mode == SNAPPER_SWVOL)
1170 return ENXIO;
1171
1172 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[0];
1173 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[3];
1174 return 0;
1175 case SNAPPER_DIGI2:
1176 if (sc->sc_mode == SNAPPER_SWVOL)
1177 return ENXIO;
1178
1179 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[1];
1180 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[4];
1181 return 0;
1182 case SNAPPER_ANALOG:
1183 if (sc->sc_mode != 0)
1184 return ENXIO;
1185
1186 mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[2];
1187 mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[5];
1188 return 0;
1189 default:
1190 return ENXIO;
1191 }
1192
1193 return 0;
1194 }
1195
1196 static int
1197 snapper_query_devinfo(void *h, mixer_devinfo_t *dip)
1198 {
1199 struct snapper_softc *sc = h;
1200
1201 switch (dip->index) {
1202
1203 case SNAPPER_OUTPUT_SELECT:
1204 dip->mixer_class = SNAPPER_OUTPUT_CLASS;
1205 strcpy(dip->label.name, AudioNoutput);
1206 dip->type = AUDIO_MIXER_SET;
1207 dip->prev = dip->next = AUDIO_MIXER_LAST;
1208 dip->un.s.num_mem = 2;
1209 strcpy(dip->un.s.member[0].label.name, AudioNspeaker);
1210 dip->un.s.member[0].mask = 1 << 0;
1211 strcpy(dip->un.s.member[1].label.name, AudioNheadphone);
1212 dip->un.s.member[1].mask = 1 << 1;
1213 return 0;
1214
1215 case SNAPPER_VOL_OUTPUT:
1216 dip->mixer_class = SNAPPER_OUTPUT_CLASS;
1217 strcpy(dip->label.name, AudioNmaster);
1218 dip->type = AUDIO_MIXER_VALUE;
1219 dip->prev = dip->next = AUDIO_MIXER_LAST;
1220 dip->un.v.num_channels = 2;
1221 dip->un.v.delta = 16;
1222 strcpy(dip->un.v.units.name, AudioNvolume);
1223 return 0;
1224
1225 case SNAPPER_INPUT_SELECT:
1226 if (sc->sc_mode != 0)
1227 return ENXIO;
1228
1229 dip->mixer_class = SNAPPER_RECORD_CLASS;
1230 strcpy(dip->label.name, AudioNsource);
1231 dip->type = AUDIO_MIXER_SET;
1232 dip->prev = dip->next = AUDIO_MIXER_LAST;
1233 dip->un.s.num_mem = 2;
1234 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
1235 dip->un.s.member[0].mask = 1 << 0;
1236 strcpy(dip->un.s.member[1].label.name, AudioNline);
1237 dip->un.s.member[1].mask = 1 << 1;
1238 return 0;
1239
1240 case SNAPPER_VOL_INPUT:
1241 dip->mixer_class = SNAPPER_RECORD_CLASS;
1242 strcpy(dip->label.name, AudioNrecord);
1243 dip->type = AUDIO_MIXER_VALUE;
1244 dip->prev = dip->next = AUDIO_MIXER_LAST;
1245 dip->un.v.num_channels = 2;
1246 strcpy(dip->un.v.units.name, AudioNvolume);
1247 return 0;
1248
1249 case SNAPPER_MONITOR_CLASS:
1250 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1251 strcpy(dip->label.name, AudioCmonitor);
1252 dip->type = AUDIO_MIXER_CLASS;
1253 dip->next = dip->prev = AUDIO_MIXER_LAST;
1254 return 0;
1255
1256 case SNAPPER_OUTPUT_CLASS:
1257 dip->mixer_class = SNAPPER_OUTPUT_CLASS;
1258 strcpy(dip->label.name, AudioCoutputs);
1259 dip->type = AUDIO_MIXER_CLASS;
1260 dip->next = dip->prev = AUDIO_MIXER_LAST;
1261 return 0;
1262
1263 case SNAPPER_RECORD_CLASS:
1264 dip->mixer_class = SNAPPER_RECORD_CLASS;
1265 strcpy(dip->label.name, AudioCrecord);
1266 dip->type = AUDIO_MIXER_CLASS;
1267 dip->next = dip->prev = AUDIO_MIXER_LAST;
1268 return 0;
1269
1270 case SNAPPER_TREBLE:
1271 if (sc->sc_mode == SNAPPER_SWVOL)
1272 return ENXIO;
1273
1274 dip->mixer_class = SNAPPER_OUTPUT_CLASS;
1275 strcpy(dip->label.name, AudioNtreble);
1276 dip->type = AUDIO_MIXER_VALUE;
1277 dip->prev = dip->next = AUDIO_MIXER_LAST;
1278 dip->un.v.num_channels = 1;
1279 return 0;
1280
1281 case SNAPPER_BASS:
1282 if (sc->sc_mode == SNAPPER_SWVOL)
1283 return ENXIO;
1284
1285 dip->mixer_class = SNAPPER_OUTPUT_CLASS;
1286 strcpy(dip->label.name, AudioNbass);
1287 dip->type = AUDIO_MIXER_VALUE;
1288 dip->prev = dip->next = AUDIO_MIXER_LAST;
1289 dip->un.v.num_channels = 1;
1290 return 0;
1291
1292 case SNAPPER_DIGI1:
1293 if (sc->sc_mode == SNAPPER_SWVOL)
1294 return ENXIO;
1295
1296 dip->mixer_class = SNAPPER_OUTPUT_CLASS;
1297 strcpy(dip->label.name, AudioNdac);
1298 dip->type = AUDIO_MIXER_VALUE;
1299 dip->prev = dip->next = AUDIO_MIXER_LAST;
1300 dip->un.v.num_channels =
1301 sc->sc_mode == SNAPPER_IS_TAS3001? 1 : 2;
1302 return 0;
1303 case SNAPPER_DIGI2:
1304 if (sc->sc_mode == SNAPPER_SWVOL)
1305 return ENXIO;
1306
1307 dip->mixer_class = SNAPPER_OUTPUT_CLASS;
1308 strcpy(dip->label.name, AudioNline);
1309 dip->type = AUDIO_MIXER_VALUE;
1310 dip->prev = dip->next = AUDIO_MIXER_LAST;
1311 dip->un.v.num_channels =
1312 sc->sc_mode == SNAPPER_IS_TAS3001? 1 : 2;
1313 return 0;
1314 case SNAPPER_ANALOG:
1315 if (sc->sc_mode != 0)
1316 return ENXIO;
1317
1318 dip->mixer_class = SNAPPER_MONITOR_CLASS;
1319 strcpy(dip->label.name, AudioNmicrophone);
1320 dip->type = AUDIO_MIXER_VALUE;
1321 dip->prev = dip->next = AUDIO_MIXER_LAST;
1322 dip->un.v.num_channels = 2;
1323 return 0;
1324 }
1325
1326 return ENXIO;
1327 }
1328
1329 static size_t
1330 snapper_round_buffersize(void *h, int dir, size_t size)
1331 {
1332
1333 if (size > 65536)
1334 size = 65536;
1335 return size;
1336 }
1337
1338 static paddr_t
1339 snapper_mappage(void *h, void *mem, off_t off, int prot)
1340 {
1341
1342 if (off < 0)
1343 return -1;
1344 return -1; /* XXX */
1345 }
1346
1347 static int
1348 snapper_get_props(void *h)
1349 {
1350 return AUDIO_PROP_FULLDUPLEX /* | AUDIO_PROP_MMAP */;
1351 }
1352
1353 static int
1354 snapper_trigger_output(void *h, void *start, void *end, int bsize,
1355 void (*intr)(void *), void *arg,
1356 const audio_params_t *param)
1357 {
1358 struct snapper_softc *sc;
1359 struct dbdma_command *cmd;
1360 vaddr_t va;
1361 int i, len, intmode;
1362 int res;
1363
1364 DPRINTF("trigger_output %p %p 0x%x\n", start, end, bsize);
1365 sc = h;
1366
1367 if ((res = snapper_set_rate(sc)) != 0)
1368 return res;
1369
1370 cmd = sc->sc_odmacmd;
1371 sc->sc_ointr = intr;
1372 sc->sc_oarg = arg;
1373 sc->sc_opages = ((char *)end - (char *)start) / NBPG;
1374
1375 #ifdef DIAGNOSTIC
1376 if (sc->sc_opages > SNAPPER_MAXPAGES)
1377 panic("snapper_trigger_output");
1378 #endif
1379
1380 va = (vaddr_t)start;
1381 len = 0;
1382 for (i = sc->sc_opages; i > 0; i--) {
1383 len += NBPG;
1384 if (len < bsize)
1385 intmode = 0;
1386 else {
1387 len = 0;
1388 intmode = DBDMA_INT_ALWAYS;
1389 }
1390
1391 DBDMA_BUILD(cmd, DBDMA_CMD_OUT_MORE, 0, NBPG, vtophys(va),
1392 intmode, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
1393 cmd++;
1394 va += NBPG;
1395 }
1396
1397 DBDMA_BUILD(cmd, DBDMA_CMD_NOP, 0, 0,
1398 0/*vtophys((vaddr_t)sc->sc_odmacmd)*/, 0, DBDMA_WAIT_NEVER,
1399 DBDMA_BRANCH_ALWAYS);
1400
1401 out32rb(&cmd->d_cmddep, vtophys((vaddr_t)sc->sc_odmacmd));
1402
1403 dbdma_start(sc->sc_odma, sc->sc_odmacmd);
1404
1405 return 0;
1406 }
1407
1408 static int
1409 snapper_trigger_input(void *h, void *start, void *end, int bsize,
1410 void (*intr)(void *), void *arg,
1411 const audio_params_t *param)
1412 {
1413 struct snapper_softc *sc;
1414 struct dbdma_command *cmd;
1415 vaddr_t va;
1416 int i, len, intmode;
1417 int res;
1418
1419 DPRINTF("trigger_input %p %p 0x%x\n", start, end, bsize);
1420 sc = h;
1421
1422 if ((res = snapper_set_rate(sc)) != 0)
1423 return res;
1424
1425 cmd = sc->sc_idmacmd;
1426 sc->sc_iintr = intr;
1427 sc->sc_iarg = arg;
1428 sc->sc_ipages = ((char *)end - (char *)start) / NBPG;
1429
1430 #ifdef DIAGNOSTIC
1431 if (sc->sc_ipages > SNAPPER_MAXPAGES)
1432 panic("snapper_trigger_input");
1433 #endif
1434
1435 va = (vaddr_t)start;
1436 len = 0;
1437 for (i = sc->sc_ipages; i > 0; i--) {
1438 len += NBPG;
1439 if (len < bsize)
1440 intmode = 0;
1441 else {
1442 len = 0;
1443 intmode = DBDMA_INT_ALWAYS;
1444 }
1445
1446 DBDMA_BUILD(cmd, DBDMA_CMD_IN_MORE, 0, NBPG, vtophys(va),
1447 intmode, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
1448 cmd++;
1449 va += NBPG;
1450 }
1451
1452 DBDMA_BUILD(cmd, DBDMA_CMD_NOP, 0, 0,
1453 0/*vtophys((vaddr_t)sc->sc_odmacmd)*/, 0, DBDMA_WAIT_NEVER,
1454 DBDMA_BRANCH_ALWAYS);
1455
1456 out32rb(&cmd->d_cmddep, vtophys((vaddr_t)sc->sc_idmacmd));
1457
1458 dbdma_start(sc->sc_idma, sc->sc_idmacmd);
1459
1460 return 0;
1461 }
1462
1463 static void
1464 snapper_set_volume(struct snapper_softc *sc, u_int left, u_int right)
1465 {
1466 u_char regs[6];
1467 int l, r;
1468
1469 left = min(255, left);
1470 right = min(255, right);
1471
1472 if (sc->sc_mode == SNAPPER_SWVOL) {
1473 snapper_vol_l = left;
1474 snapper_vol_r = right;
1475 } else {
1476 /*
1477 * for some insane reason the gain table for master volume and the
1478 * mixer channels is almost identical - just shifted by 4 bits
1479 * so we use the mixer_gain table and bit-twiddle it...
1480 */
1481 l = 177 - (left * 178 / 256);
1482 regs[0] = (snapper_mixer_gain[l][0] >> 4);
1483 regs[1] = ((snapper_mixer_gain[l][0] & 0x0f) << 4) |
1484 (snapper_mixer_gain[l][1] >> 4);
1485 regs[2] = ((snapper_mixer_gain[l][1] & 0x0f) << 4) |
1486 (snapper_mixer_gain[l][2] >> 4);
1487
1488 r = 177 - (right * 178 / 256);
1489 regs[3] = (snapper_mixer_gain[r][0] >> 4);
1490 regs[4] = ((snapper_mixer_gain[r][0] & 0x0f) << 4) |
1491 (snapper_mixer_gain[r][1] >> 4);
1492 regs[5] = ((snapper_mixer_gain[r][1] & 0x0f) << 4) |
1493 (snapper_mixer_gain[r][2] >> 4);
1494
1495 tas3004_write(sc, DEQ_VOLUME, regs);
1496
1497 DPRINTF("%d %02x %02x %02x : %d %02x %02x %02x\n", l, regs[0],
1498 regs[1], regs[2], r, regs[3], regs[4], regs[5]);
1499 }
1500
1501 sc->sc_vol_l = left;
1502 sc->sc_vol_r = right;
1503 }
1504
1505 static void
1506 snapper_set_basstreble(struct snapper_softc *sc, u_int val, u_int mode)
1507 {
1508 int i = val & 0xFF;
1509 uint8_t reg;
1510
1511 /*
1512 * Make 128 match the 0 dB point
1513 */
1514 i = (i - (128 - (SNAPPER_BASSTAB_0DB << 2))) >> 2;
1515 if (i < 0)
1516 i = 0;
1517 else if (i >= sizeof(snapper_basstab))
1518 i = sizeof(snapper_basstab) - 1;
1519 reg = snapper_basstab[i];
1520
1521 if (sc->sc_mode == SNAPPER_IS_TAS3001 &&
1522 mode == DEQ_BASS) {
1523 /*
1524 * XXX -- The TAS3001 bass table is different
1525 * than the other tables.
1526 */
1527 reg = (reg >> 1) + 5; // map 0x72 -> 0x3E (0 dB)
1528 }
1529
1530 tas3004_write(sc, mode, ®);
1531 }
1532
1533 static void
1534 snapper_set_treble(struct snapper_softc *sc, u_int val)
1535 {
1536 if (sc->sc_treble != (u_char)val) {
1537 sc->sc_treble = val;
1538 snapper_set_basstreble(sc, val, DEQ_TREBLE);
1539 }
1540 }
1541
1542 static void
1543 snapper_set_bass(struct snapper_softc *sc, u_int val)
1544 {
1545 if (sc->sc_bass != (u_char)val) {
1546 sc->sc_bass = val;
1547 snapper_set_basstreble(sc, val, DEQ_BASS);
1548 }
1549 }
1550
1551
1552 /*
1553 * In the mixer gain setting, make 128 correspond to
1554 * the 0dB value from the table.
1555 * Note that the table values are complemented.
1556 */
1557 #define SNAPPER_MIXER_GAIN_SIZE (sizeof(snapper_mixer_gain) / \
1558 sizeof(snapper_mixer_gain[0]))
1559 #define NORMALIZE(i) ((~(i) & 0xff) - ((~128 & 0xff) - SNAPPER_MIXER_GAIN_0DB))
1560 #define ADJUST(v, i) do { \
1561 (v) = NORMALIZE(i);\
1562 if ((v) < 0) \
1563 (v) = 0; \
1564 else if ((v) >= SNAPPER_MIXER_GAIN_SIZE) \
1565 (v) = SNAPPER_MIXER_GAIN_SIZE - 1; \
1566 \
1567 } while (0)
1568 static void
1569 snapper_write_mixers(struct snapper_softc *sc)
1570 {
1571 uint8_t regs[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
1572 int i;
1573
1574 /* Left channel of SDIN1 */
1575 ADJUST(i, sc->mixer[0]);
1576 regs[0] = snapper_mixer_gain[i][0];
1577 regs[1] = snapper_mixer_gain[i][1];
1578 regs[2] = snapper_mixer_gain[i][2];
1579
1580 /* Left channel of SDIN2 */
1581 ADJUST(i, sc->mixer[1]);
1582 regs[3] = snapper_mixer_gain[i][0];
1583 regs[4] = snapper_mixer_gain[i][1];
1584 regs[5] = snapper_mixer_gain[i][2];
1585
1586 /* Left channel of analog input */
1587 ADJUST(i, sc->mixer[2]);
1588 regs[6] = snapper_mixer_gain[i][0];
1589 regs[7] = snapper_mixer_gain[i][1];
1590 regs[8] = snapper_mixer_gain[i][2];
1591
1592 tas3004_write(sc, DEQ_MIXER_L, regs);
1593
1594 /* Right channel of SDIN1 */
1595 ADJUST(i, sc->mixer[3]);
1596 regs[0] = snapper_mixer_gain[i][0];
1597 regs[1] = snapper_mixer_gain[i][1];
1598 regs[2] = snapper_mixer_gain[i][2];
1599
1600 /* Right channel of SDIN2 */
1601 ADJUST(i, sc->mixer[4]);
1602 regs[3] = snapper_mixer_gain[i][0];
1603 regs[4] = snapper_mixer_gain[i][1];
1604 regs[5] = snapper_mixer_gain[i][2];
1605
1606 /* Right channel of analog input */
1607 ADJUST(i, sc->mixer[5]);
1608 regs[6] = snapper_mixer_gain[i][0];
1609 regs[7] = snapper_mixer_gain[i][1];
1610 regs[8] = snapper_mixer_gain[i][2];
1611
1612 tas3004_write(sc, DEQ_MIXER_R, regs);
1613 }
1614
1615 #define CLKSRC_49MHz 0x80000000 /* Use 49152000Hz Osc. */
1616 #define CLKSRC_45MHz 0x40000000 /* Use 45158400Hz Osc. */
1617 #define CLKSRC_18MHz 0x00000000 /* Use 18432000Hz Osc. */
1618 #define MCLK_DIV 0x1f000000 /* MCLK = SRC / DIV */
1619 #define MCLK_DIV1 0x14000000 /* MCLK = SRC */
1620 #define MCLK_DIV3 0x13000000 /* MCLK = SRC / 3 */
1621 #define MCLK_DIV5 0x12000000 /* MCLK = SRC / 5 */
1622 #define SCLK_DIV 0x00f00000 /* SCLK = MCLK / DIV */
1623 #define SCLK_DIV1 0x00800000
1624 #define SCLK_DIV3 0x00900000
1625 #define SCLK_MASTER 0x00080000 /* Master mode */
1626 #define SCLK_SLAVE 0x00000000 /* Slave mode */
1627 #define SERIAL_FORMAT 0x00070000
1628 #define SERIAL_SONY 0x00000000
1629 #define SERIAL_64x 0x00010000
1630 #define SERIAL_32x 0x00020000
1631 #define SERIAL_DAV 0x00040000
1632 #define SERIAL_SILICON 0x00050000
1633
1634 /*
1635 * rate = fs = LRCLK
1636 * SCLK = 64*LRCLK (I2S)
1637 * MCLK = 256fs (typ. -- changeable)
1638 *
1639 * MCLK = clksrc / mdiv
1640 * SCLK = MCLK / sdiv
1641 * rate = SCLK / 64 ( = LRCLK = fs)
1642 */
1643
1644 int
1645 snapper_set_rate(struct snapper_softc *sc)
1646 {
1647 u_int reg = 0, x;
1648 u_int rate = sc->sc_rate;
1649 uint32_t wordsize, ows;
1650 int MCLK;
1651 int clksrc, mdiv, sdiv;
1652 int mclk_fs;
1653 int timo;
1654 uint8_t mcr1;
1655
1656 switch (rate) {
1657 case 44100:
1658 clksrc = 45158400; /* 45MHz */
1659 reg = CLKSRC_45MHz;
1660 mclk_fs = 256;
1661 break;
1662
1663 case 32000:
1664 case 48000:
1665 case 96000:
1666 clksrc = 49152000; /* 49MHz */
1667 reg = CLKSRC_49MHz;
1668 mclk_fs = 256;
1669 break;
1670
1671 default:
1672 DPRINTF("snapper_set_rate: invalid rate %u\n", rate);
1673 return EINVAL;
1674 }
1675
1676 MCLK = rate * mclk_fs;
1677 mdiv = clksrc / MCLK; /* 4 */
1678 sdiv = mclk_fs / 64; /* 4 */
1679
1680 switch (mdiv) {
1681 case 1:
1682 reg |= MCLK_DIV1;
1683 break;
1684 case 3:
1685 reg |= MCLK_DIV3;
1686 break;
1687 case 5:
1688 reg |= MCLK_DIV5;
1689 break;
1690 default:
1691 reg |= ((mdiv / 2 - 1) << 24) & 0x1f000000;
1692 break;
1693 }
1694
1695 switch (sdiv) {
1696 case 1:
1697 reg |= SCLK_DIV1;
1698 break;
1699 case 3:
1700 reg |= SCLK_DIV3;
1701 break;
1702 default:
1703 reg |= ((sdiv / 2 - 1) << 20) & 0x00f00000;
1704 break;
1705 }
1706
1707 reg |= SCLK_MASTER; /* XXX master mode */
1708
1709 reg |= SERIAL_64x;
1710
1711 /* stereo input and output */
1712
1713 DPRINTF("precision: %d\n", sc->sc_bitspersample);
1714 switch(sc->sc_bitspersample) {
1715 case 16:
1716 wordsize = 0x02000200;
1717 mcr1 = DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_16;
1718 break;
1719 case 24:
1720 wordsize = 0x03000300;
1721 mcr1 = DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_24;
1722 break;
1723 default:
1724 printf("%s: unsupported sample size %d\n",
1725 device_xname(sc->sc_dev), sc->sc_bitspersample);
1726 return EINVAL;
1727 }
1728
1729 if (sc->sc_mode == SNAPPER_IS_TAS3001)
1730 mcr1 |= DEQ_MCR1_ISM_I2S;
1731
1732 ows = bus_space_read_4(sc->sc_tag, sc->sc_bsh, I2S_WORDSIZE);
1733
1734 DPRINTF("I2SSetDataWordSizeReg 0x%08x -> 0x%08x\n",
1735 ows, wordsize);
1736 if (ows != wordsize) {
1737 bus_space_write_4(sc->sc_tag, sc->sc_bsh, I2S_WORDSIZE,
1738 wordsize);
1739 if (sc->sc_mode != SNAPPER_SWVOL)
1740 tas3004_write(sc, DEQ_MCR1, &mcr1);
1741 }
1742
1743 x = bus_space_read_4(sc->sc_tag, sc->sc_bsh, I2S_FORMAT);
1744 if (x == reg)
1745 return 0; /* No change; do nothing. */
1746
1747 DPRINTF("I2SSetSerialFormatReg 0x%x -> 0x%x\n",
1748 bus_space_read_4(sc->sc_tag, sc->sc_bsh, + I2S_FORMAT), reg);
1749
1750 /* Clear CLKSTOPPEND. */
1751 bus_space_write_4(sc->sc_tag, sc->sc_bsh, I2S_INT, I2S_INT_CLKSTOPPEND);
1752
1753 x = obio_read_4(KEYLARGO_FCR1); /* FCR */
1754 x &= ~I2S0CLKEN; /* XXX I2S0 */
1755 obio_write_4(KEYLARGO_FCR1, x);
1756
1757 /* Wait until clock is stopped. */
1758 for (timo = 1000; timo > 0; timo--) {
1759 if (bus_space_read_4(sc->sc_tag, sc->sc_bsh, I2S_INT) &
1760 I2S_INT_CLKSTOPPEND)
1761 goto done;
1762 delay(1);
1763 }
1764 DPRINTF("snapper_set_rate: timeout\n");
1765 done:
1766 bus_space_write_4(sc->sc_tag, sc->sc_bsh, I2S_FORMAT, reg);
1767
1768 x = obio_read_4(KEYLARGO_FCR1);
1769 x |= I2S0CLKEN;
1770 obio_write_4(KEYLARGO_FCR1, x);
1771
1772 return 0;
1773 }
1774
1775 const struct tas3004_reg tas3004_initdata = {
1776 { DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_16 }, /* MCR1 */
1777 { 1, 0, 0, 0, 0, 0 }, /* DRC */
1778 { 0, 0, 0, 0, 0, 0 }, /* VOLUME */
1779 { 0x72 }, /* TREBLE */
1780 { 0x72 }, /* BASS */
1781 { 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 }, /* MIXER_L */
1782 { 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 }, /* MIXER_R */
1783 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1784 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1785 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1786 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1787 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1788 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1789 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1790 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1791 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1792 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1793 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1794 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1795 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1796 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1797 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1798 { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */
1799 { 0, 0, 0 }, /* LLB_GAIN */
1800 { 0, 0, 0 }, /* RLB_GAIN */
1801 { DEQ_ACR_ADM | DEQ_ACR_LRB | DEQ_ACR_INP_B }, /* ACR - right channel of input B is the microphone */
1802 { 2 } /* MCR2 - AllPass mode since we don't use the equalizer anyway */
1803 };
1804
1805 const char tas3004_regsize[] = {
1806 0, /* 0x00 */
1807 sizeof tas3004_initdata.MCR1, /* 0x01 */
1808 sizeof tas3004_initdata.DRC, /* 0x02 */
1809 0, /* 0x03 */
1810 sizeof tas3004_initdata.VOLUME, /* 0x04 */
1811 sizeof tas3004_initdata.TREBLE, /* 0x05 */
1812 sizeof tas3004_initdata.BASS, /* 0x06 */
1813 sizeof tas3004_initdata.MIXER_L, /* 0x07 */
1814 sizeof tas3004_initdata.MIXER_R, /* 0x08 */
1815 0, /* 0x09 */
1816 sizeof tas3004_initdata.LB0, /* 0x0a */
1817 sizeof tas3004_initdata.LB1, /* 0x0b */
1818 sizeof tas3004_initdata.LB2, /* 0x0c */
1819 sizeof tas3004_initdata.LB3, /* 0x0d */
1820 sizeof tas3004_initdata.LB4, /* 0x0e */
1821 sizeof tas3004_initdata.LB5, /* 0x0f */
1822 sizeof tas3004_initdata.LB6, /* 0x10 */
1823 0, /* 0x11 */
1824 0, /* 0x12 */
1825 sizeof tas3004_initdata.RB0, /* 0x13 */
1826 sizeof tas3004_initdata.RB1, /* 0x14 */
1827 sizeof tas3004_initdata.RB2, /* 0x15 */
1828 sizeof tas3004_initdata.RB3, /* 0x16 */
1829 sizeof tas3004_initdata.RB4, /* 0x17 */
1830 sizeof tas3004_initdata.RB5, /* 0x18 */
1831 sizeof tas3004_initdata.RB6, /* 0x19 */
1832 0,0,0,0, 0,0,
1833 0, /* 0x20 */
1834 sizeof tas3004_initdata.LLB, /* 0x21 */
1835 sizeof tas3004_initdata.RLB, /* 0x22 */
1836 sizeof tas3004_initdata.LLB_GAIN, /* 0x23 */
1837 sizeof tas3004_initdata.RLB_GAIN, /* 0x24 */
1838 0,0,0,0, 0,0,0,0, 0,0,0,
1839 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,
1840 sizeof tas3004_initdata.ACR, /* 0x40 */
1841 0, /* 0x41 */
1842 0, /* 0x42 */
1843 sizeof tas3004_initdata.MCR2 /* 0x43 */
1844 };
1845
1846 static int
1847 tas3004_write(struct snapper_softc *sc, u_int reg, const void *data)
1848 {
1849 int size;
1850 static char regblock[sizeof(struct tas3004_reg)+1];
1851
1852 if (sc->sc_i2c == NULL)
1853 return 0;
1854
1855 KASSERT(reg < sizeof tas3004_regsize);
1856 size = tas3004_regsize[reg];
1857 KASSERT(size > 0);
1858
1859 DPRINTF("reg: %x, %d %d\n", reg, size, ((const char*)data)[0]);
1860
1861 regblock[0] = reg;
1862 memcpy(®block[1], data, size);
1863 if (sc->sc_mode == SNAPPER_IS_TAS3001) {
1864 if (reg == DEQ_MIXER_L || reg == DEQ_MIXER_R)
1865 size = 3;
1866 else if (reg == DEQ_DRC || reg == DEQ_ACR ||
1867 reg == DEQ_MCR2) {
1868 /* these registers are not available on TAS3001 */
1869 return 0;
1870 }
1871 }
1872 iic_acquire_bus(sc->sc_i2c, 0);
1873 iic_exec(sc->sc_i2c, I2C_OP_WRITE, sc->sc_deqaddr, regblock, size + 1,
1874 NULL, 0, 0);
1875 iic_release_bus(sc->sc_i2c, 0);
1876
1877 return 0;
1878 }
1879
1880 static int
1881 gpio_read(char *addr)
1882 {
1883
1884 if (*addr & GPIO_DATA)
1885 return 1;
1886 return 0;
1887 }
1888
1889 static void
1890 gpio_write(char *addr, int val)
1891 {
1892 u_int data;
1893
1894 data = GPIO_DDR_OUTPUT;
1895 if (val)
1896 data |= GPIO_DATA;
1897 *addr = data;
1898 __asm volatile ("eieio");
1899 }
1900
1901 #define headphone_active 0 /* XXX OF */
1902 #define amp_active 0 /* XXX OF */
1903
1904 static void
1905 snapper_mute_speaker(struct snapper_softc *sc, int mute)
1906 {
1907 u_int x;
1908
1909 if (amp_mute) {
1910 DPRINTF("ampmute %d --> ", gpio_read(amp_mute));
1911
1912 if (mute)
1913 x = amp_active; /* mute */
1914 else
1915 x = !amp_active; /* unmute */
1916 if (x != gpio_read(amp_mute))
1917 gpio_write(amp_mute, x);
1918
1919 DPRINTF("%d\n", gpio_read(amp_mute));
1920 }
1921 }
1922
1923 static void
1924 snapper_mute_headphone(struct snapper_softc *sc, int mute)
1925 {
1926 u_int x;
1927
1928 if (headphone_mute != NULL) {
1929 DPRINTF("headphonemute %d --> ", gpio_read(headphone_mute));
1930
1931 if (mute)
1932 x = headphone_active; /* mute */
1933 else
1934 x = !headphone_active; /* unmute */
1935 if (x != gpio_read(headphone_mute))
1936 gpio_write(headphone_mute, x);
1937
1938 DPRINTF("%d\n", gpio_read(headphone_mute));
1939 }
1940 }
1941
1942 static int
1943 snapper_cint(void *v)
1944 {
1945 struct snapper_softc *sc;
1946 u_int sense;
1947
1948 if (headphone_detect != NULL) {
1949 sc = v;
1950 sense = *headphone_detect;
1951 DPRINTF("headphone detect = 0x%x\n", sense);
1952
1953 if (((sense & 0x02) >> 1) == headphone_detect_active) {
1954 DPRINTF("headphone is inserted\n");
1955 snapper_mute_speaker(sc, 1);
1956 snapper_mute_headphone(sc, 0);
1957 sc->sc_output_mask = 1 << 1;
1958 } else {
1959 DPRINTF("headphone is NOT inserted\n");
1960 snapper_mute_speaker(sc, 0);
1961 snapper_mute_headphone(sc, 1);
1962 sc->sc_output_mask = 1 << 0;
1963 }
1964 }
1965
1966 return 1;
1967 }
1968
1969 #define reset_active 0 /* XXX OF */
1970
1971 #define DEQ_WRITE(sc, reg, addr) \
1972 if (tas3004_write(sc, reg, addr)) goto err
1973
1974 static int
1975 tas3004_init(struct snapper_softc *sc)
1976 {
1977
1978 /* No reset port. Nothing to do. */
1979 if (audio_hw_reset == NULL)
1980 goto noreset;
1981
1982 /* Reset TAS3004. */
1983 gpio_write(audio_hw_reset, !reset_active); /* Negate RESET */
1984 delay(100000); /* XXX Really needed? */
1985
1986 gpio_write(audio_hw_reset, reset_active); /* Assert RESET */
1987 delay(1);
1988
1989 gpio_write(audio_hw_reset, !reset_active); /* Negate RESET */
1990 delay(10000);
1991
1992 noreset:
1993 DEQ_WRITE(sc, DEQ_LB0, tas3004_initdata.LB0);
1994 DEQ_WRITE(sc, DEQ_LB1, tas3004_initdata.LB1);
1995 DEQ_WRITE(sc, DEQ_LB2, tas3004_initdata.LB2);
1996 DEQ_WRITE(sc, DEQ_LB3, tas3004_initdata.LB3);
1997 DEQ_WRITE(sc, DEQ_LB4, tas3004_initdata.LB4);
1998 DEQ_WRITE(sc, DEQ_LB5, tas3004_initdata.LB5);
1999 DEQ_WRITE(sc, DEQ_LB6, tas3004_initdata.LB6);
2000 DEQ_WRITE(sc, DEQ_RB0, tas3004_initdata.RB0);
2001 DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1);
2002 DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1);
2003 DEQ_WRITE(sc, DEQ_RB2, tas3004_initdata.RB2);
2004 DEQ_WRITE(sc, DEQ_RB3, tas3004_initdata.RB3);
2005 DEQ_WRITE(sc, DEQ_RB4, tas3004_initdata.RB4);
2006 DEQ_WRITE(sc, DEQ_RB5, tas3004_initdata.RB5);
2007 DEQ_WRITE(sc, DEQ_MCR1, tas3004_initdata.MCR1);
2008 DEQ_WRITE(sc, DEQ_MCR2, tas3004_initdata.MCR2);
2009 DEQ_WRITE(sc, DEQ_DRC, tas3004_initdata.DRC);
2010 DEQ_WRITE(sc, DEQ_VOLUME, tas3004_initdata.VOLUME);
2011 DEQ_WRITE(sc, DEQ_TREBLE, tas3004_initdata.TREBLE);
2012 DEQ_WRITE(sc, DEQ_BASS, tas3004_initdata.BASS);
2013 DEQ_WRITE(sc, DEQ_MIXER_L, tas3004_initdata.MIXER_L);
2014 DEQ_WRITE(sc, DEQ_MIXER_R, tas3004_initdata.MIXER_R);
2015 DEQ_WRITE(sc, DEQ_LLB, tas3004_initdata.LLB);
2016 DEQ_WRITE(sc, DEQ_RLB, tas3004_initdata.RLB);
2017 DEQ_WRITE(sc, DEQ_LLB_GAIN, tas3004_initdata.LLB_GAIN);
2018 DEQ_WRITE(sc, DEQ_RLB_GAIN, tas3004_initdata.RLB_GAIN);
2019 DEQ_WRITE(sc, DEQ_ACR, tas3004_initdata.ACR);
2020
2021 return 0;
2022 err:
2023 printf("tas3004_init: error\n");
2024 return -1;
2025 }
2026
2027 static void
2028 snapper_init(struct snapper_softc *sc, int node)
2029 {
2030 int gpio;
2031 int headphone_detect_intr, headphone_detect_intrtype;
2032 uint32_t gpio_base, reg[1];
2033 #ifdef SNAPPER_DEBUG
2034 char fcr[32];
2035
2036 snprintb(fcr, sizeof(fcr), FCR3C_BITMASK, obio_read_4(KEYLARGO_FCR1));
2037 printf("FCR(0x3c) 0x%s\n", fcr);
2038 #endif
2039 headphone_detect_intr = -1;
2040
2041 gpio = of_getnode_byname(OF_parent(node), "gpio");
2042 if (OF_getprop(gpio, "reg", reg, sizeof(reg)) == sizeof(reg))
2043 gpio_base = reg[0];
2044 else
2045 gpio_base = 0;
2046 DPRINTF(" /gpio 0x%x@0x%x\n", (unsigned)gpio, gpio_base);
2047
2048 gpio = OF_child(gpio);
2049 while (gpio) {
2050 char name[64], audio_gpio[64];
2051 int intr[2];
2052 char *addr;
2053
2054 memset(name, 0, sizeof name);
2055 memset(audio_gpio, 0, sizeof audio_gpio);
2056 addr = 0;
2057 OF_getprop(gpio, "name", name, sizeof name);
2058 OF_getprop(gpio, "audio-gpio", audio_gpio, sizeof audio_gpio);
2059 if (OF_getprop(gpio, "AAPL,address", &addr, sizeof addr) == -1)
2060 if (OF_getprop(gpio, "reg", reg, sizeof reg)
2061 == sizeof reg)
2062 addr = (char *)sc->sc_baseaddr +
2063 gpio_base + reg[0];
2064 DPRINTF(" 0x%x %s %s\n", gpio, name, audio_gpio);
2065
2066 /* gpio5 */
2067 if (strcmp(audio_gpio, "headphone-mute") == 0 ||
2068 strcmp(name, "headphone-mute") == 0)
2069 headphone_mute = addr;
2070 /* gpio6 */
2071 if (strcmp(audio_gpio, "amp-mute") == 0 ||
2072 strcmp(name, "amp-mute") == 0)
2073 amp_mute = addr;
2074 /* extint-gpio15 */
2075 if (strcmp(audio_gpio, "headphone-detect") == 0 ||
2076 strcmp(name, "headphone-detect") == 0) {
2077 headphone_detect = addr;
2078 OF_getprop(gpio, "audio-gpio-active-state",
2079 &headphone_detect_active, 4);
2080 if (OF_getprop(gpio, "interrupts", intr, 8) == 8) {
2081 headphone_detect_intr = intr[0];
2082 headphone_detect_intrtype = intr[1];
2083 }
2084 }
2085 /* gpio11 (keywest-11) */
2086 if (strcmp(audio_gpio, "audio-hw-reset") == 0 ||
2087 strcmp(name, "hw-reset") == 0)
2088 audio_hw_reset = addr;
2089
2090 gpio = OF_peer(gpio);
2091 }
2092
2093 DPRINTF(" headphone-mute %p\n", headphone_mute);
2094 DPRINTF(" amp-mute %p\n", amp_mute);
2095 DPRINTF(" headphone-detect %p\n", headphone_detect);
2096 DPRINTF(" headphone-detect active %x\n", headphone_detect_active);
2097 DPRINTF(" headphone-detect intr %x\n", headphone_detect_intr);
2098 DPRINTF(" audio-hw-reset %p\n", audio_hw_reset);
2099
2100 if (headphone_detect_intr != -1)
2101 intr_establish(headphone_detect_intr, IST_EDGE, IPL_AUDIO,
2102 snapper_cint, sc);
2103
2104 sc->sc_rate = 44100; /* default rate */
2105 sc->sc_bitspersample = 16;
2106
2107 /* Enable headphone interrupt? */
2108 if (headphone_detect != NULL) {
2109 *headphone_detect |= 0x80;
2110 __asm volatile ("eieio");
2111 }
2112
2113 /* i2c_set_port(port); */
2114
2115 if (tas3004_init(sc))
2116 return;
2117
2118 /* Update headphone status. */
2119 snapper_cint(sc);
2120
2121 snapper_set_volume(sc, 128, 128);
2122 snapper_set_bass(sc, 128);
2123 snapper_set_treble(sc, 128);
2124
2125 /* Record source defaults to microphone. This reflects the
2126 * default value for the ACR (see tas3004_initdata).
2127 */
2128 sc->sc_record_source = 1 << 0;
2129
2130 /* We mute the analog input for now */
2131 sc->mixer[0] = 128;
2132 sc->mixer[1] = 128;
2133 sc->mixer[2] = 0;
2134 sc->mixer[3] = 128;
2135 sc->mixer[4] = 128;
2136 sc->mixer[5] = 0;
2137 snapper_write_mixers(sc);
2138 }
2139