Home | History | Annotate | Line # | Download | only in dev
snapper.c revision 1.5
      1 /*	$NetBSD: snapper.c,v 1.5 2005/01/25 19:05:22 briggs Exp $	*/
      2 /*	Id: snapper.c,v 1.11 2002/10/31 17:42:13 tsubai Exp	*/
      3 
      4 /*-
      5  * Copyright (c) 2002 Tsubai Masanari.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     27  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     28  */
     29 
     30 /*
     31  * Datasheet is available from
     32  * http://www.ti.com/sc/docs/products/analog/tas3004.html
     33  */
     34 
     35 #include <sys/param.h>
     36 #include <sys/audioio.h>
     37 #include <sys/device.h>
     38 #include <sys/systm.h>
     39 
     40 #include <dev/auconv.h>
     41 #include <dev/audio_if.h>
     42 #include <dev/mulaw.h>
     43 #include <dev/ofw/openfirm.h>
     44 #include <macppc/dev/dbdma.h>
     45 
     46 #include <uvm/uvm_extern.h>
     47 
     48 #include <machine/autoconf.h>
     49 #include <machine/pio.h>
     50 
     51 #ifdef SNAPPER_DEBUG
     52 # define DPRINTF printf
     53 #else
     54 # define DPRINTF while (0) printf
     55 #endif
     56 
     57 struct snapper_softc {
     58 	struct device sc_dev;
     59 	int sc_flags;
     60 	int sc_node;
     61 
     62 	void (*sc_ointr)(void *);	/* dma completion intr handler */
     63 	void *sc_oarg;			/* arg for sc_ointr() */
     64 	int sc_opages;			/* # of output pages */
     65 
     66 	void (*sc_iintr)(void *);	/* dma completion intr handler */
     67 	void *sc_iarg;			/* arg for sc_iintr() */
     68 
     69 	u_int sc_record_source;		/* recording source mask */
     70 	u_int sc_output_mask;		/* output source mask */
     71 
     72 	u_char *sc_reg;
     73 	struct device *sc_i2c;
     74 
     75 	u_int sc_vol_l;
     76 	u_int sc_vol_r;
     77 
     78 	dbdma_regmap_t *sc_odma;
     79 	dbdma_regmap_t *sc_idma;
     80 	unsigned char	dbdma_cmdspace[sizeof(struct dbdma_command) * 40 + 15];
     81 	struct dbdma_command *sc_odmacmd;
     82 	struct dbdma_command *sc_idmacmd;
     83 };
     84 
     85 int snapper_match(struct device *, struct cfdata *, void *);
     86 void snapper_attach(struct device *, struct device *, void *);
     87 void snapper_defer(struct device *);
     88 int snapper_intr(void *);
     89 void snapper_close(void *);
     90 int snapper_query_encoding(void *, struct audio_encoding *);
     91 int snapper_set_params(void *, int, int, audio_params_t *,
     92     audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
     93 int snapper_round_blocksize(void *, int, int, const audio_params_t *);
     94 int snapper_halt_output(void *);
     95 int snapper_halt_input(void *);
     96 int snapper_getdev(void *, struct audio_device *);
     97 int snapper_set_port(void *, mixer_ctrl_t *);
     98 int snapper_get_port(void *, mixer_ctrl_t *);
     99 int snapper_query_devinfo(void *, mixer_devinfo_t *);
    100 size_t snapper_round_buffersize(void *, int, size_t);
    101 paddr_t snapper_mappage(void *, void *, off_t, int);
    102 int snapper_get_props(void *);
    103 int snapper_trigger_output(void *, void *, void *, int, void (*)(void *),
    104     void *, const audio_params_t *);
    105 int snapper_trigger_input(void *, void *, void *, int, void (*)(void *),
    106     void *, const audio_params_t *);
    107 void snapper_set_volume(struct snapper_softc *, int, int);
    108 int snapper_set_rate(struct snapper_softc *, u_int);
    109 
    110 int tas3004_write(struct snapper_softc *, u_int, const void *);
    111 static int gpio_read(char *);
    112 static void gpio_write(char *, int);
    113 void snapper_mute_speaker(struct snapper_softc *, int);
    114 void snapper_mute_headphone(struct snapper_softc *, int);
    115 int snapper_cint(void *);
    116 int tas3004_init(struct snapper_softc *);
    117 void snapper_init(struct snapper_softc *, int);
    118 
    119 /* XXX */
    120 int ki2c_setmode(struct device *, int);
    121 int ki2c_write(struct device *, int, int, const void *, int);
    122 void ki2c_writereg(struct device *, int, u_int);
    123 
    124 
    125 struct cfattach snapper_ca = {
    126 	"snapper", {}, sizeof(struct snapper_softc),
    127 	snapper_match, snapper_attach
    128 };
    129 
    130 const struct audio_hw_if snapper_hw_if = {
    131 	NULL,			/* open */
    132 	snapper_close,
    133 	NULL,
    134 	snapper_query_encoding,
    135 	snapper_set_params,
    136 	snapper_round_blocksize,
    137 	NULL,
    138 	NULL,
    139 	NULL,
    140 	NULL,
    141 	NULL,
    142 	snapper_halt_output,
    143 	snapper_halt_input,
    144 	NULL,
    145 	snapper_getdev,
    146 	NULL,
    147 	snapper_set_port,
    148 	snapper_get_port,
    149 	snapper_query_devinfo,
    150 	NULL,
    151 	NULL,
    152 	snapper_round_buffersize,
    153 	snapper_mappage,
    154 	snapper_get_props,
    155 	snapper_trigger_output,
    156 	snapper_trigger_input,
    157 	NULL
    158 };
    159 
    160 struct audio_device snapper_device = {
    161 	"SNAPPER",
    162 	"",
    163 	"snapper"
    164 };
    165 
    166 #define SNAPPER_NFORMATS	1
    167 static const struct audio_format snapper_formats[SNAPPER_NFORMATS] = {
    168 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16,
    169 	 2, AUFMT_STEREO, 3, {8000, 44100, 48000}},
    170 };
    171 
    172 static u_char *amp_mute;
    173 static u_char *headphone_mute;
    174 static u_char *audio_hw_reset;
    175 static u_char *headphone_detect;
    176 static int headphone_detect_active;
    177 
    178 
    179 /* I2S registers */
    180 #define I2S_INT		0x00
    181 #define I2S_FORMAT	0x10
    182 #define I2S_FRAMECOUNT	0x40
    183 #define I2S_FRAMEMATCH	0x50
    184 #define I2S_WORDSIZE	0x60
    185 
    186 /* TAS3004 registers */
    187 #define DEQ_MCR1	0x01	/* Main control register 1 (1byte) */
    188 #define DEQ_DRC		0x02	/* Dynamic range compression (6bytes?) */
    189 #define DEQ_VOLUME	0x04	/* Volume (6bytes) */
    190 #define DEQ_TREBLE	0x05	/* Treble control (1byte) */
    191 #define DEQ_BASS	0x06	/* Bass control (1byte) */
    192 #define DEQ_MIXER_L	0x07	/* Mixer left gain (9bytes) */
    193 #define DEQ_MIXER_R	0x08	/* Mixer right gain (9bytes) */
    194 #define DEQ_LB0		0x0a	/* Left biquad 0 (15bytes) */
    195 #define DEQ_LB1		0x0b	/* Left biquad 1 (15bytes) */
    196 #define DEQ_LB2		0x0c	/* Left biquad 2 (15bytes) */
    197 #define DEQ_LB3		0x0d	/* Left biquad 3 (15bytes) */
    198 #define DEQ_LB4		0x0e	/* Left biquad 4 (15bytes) */
    199 #define DEQ_LB5		0x0f	/* Left biquad 5 (15bytes) */
    200 #define DEQ_LB6		0x10	/* Left biquad 6 (15bytes) */
    201 #define DEQ_RB0		0x13	/* Right biquad 0 (15bytes) */
    202 #define DEQ_RB1		0x14	/* Right biquad 1 (15bytes) */
    203 #define DEQ_RB2		0x15	/* Right biquad 2 (15bytes) */
    204 #define DEQ_RB3		0x16	/* Right biquad 3 (15bytes) */
    205 #define DEQ_RB4		0x17	/* Right biquad 4 (15bytes) */
    206 #define DEQ_RB5		0x18	/* Right biquad 5 (15bytes) */
    207 #define DEQ_RB6		0x19	/* Right biquad 6 (15bytes) */
    208 #define DEQ_LLB		0x21	/* Left loudness biquad (15bytes) */
    209 #define DEQ_RLB		0x22	/* Right loudness biquad (15bytes) */
    210 #define DEQ_LLB_GAIN	0x23	/* Left loudness biquad gain (3bytes) */
    211 #define DEQ_RLB_GAIN	0x24	/* Right loudness biquad gain (3bytes) */
    212 #define DEQ_ACR		0x40	/* Analog control register (1byte) */
    213 #define DEQ_MCR2	0x43	/* Main control register 2 (1byte) */
    214 
    215 #define DEQ_MCR1_FL	0x80	/* Fast load */
    216 #define DEQ_MCR1_SC	0x40	/* SCLK frequency */
    217 #define  DEQ_MCR1_SC_32	0x00	/*  32fs */
    218 #define  DEQ_MCR1_SC_64	0x40	/*  64fs */
    219 #define DEQ_MCR1_SM	0x30	/* Output serial port mode */
    220 #define  DEQ_MCR1_SM_L	0x00	/*  Left justified */
    221 #define  DEQ_MCR1_SM_R	0x10	/*  Right justified */
    222 #define  DEQ_MCR1_SM_I2S 0x20	/*  I2S */
    223 #define DEQ_MCR1_W	0x03	/* Serial port word length */
    224 #define  DEQ_MCR1_W_16	0x00	/*  16 bit */
    225 #define  DEQ_MCR1_W_18	0x01	/*  18 bit */
    226 #define  DEQ_MCR1_W_20	0x02	/*  20 bit */
    227 
    228 #define DEQ_MCR2_DL	0x80	/* Download */
    229 #define DEQ_MCR2_AP	0x02	/* All pass mode */
    230 
    231 #define DEQ_ACR_ADM	0x80	/* ADC output mode */
    232 #define DEQ_ACR_LRB	0x40	/* Select B input */
    233 #define DEQ_ACR_DM	0x0c	/* De-emphasis control */
    234 #define  DEQ_ACR_DM_OFF	0x00	/*  off */
    235 #define  DEQ_ACR_DM_48	0x04	/*  fs = 48kHz */
    236 #define  DEQ_ACR_DM_44	0x08	/*  fs = 44.1kHz */
    237 #define DEQ_ACR_INP	0x02	/* Analog input select */
    238 #define  DEQ_ACR_INP_A	0x00	/*  A */
    239 #define  DEQ_ACR_INP_B	0x02	/*  B */
    240 #define DEQ_ACR_APD	0x01	/* Analog power down */
    241 
    242 struct tas3004_reg {
    243 	u_char MCR1[1];
    244 	u_char DRC[6];
    245 	u_char VOLUME[6];
    246 	u_char TREBLE[1];
    247 	u_char BASS[1];
    248 	u_char MIXER_L[9];
    249 	u_char MIXER_R[9];
    250 	u_char LB0[15];
    251 	u_char LB1[15];
    252 	u_char LB2[15];
    253 	u_char LB3[15];
    254 	u_char LB4[15];
    255 	u_char LB5[15];
    256 	u_char LB6[15];
    257 	u_char RB0[15];
    258 	u_char RB1[15];
    259 	u_char RB2[15];
    260 	u_char RB3[15];
    261 	u_char RB4[15];
    262 	u_char RB5[15];
    263 	u_char RB6[15];
    264 	u_char LLB[15];
    265 	u_char RLB[15];
    266 	u_char LLB_GAIN[3];
    267 	u_char RLB_GAIN[3];
    268 	u_char ACR[1];
    269 	u_char MCR2[1];
    270 };
    271 
    272 #define GPIO_OUTSEL	0xf0	/* Output select */
    273 		/*	0x00	GPIO bit0 is output
    274 			0x10	media-bay power
    275 			0x20	reserved
    276 			0x30	MPIC */
    277 
    278 #define GPIO_ALTOE	0x08	/* Alternate output enable */
    279 		/*	0x00	Use DDR
    280 			0x08	Use output select */
    281 
    282 #define GPIO_DDR	0x04	/* Data direction */
    283 #define GPIO_DDR_OUTPUT	0x04	/* Output */
    284 #define GPIO_DDR_INPUT	0x00	/* Input */
    285 
    286 #define GPIO_LEVEL	0x02	/* Pin level (RO) */
    287 
    288 #define	GPIO_DATA	0x01	/* Data */
    289 
    290 int
    291 snapper_match(struct device *parent, struct cfdata *match, void *aux)
    292 {
    293 	struct confargs *ca;
    294 	int soundbus, soundchip;
    295 	char compat[32];
    296 
    297 	ca = aux;
    298 	if (strcmp(ca->ca_name, "i2s") != 0)
    299 		return 0;
    300 
    301 	if ((soundbus = OF_child(ca->ca_node)) == 0 ||
    302 	    (soundchip = OF_child(soundbus)) == 0)
    303 		return 0;
    304 
    305 	bzero(compat, sizeof compat);
    306 	OF_getprop(soundchip, "compatible", compat, sizeof compat);
    307 
    308 	if (strcmp(compat, "snapper") != 0)
    309 		return 0;
    310 
    311 	return 1;
    312 }
    313 
    314 void
    315 snapper_attach(struct device *parent, struct device *self, void *aux)
    316 {
    317 	struct snapper_softc *sc;
    318 	struct confargs *ca;
    319 	unsigned long v;
    320 	int cirq, oirq, iirq, cirq_type, oirq_type, iirq_type;
    321 	int soundbus, intr[6];
    322 
    323 	sc = (struct snapper_softc *)self;
    324 	ca = aux;
    325 
    326 	v = (((unsigned long) &sc->dbdma_cmdspace[0]) + 0xf) & ~0xf;
    327 	sc->sc_odmacmd = (struct dbdma_command *) v;
    328 	sc->sc_idmacmd = sc->sc_odmacmd + 20;
    329 
    330 #ifdef DIAGNOSTIC
    331 	if ((vaddr_t)sc->sc_odmacmd & 0x0f) {
    332 		printf(": bad dbdma alignment\n");
    333 		return;
    334 	}
    335 #endif
    336 
    337 	ca->ca_reg[0] += ca->ca_baseaddr;
    338 	ca->ca_reg[2] += ca->ca_baseaddr;
    339 	ca->ca_reg[4] += ca->ca_baseaddr;
    340 
    341 	sc->sc_node = ca->ca_node;
    342 	sc->sc_reg = (void *)ca->ca_reg[0];
    343 	sc->sc_odma = (void *)ca->ca_reg[2];
    344 	sc->sc_idma = (void *)ca->ca_reg[4];
    345 
    346 	soundbus = OF_child(ca->ca_node);
    347 	OF_getprop(soundbus, "interrupts", intr, sizeof intr);
    348 	cirq = intr[0];
    349 	oirq = intr[2];
    350 	iirq = intr[4];
    351 	cirq_type = intr[1] ? IST_LEVEL : IST_EDGE;
    352 	oirq_type = intr[3] ? IST_LEVEL : IST_EDGE;
    353 	iirq_type = intr[5] ? IST_LEVEL : IST_EDGE;
    354 
    355 	/* intr_establish(cirq, cirq_type, IPL_AUDIO, snapper_intr, sc); */
    356 	intr_establish(oirq, oirq_type, IPL_AUDIO, snapper_intr, sc);
    357 	/* intr_establish(iirq, iirq_type, IPL_AUDIO, snapper_intr, sc); */
    358 
    359 	printf(": irq %d,%d,%d\n", cirq, oirq, iirq);
    360 
    361 	config_interrupts(self, snapper_defer);
    362 }
    363 
    364 void
    365 snapper_defer(struct device *dev)
    366 {
    367 	struct snapper_softc *sc;
    368 	struct device *dv;
    369 
    370 	sc = (struct snapper_softc *)dev;
    371 	for (dv = alldevs.tqh_first; dv; dv=dv->dv_list.tqe_next)
    372 		if (strncmp(dv->dv_xname, "ki2c", 4) == 0 &&
    373 		    strncmp(dv->dv_parent->dv_xname, "obio", 4) == 0)
    374 			sc->sc_i2c = dv;
    375 	if (sc->sc_i2c == NULL) {
    376 		printf("%s: unable to find i2c\n", sc->sc_dev.dv_xname);
    377 		return;
    378 	}
    379 
    380 	/* XXX If i2c was failed to attach, what should we do? */
    381 
    382 	audio_attach_mi(&snapper_hw_if, sc, &sc->sc_dev);
    383 
    384 	/* ki2c_setmode(sc->sc_i2c, I2C_STDSUBMODE); */
    385 	snapper_init(sc, sc->sc_node);
    386 }
    387 
    388 int
    389 snapper_intr(void *v)
    390 {
    391 	struct snapper_softc *sc;
    392 	struct dbdma_command *cmd;
    393 	int count;
    394 	int status;
    395 
    396 	sc = v;
    397 	cmd = sc->sc_odmacmd;
    398 	count = sc->sc_opages;
    399 	/* Fill used buffer(s). */
    400 	while (count-- > 0) {
    401 		if ((dbdma_ld16(&cmd->d_command) & 0x30) == 0x30) {
    402 			status = dbdma_ld16(&cmd->d_status);
    403 			cmd->d_status = 0;
    404 			if (status)	/* status == 0x8400 */
    405 				if (sc->sc_ointr)
    406 					(*sc->sc_ointr)(sc->sc_oarg);
    407 		}
    408 		cmd++;
    409 	}
    410 
    411 	return 1;
    412 }
    413 
    414 /*
    415  * Close function is called at splaudio().
    416  */
    417 void
    418 snapper_close(void *h)
    419 {
    420 	struct snapper_softc *sc;
    421 
    422 	sc = h;
    423 	snapper_halt_output(sc);
    424 	snapper_halt_input(sc);
    425 
    426 	sc->sc_ointr = 0;
    427 	sc->sc_iintr = 0;
    428 }
    429 
    430 int
    431 snapper_query_encoding(void *h, struct audio_encoding *ae)
    432 {
    433 
    434 	ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
    435 	switch (ae->index) {
    436 	case 0:
    437 		strcpy(ae->name, AudioEslinear);
    438 		ae->encoding = AUDIO_ENCODING_SLINEAR;
    439 		ae->precision = 16;
    440 		ae->flags = 0;
    441 		return 0;
    442 	case 1:
    443 		strcpy(ae->name, AudioEslinear_be);
    444 		ae->encoding = AUDIO_ENCODING_SLINEAR_BE;
    445 		ae->precision = 16;
    446 		ae->flags = 0;
    447 		return 0;
    448 	case 2:
    449 		strcpy(ae->name, AudioEslinear_le);
    450 		ae->encoding = AUDIO_ENCODING_SLINEAR_LE;
    451 		ae->precision = 16;
    452 		return 0;
    453 	case 3:
    454 		strcpy(ae->name, AudioEulinear_be);
    455 		ae->encoding = AUDIO_ENCODING_ULINEAR_BE;
    456 		ae->precision = 16;
    457 		return 0;
    458 	case 4:
    459 		strcpy(ae->name, AudioEulinear_le);
    460 		ae->encoding = AUDIO_ENCODING_ULINEAR_LE;
    461 		ae->precision = 16;
    462 		return 0;
    463 	case 5:
    464 		strcpy(ae->name, AudioEmulaw);
    465 		ae->encoding = AUDIO_ENCODING_ULAW;
    466 		ae->precision = 8;
    467 		return 0;
    468 	case 6:
    469 		strcpy(ae->name, AudioEalaw);
    470 		ae->encoding = AUDIO_ENCODING_ALAW;
    471 		ae->precision = 8;
    472 		return 0;
    473 	default:
    474 		return EINVAL;
    475 	}
    476 }
    477 
    478 int
    479 snapper_set_params(void *h, int setmode, int usemode,
    480 		   audio_params_t *play, audio_params_t *rec,
    481 		   stream_filter_list_t *pfil, stream_filter_list_t *rfil)
    482 {
    483 	struct snapper_softc *sc;
    484 	audio_params_t *p;
    485 	stream_filter_list_t *fil;
    486 	int mode;
    487 
    488 	sc = h;
    489 	p = NULL;
    490 
    491 	/*
    492 	 * This device only has one clock, so make the sample rates match.
    493 	 */
    494 	if (play->sample_rate != rec->sample_rate &&
    495 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
    496 		if (setmode == AUMODE_PLAY) {
    497 			rec->sample_rate = play->sample_rate;
    498 			setmode |= AUMODE_RECORD;
    499 		} else if (setmode == AUMODE_RECORD) {
    500 			play->sample_rate = rec->sample_rate;
    501 			setmode |= AUMODE_PLAY;
    502 		} else
    503 			return EINVAL;
    504 	}
    505 
    506 	for (mode = AUMODE_RECORD; mode != -1;
    507 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
    508 		if ((setmode & mode) == 0)
    509 			continue;
    510 
    511 		p = mode == AUMODE_PLAY ? play : rec;
    512 		if (p->sample_rate < 4000 || p->sample_rate > 50000)
    513 			return EINVAL;
    514 
    515 		fil = mode == AUMODE_PLAY ? pfil : rfil;
    516 		if (auconv_set_converter(snapper_formats, SNAPPER_NFORMATS,
    517 					 mode, p, TRUE, fil) < 0)
    518 			return EINVAL;
    519 		if (fil->req_size > 0)
    520 			p = &fil->filters[0].param;
    521 	}
    522 
    523 	/* Set the speed. p points HW encoding. */
    524 	if (snapper_set_rate(sc, p->sample_rate))
    525 		return EINVAL;
    526 
    527 	return 0;
    528 }
    529 
    530 int
    531 snapper_round_blocksize(void *h, int size, int mode,
    532 			const audio_params_t *param)
    533 {
    534 
    535 	if (size < NBPG)
    536 		size = NBPG;
    537 	return size & ~PGOFSET;
    538 }
    539 
    540 int
    541 snapper_halt_output(void *h)
    542 {
    543 	struct snapper_softc *sc;
    544 
    545 	sc = h;
    546 	dbdma_stop(sc->sc_odma);
    547 	dbdma_reset(sc->sc_odma);
    548 	return 0;
    549 }
    550 
    551 int
    552 snapper_halt_input(void *h)
    553 {
    554 	struct snapper_softc *sc;
    555 
    556 	sc = h;
    557 	dbdma_stop(sc->sc_idma);
    558 	dbdma_reset(sc->sc_idma);
    559 	return 0;
    560 }
    561 
    562 int
    563 snapper_getdev(void *h, struct audio_device *retp)
    564 {
    565 
    566 	*retp = snapper_device;
    567 	return 0;
    568 }
    569 
    570 enum {
    571 	SNAPPER_MONITOR_CLASS,
    572 	SNAPPER_OUTPUT_CLASS,
    573 	SNAPPER_RECORD_CLASS,
    574 	SNAPPER_OUTPUT_SELECT,
    575 	SNAPPER_VOL_OUTPUT,
    576 	SNAPPER_INPUT_SELECT,
    577 	SNAPPER_VOL_INPUT,
    578 	SNAPPER_ENUM_LAST
    579 };
    580 
    581 int
    582 snapper_set_port(void *h, mixer_ctrl_t *mc)
    583 {
    584 	struct snapper_softc *sc;
    585 	int l, r;
    586 
    587 	DPRINTF("snapper_set_port dev = %d, type = %d\n", mc->dev, mc->type);
    588 	sc = h;
    589 	l = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
    590 	r = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
    591 
    592 	switch (mc->dev) {
    593 	case SNAPPER_OUTPUT_SELECT:
    594 		/* No change necessary? */
    595 		if (mc->un.mask == sc->sc_output_mask)
    596 			return 0;
    597 
    598 		snapper_mute_speaker(sc, 1);
    599 		snapper_mute_headphone(sc, 1);
    600 		if (mc->un.mask & 1 << 0)
    601 			snapper_mute_speaker(sc, 0);
    602 		if (mc->un.mask & 1 << 1)
    603 			snapper_mute_headphone(sc, 0);
    604 
    605 		sc->sc_output_mask = mc->un.mask;
    606 		return 0;
    607 
    608 	case SNAPPER_VOL_OUTPUT:
    609 		snapper_set_volume(sc, l, r);
    610 		return 0;
    611 
    612 	case SNAPPER_INPUT_SELECT:
    613 		/* no change necessary? */
    614 		if (mc->un.mask == sc->sc_record_source)
    615 			return 0;
    616 		switch (mc->un.mask) {
    617 		case 1 << 0: /* CD */
    618 		case 1 << 1: /* microphone */
    619 		case 1 << 2: /* line in */
    620 			/* XXX TO BE DONE */
    621 			break;
    622 		default: /* invalid argument */
    623 			return EINVAL;
    624 		}
    625 		sc->sc_record_source = mc->un.mask;
    626 		return 0;
    627 
    628 	case SNAPPER_VOL_INPUT:
    629 		/* XXX TO BE DONE */
    630 		return 0;
    631 	}
    632 
    633 	return ENXIO;
    634 }
    635 
    636 int
    637 snapper_get_port(void *h, mixer_ctrl_t *mc)
    638 {
    639 	struct snapper_softc *sc;
    640 
    641 	DPRINTF("snapper_get_port dev = %d, type = %d\n", mc->dev, mc->type);
    642 	sc = h;
    643 	switch (mc->dev) {
    644 	case SNAPPER_OUTPUT_SELECT:
    645 		mc->un.mask = sc->sc_output_mask;
    646 		return 0;
    647 
    648 	case SNAPPER_VOL_OUTPUT:
    649 		mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_vol_l;
    650 		mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_vol_r;
    651 		return 0;
    652 
    653 	case SNAPPER_INPUT_SELECT:
    654 		mc->un.mask = sc->sc_record_source;
    655 		return 0;
    656 
    657 	case SNAPPER_VOL_INPUT:
    658 		/* XXX TO BE DONE */
    659 		mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 0;
    660 		mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 0;
    661 		return 0;
    662 
    663 	default:
    664 		return ENXIO;
    665 	}
    666 
    667 	return 0;
    668 }
    669 
    670 int
    671 snapper_query_devinfo(void *h, mixer_devinfo_t *dip)
    672 {
    673 	switch (dip->index) {
    674 
    675 	case SNAPPER_OUTPUT_SELECT:
    676 		dip->mixer_class = SNAPPER_MONITOR_CLASS;
    677 		strcpy(dip->label.name, AudioNoutput);
    678 		dip->type = AUDIO_MIXER_SET;
    679 		dip->prev = dip->next = AUDIO_MIXER_LAST;
    680 		dip->un.s.num_mem = 2;
    681 		strcpy(dip->un.s.member[0].label.name, AudioNspeaker);
    682 		dip->un.s.member[0].mask = 1 << 0;
    683 		strcpy(dip->un.s.member[1].label.name, AudioNheadphone);
    684 		dip->un.s.member[1].mask = 1 << 1;
    685 		return 0;
    686 
    687 	case SNAPPER_VOL_OUTPUT:
    688 		dip->mixer_class = SNAPPER_MONITOR_CLASS;
    689 		strcpy(dip->label.name, AudioNmaster);
    690 		dip->type = AUDIO_MIXER_VALUE;
    691 		dip->prev = dip->next = AUDIO_MIXER_LAST;
    692 		dip->un.v.num_channels = 2;
    693 		strcpy(dip->un.v.units.name, AudioNvolume);
    694 		return 0;
    695 
    696 	case SNAPPER_INPUT_SELECT:
    697 		dip->mixer_class = SNAPPER_RECORD_CLASS;
    698 		strcpy(dip->label.name, AudioNsource);
    699 		dip->type = AUDIO_MIXER_SET;
    700 		dip->prev = dip->next = AUDIO_MIXER_LAST;
    701 		dip->un.s.num_mem = 3;
    702 		strcpy(dip->un.s.member[0].label.name, AudioNcd);
    703 		dip->un.s.member[0].mask = 1 << 0;
    704 		strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
    705 		dip->un.s.member[1].mask = 1 << 1;
    706 		strcpy(dip->un.s.member[2].label.name, AudioNline);
    707 		dip->un.s.member[2].mask = 1 << 2;
    708 		return 0;
    709 
    710 	case SNAPPER_VOL_INPUT:
    711 		dip->mixer_class = SNAPPER_RECORD_CLASS;
    712 		strcpy(dip->label.name, AudioNrecord);
    713 		dip->type = AUDIO_MIXER_VALUE;
    714 		dip->prev = dip->next = AUDIO_MIXER_LAST;
    715 		dip->un.v.num_channels = 2;
    716 		strcpy(dip->un.v.units.name, AudioNvolume);
    717 		return 0;
    718 
    719 	case SNAPPER_MONITOR_CLASS:
    720 		dip->mixer_class = SNAPPER_MONITOR_CLASS;
    721 		strcpy(dip->label.name, AudioCmonitor);
    722 		dip->type = AUDIO_MIXER_CLASS;
    723 		dip->next = dip->prev = AUDIO_MIXER_LAST;
    724 		return 0;
    725 
    726 	case SNAPPER_OUTPUT_CLASS:
    727 		dip->mixer_class = SNAPPER_OUTPUT_CLASS;
    728 		strcpy(dip->label.name, AudioCoutputs);
    729 		dip->type = AUDIO_MIXER_CLASS;
    730 		dip->next = dip->prev = AUDIO_MIXER_LAST;
    731 		return 0;
    732 
    733 	case SNAPPER_RECORD_CLASS:
    734 		dip->mixer_class = SNAPPER_RECORD_CLASS;
    735 		strcpy(dip->label.name, AudioCrecord);
    736 		dip->type = AUDIO_MIXER_CLASS;
    737 		dip->next = dip->prev = AUDIO_MIXER_LAST;
    738 		return 0;
    739 	}
    740 
    741 	return ENXIO;
    742 }
    743 
    744 size_t
    745 snapper_round_buffersize(void *h, int dir, size_t size)
    746 {
    747 
    748 	if (size > 65536)
    749 		size = 65536;
    750 	return size;
    751 }
    752 
    753 paddr_t
    754 snapper_mappage(void *h, void *mem, off_t off, int prot)
    755 {
    756 
    757 	if (off < 0)
    758 		return -1;
    759 	return -1;	/* XXX */
    760 }
    761 
    762 int
    763 snapper_get_props(void *h)
    764 {
    765 	return AUDIO_PROP_FULLDUPLEX /* | AUDIO_PROP_MMAP */;
    766 }
    767 
    768 int
    769 snapper_trigger_output(void *h, void *start, void *end, int bsize,
    770 		       void (*intr)(void *), void *arg,
    771 		       const audio_params_t *param)
    772 {
    773 	struct snapper_softc *sc;
    774 	struct dbdma_command *cmd;
    775 	vaddr_t va;
    776 	int i, len, intmode;
    777 
    778 	DPRINTF("trigger_output %p %p 0x%x\n", start, end, bsize);
    779 	sc = h;
    780 	cmd = sc->sc_odmacmd;
    781 	sc->sc_ointr = intr;
    782 	sc->sc_oarg = arg;
    783 	sc->sc_opages = ((char *)end - (char *)start) / NBPG;
    784 
    785 #ifdef DIAGNOSTIC
    786 	if (sc->sc_opages > 16)
    787 		panic("snapper_trigger_output");
    788 #endif
    789 
    790 	va = (vaddr_t)start;
    791 	len = 0;
    792 	for (i = sc->sc_opages; i > 0; i--) {
    793 		len += NBPG;
    794 		if (len < bsize)
    795 			intmode = 0;
    796 		else {
    797 			len = 0;
    798 			intmode = DBDMA_INT_ALWAYS;
    799 		}
    800 
    801 		DBDMA_BUILD(cmd, DBDMA_CMD_OUT_MORE, 0, NBPG, vtophys(va),
    802 		    intmode, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
    803 		cmd++;
    804 		va += NBPG;
    805 	}
    806 
    807 	DBDMA_BUILD(cmd, DBDMA_CMD_NOP, 0, 0,
    808 	    0/*vtophys((vaddr_t)sc->sc_odmacmd)*/, 0, DBDMA_WAIT_NEVER,
    809 	    DBDMA_BRANCH_ALWAYS);
    810 
    811 	dbdma_st32(&cmd->d_cmddep, vtophys((vaddr_t)sc->sc_odmacmd));
    812 
    813 	dbdma_start(sc->sc_odma, sc->sc_odmacmd);
    814 
    815 	return 0;
    816 }
    817 
    818 int
    819 snapper_trigger_input(void *h, void *start, void *end, int bsize,
    820 		      void (*intr)(void *), void *arg,
    821 		      const audio_params_t *param)
    822 {
    823 
    824 	printf("snapper_trigger_input called\n");
    825 	return 1;
    826 }
    827 
    828 void
    829 snapper_set_volume(struct snapper_softc *sc, int left, int right)
    830 {
    831 	u_char vol[6];
    832 
    833 	sc->sc_vol_l = left;
    834 	sc->sc_vol_r = right;
    835 
    836 	left <<= 8;	/* XXX for now */
    837 	right <<= 8;
    838 
    839 	vol[0] = left >> 16;
    840 	vol[1] = left >> 8;
    841 	vol[2] = left;
    842 	vol[3] = right >> 16;
    843 	vol[4] = right >> 8;
    844 	vol[5] = right;
    845 
    846 	tas3004_write(sc, DEQ_VOLUME, vol);
    847 }
    848 
    849 #define CLKSRC_49MHz	0x80000000	/* Use 49152000Hz Osc. */
    850 #define CLKSRC_45MHz	0x40000000	/* Use 45158400Hz Osc. */
    851 #define CLKSRC_18MHz	0x00000000	/* Use 18432000Hz Osc. */
    852 #define MCLK_DIV	0x1f000000	/* MCLK = SRC / DIV */
    853 #define  MCLK_DIV1	0x14000000	/*  MCLK = SRC */
    854 #define  MCLK_DIV3	0x13000000	/*  MCLK = SRC / 3 */
    855 #define  MCLK_DIV5	0x12000000	/*  MCLK = SRC / 5 */
    856 #define SCLK_DIV	0x00f00000	/* SCLK = MCLK / DIV */
    857 #define  SCLK_DIV1	0x00800000
    858 #define  SCLK_DIV3	0x00900000
    859 #define SCLK_MASTER	0x00080000	/* Master mode */
    860 #define SCLK_SLAVE	0x00000000	/* Slave mode */
    861 #define SERIAL_FORMAT	0x00070000
    862 #define  SERIAL_SONY	0x00000000
    863 #define  SERIAL_64x	0x00010000
    864 #define  SERIAL_32x	0x00020000
    865 #define  SERIAL_DAV	0x00040000
    866 #define  SERIAL_SILICON	0x00050000
    867 
    868 // rate = fs = LRCLK
    869 // SCLK = 64*LRCLK (I2S)
    870 // MCLK = 256fs (typ. -- changeable)
    871 
    872 // MCLK = clksrc / mdiv
    873 // SCLK = MCLK / sdiv
    874 // rate = SCLK / 64    ( = LRCLK = fs)
    875 
    876 int
    877 snapper_set_rate(struct snapper_softc *sc, u_int rate)
    878 {
    879 	u_int reg;
    880 	int MCLK;
    881 	int clksrc, mdiv, sdiv;
    882 	int mclk_fs;
    883 
    884 	reg = 0;
    885 	switch (rate) {
    886 	case 8000:
    887 		clksrc = 18432000;		/* 18MHz */
    888 		reg = CLKSRC_18MHz;
    889 		mclk_fs = 256;
    890 		break;
    891 
    892 	case 44100:
    893 		clksrc = 45158400;		/* 45MHz */
    894 		reg = CLKSRC_45MHz;
    895 		mclk_fs = 256;
    896 		break;
    897 
    898 	case 48000:
    899 		clksrc = 49152000;		/* 49MHz */
    900 		reg = CLKSRC_49MHz;
    901 		mclk_fs = 256;
    902 		break;
    903 
    904 	default:
    905 		return EINVAL;
    906 	}
    907 
    908 	MCLK = rate * mclk_fs;
    909 	mdiv = clksrc / MCLK;			// 4
    910 	sdiv = mclk_fs / 64;			// 4
    911 
    912 	switch (mdiv) {
    913 	case 1:
    914 		reg |= MCLK_DIV1;
    915 		break;
    916 	case 3:
    917 		reg |= MCLK_DIV3;
    918 		break;
    919 	case 5:
    920 		reg |= MCLK_DIV5;
    921 		break;
    922 	default:
    923 		reg |= ((mdiv / 2 - 1) << 24) & 0x1f000000;
    924 		break;
    925 	}
    926 
    927 	switch (sdiv) {
    928 	case 1:
    929 		reg |= SCLK_DIV1;
    930 		break;
    931 	case 3:
    932 		reg |= SCLK_DIV3;
    933 		break;
    934 	default:
    935 		reg |= ((sdiv / 2 - 1) << 20) & 0x00f00000;
    936 		break;
    937 	}
    938 
    939 	reg |= SCLK_MASTER;	/* XXX master mode */
    940 
    941 	reg |= SERIAL_64x;
    942 
    943 	/* stereo input and output */
    944 	DPRINTF("I2SSetDataWordSizeReg 0x%08x -> 0x%08x\n",
    945 	    in32rb(sc->sc_reg + I2S_WORDSIZE), 0x02000200);
    946 	out32rb(sc->sc_reg + I2S_WORDSIZE, 0x02000200);
    947 
    948 	DPRINTF("I2SSetSerialFormatReg 0x%x -> 0x%x\n",
    949 	    in32rb(sc->sc_reg + I2S_FORMAT), reg);
    950 	out32rb(sc->sc_reg + I2S_FORMAT, reg);
    951 
    952 	return 0;
    953 }
    954 
    955 #define DEQaddr 0x6a
    956 
    957 const struct tas3004_reg tas3004_initdata = {
    958 	{ DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_20 },	/* MCR1 */
    959 	{ 1, 0, 0, 0, 0, 0 },					/* DRC */
    960 	{ 0, 0, 0, 0, 0, 0 },					/* VOLUME */
    961 	{ 0x72 },						/* TREBLE */
    962 	{ 0x72 },						/* BASS */
    963 	{ 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 },			/* MIXER_L */
    964 	{ 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 },			/* MIXER_R */
    965 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    966 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    967 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    968 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    969 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    970 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    971 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    972 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    973 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    974 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    975 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    976 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    977 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    978 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    979 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    980 	{ 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },	/* BIQUAD */
    981 	{ 0, 0, 0 },						/* LLB_GAIN */
    982 	{ 0, 0, 0 },						/* RLB_GAIN */
    983 	{ 0 },							/* ACR */
    984 	{ 0 }							/* MCR2 */
    985 };
    986 
    987 const char tas3004_regsize[] = {
    988 	0,					/* 0x00 */
    989 	sizeof tas3004_initdata.MCR1,		/* 0x01 */
    990 	sizeof tas3004_initdata.DRC,		/* 0x02 */
    991 	0,					/* 0x03 */
    992 	sizeof tas3004_initdata.VOLUME,		/* 0x04 */
    993 	sizeof tas3004_initdata.TREBLE,		/* 0x05 */
    994 	sizeof tas3004_initdata.BASS,		/* 0x06 */
    995 	sizeof tas3004_initdata.MIXER_L,	/* 0x07 */
    996 	sizeof tas3004_initdata.MIXER_R,	/* 0x08 */
    997 	0,					/* 0x09 */
    998 	sizeof tas3004_initdata.LB0,		/* 0x0a */
    999 	sizeof tas3004_initdata.LB1,		/* 0x0b */
   1000 	sizeof tas3004_initdata.LB2,		/* 0x0c */
   1001 	sizeof tas3004_initdata.LB3,		/* 0x0d */
   1002 	sizeof tas3004_initdata.LB4,		/* 0x0e */
   1003 	sizeof tas3004_initdata.LB5,		/* 0x0f */
   1004 	sizeof tas3004_initdata.LB6,		/* 0x10 */
   1005 	0,					/* 0x11 */
   1006 	0,					/* 0x12 */
   1007 	sizeof tas3004_initdata.RB0,		/* 0x13 */
   1008 	sizeof tas3004_initdata.RB1,		/* 0x14 */
   1009 	sizeof tas3004_initdata.RB2,		/* 0x15 */
   1010 	sizeof tas3004_initdata.RB3,		/* 0x16 */
   1011 	sizeof tas3004_initdata.RB4,		/* 0x17 */
   1012 	sizeof tas3004_initdata.RB5,		/* 0x18 */
   1013 	sizeof tas3004_initdata.RB6,		/* 0x19 */
   1014 	0,0,0,0, 0,0,
   1015 	0,					/* 0x20 */
   1016 	sizeof tas3004_initdata.LLB,		/* 0x21 */
   1017 	sizeof tas3004_initdata.RLB,		/* 0x22 */
   1018 	sizeof tas3004_initdata.LLB_GAIN,	/* 0x23 */
   1019 	sizeof tas3004_initdata.RLB_GAIN,	/* 0x24 */
   1020 	0,0,0,0, 0,0,0,0, 0,0,0,
   1021 	0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0,
   1022 	sizeof tas3004_initdata.ACR,		/* 0x40 */
   1023 	0,					/* 0x41 */
   1024 	0,					/* 0x42 */
   1025 	sizeof tas3004_initdata.MCR2		/* 0x43 */
   1026 };
   1027 
   1028 int
   1029 tas3004_write(struct snapper_softc *sc, u_int reg, const void *data)
   1030 {
   1031 	int size;
   1032 
   1033 	KASSERT(reg < sizeof tas3004_regsize);
   1034 	size = tas3004_regsize[reg];
   1035 	KASSERT(size > 0);
   1036 
   1037 	if (ki2c_write(sc->sc_i2c, DEQaddr, reg, data, size))
   1038 		return -1;
   1039 
   1040 	return 0;
   1041 }
   1042 
   1043 int
   1044 gpio_read(char *addr)
   1045 {
   1046 
   1047 	if (*addr & GPIO_DATA)
   1048 		return 1;
   1049 	return 0;
   1050 }
   1051 
   1052 void
   1053 gpio_write(char *addr, int val)
   1054 {
   1055 	u_int data;
   1056 
   1057 	data = GPIO_DDR_OUTPUT;
   1058 	if (val)
   1059 		data |= GPIO_DATA;
   1060 	*addr = data;
   1061 	asm volatile ("eieio");
   1062 }
   1063 
   1064 #define headphone_active 0	/* XXX OF */
   1065 #define amp_active 0		/* XXX OF */
   1066 
   1067 void
   1068 snapper_mute_speaker(struct snapper_softc *sc, int mute)
   1069 {
   1070 	u_int x;
   1071 
   1072 	DPRINTF("ampmute %d --> ", gpio_read(amp_mute));
   1073 
   1074 	if (mute)
   1075 		x = amp_active;		/* mute */
   1076 	else
   1077 		x = !amp_active;	/* unmute */
   1078 	if (x != gpio_read(amp_mute))
   1079 		gpio_write(amp_mute, x);
   1080 
   1081 	DPRINTF("%d\n", gpio_read(amp_mute));
   1082 }
   1083 
   1084 void
   1085 snapper_mute_headphone(struct snapper_softc *sc, int mute)
   1086 {
   1087 	u_int x;
   1088 
   1089 	DPRINTF("headphonemute %d --> ", gpio_read(headphone_mute));
   1090 
   1091 	if (mute)
   1092 		x = headphone_active;	/* mute */
   1093 	else
   1094 		x = !headphone_active;	/* unmute */
   1095 	if (x != gpio_read(headphone_mute))
   1096 		gpio_write(headphone_mute, x);
   1097 
   1098 	DPRINTF("%d\n", gpio_read(headphone_mute));
   1099 }
   1100 
   1101 int
   1102 snapper_cint(void *v)
   1103 {
   1104 	struct snapper_softc *sc;
   1105 	u_int sense;
   1106 
   1107 	sc = v;
   1108 	sense = *headphone_detect;
   1109 	DPRINTF("headphone detect = 0x%x\n", sense);
   1110 
   1111 	if (((sense & 0x02) >> 1) == headphone_detect_active) {
   1112 		DPRINTF("headphone is inserted\n");
   1113 		snapper_mute_speaker(sc, 1);
   1114 		snapper_mute_headphone(sc, 0);
   1115 		sc->sc_output_mask = 1 << 1;
   1116 	} else {
   1117 		DPRINTF("headphone is NOT inserted\n");
   1118 		snapper_mute_speaker(sc, 0);
   1119 		snapper_mute_headphone(sc, 1);
   1120 		sc->sc_output_mask = 1 << 0;
   1121 	}
   1122 
   1123 	return 1;
   1124 }
   1125 
   1126 #define reset_active 0	/* XXX OF */
   1127 
   1128 #define DEQ_WRITE(sc, reg, addr) \
   1129 	if (tas3004_write(sc, reg, addr)) goto err
   1130 
   1131 int
   1132 tas3004_init(struct snapper_softc *sc)
   1133 {
   1134 
   1135 	/* No reset port.  Nothing to do. */
   1136 	if (audio_hw_reset == NULL)
   1137 		goto noreset;
   1138 
   1139 	/* Reset TAS3004. */
   1140 	gpio_write(audio_hw_reset, !reset_active);	/* Negate RESET */
   1141 	delay(100000);				/* XXX Really needed? */
   1142 
   1143 	gpio_write(audio_hw_reset, reset_active);	/* Assert RESET */
   1144 	delay(1);
   1145 
   1146 	gpio_write(audio_hw_reset, !reset_active);	/* Negate RESET */
   1147 	delay(10000);
   1148 
   1149 noreset:
   1150 	DEQ_WRITE(sc, DEQ_LB0, tas3004_initdata.LB0);
   1151 	DEQ_WRITE(sc, DEQ_LB1, tas3004_initdata.LB1);
   1152 	DEQ_WRITE(sc, DEQ_LB2, tas3004_initdata.LB2);
   1153 	DEQ_WRITE(sc, DEQ_LB3, tas3004_initdata.LB3);
   1154 	DEQ_WRITE(sc, DEQ_LB4, tas3004_initdata.LB4);
   1155 	DEQ_WRITE(sc, DEQ_LB5, tas3004_initdata.LB5);
   1156 	DEQ_WRITE(sc, DEQ_LB6, tas3004_initdata.LB6);
   1157 	DEQ_WRITE(sc, DEQ_RB0, tas3004_initdata.RB0);
   1158 	DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1);
   1159 	DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1);
   1160 	DEQ_WRITE(sc, DEQ_RB2, tas3004_initdata.RB2);
   1161 	DEQ_WRITE(sc, DEQ_RB3, tas3004_initdata.RB3);
   1162 	DEQ_WRITE(sc, DEQ_RB4, tas3004_initdata.RB4);
   1163 	DEQ_WRITE(sc, DEQ_RB5, tas3004_initdata.RB5);
   1164 	DEQ_WRITE(sc, DEQ_MCR1, tas3004_initdata.MCR1);
   1165 	DEQ_WRITE(sc, DEQ_MCR2, tas3004_initdata.MCR2);
   1166 	DEQ_WRITE(sc, DEQ_DRC, tas3004_initdata.DRC);
   1167 	DEQ_WRITE(sc, DEQ_VOLUME, tas3004_initdata.VOLUME);
   1168 	DEQ_WRITE(sc, DEQ_TREBLE, tas3004_initdata.TREBLE);
   1169 	DEQ_WRITE(sc, DEQ_BASS, tas3004_initdata.BASS);
   1170 	DEQ_WRITE(sc, DEQ_MIXER_L, tas3004_initdata.MIXER_L);
   1171 	DEQ_WRITE(sc, DEQ_MIXER_R, tas3004_initdata.MIXER_R);
   1172 	DEQ_WRITE(sc, DEQ_LLB, tas3004_initdata.LLB);
   1173 	DEQ_WRITE(sc, DEQ_RLB, tas3004_initdata.RLB);
   1174 	DEQ_WRITE(sc, DEQ_LLB_GAIN, tas3004_initdata.LLB_GAIN);
   1175 	DEQ_WRITE(sc, DEQ_RLB_GAIN, tas3004_initdata.RLB_GAIN);
   1176 	DEQ_WRITE(sc, DEQ_ACR, tas3004_initdata.ACR);
   1177 
   1178 	return 0;
   1179 err:
   1180 	printf("tas3004_init: error\n");
   1181 	return -1;
   1182 }
   1183 
   1184 /* FCR(0x3c) bits */
   1185 #define I2S0CLKEN	0x1000
   1186 #define I2S0EN		0x2000
   1187 #define I2S1CLKEN	0x080000
   1188 #define I2S1EN		0x100000
   1189 
   1190 #define FCR3C_BITMASK "\020\25I2S1EN\24I2S1CLKEN\16I2S0EN\15I2S0CLKEN"
   1191 
   1192 void
   1193 snapper_init(struct snapper_softc *sc, int node)
   1194 {
   1195 	int gpio;
   1196 	int headphone_detect_intr, headphone_detect_intrtype;
   1197 #ifdef SNAPPER_DEBUG
   1198 	char fcr[32];
   1199 
   1200 	bitmask_snprintf(in32rb(0x8000003c), FCR3C_BITMASK, fcr, sizeof fcr);
   1201 	printf("FCR(0x3c) 0x%s\n", fcr);
   1202 #endif
   1203 	headphone_detect_intr = -1;
   1204 
   1205 	gpio = getnodebyname(OF_parent(node), "gpio");
   1206 	DPRINTF(" /gpio 0x%x\n", gpio);
   1207 	gpio = OF_child(gpio);
   1208 	while (gpio) {
   1209 		char name[64], audio_gpio[64];
   1210 		int intr[2];
   1211 		char *addr;
   1212 
   1213 		bzero(name, sizeof name);
   1214 		bzero(audio_gpio, sizeof audio_gpio);
   1215 		addr = 0;
   1216 		OF_getprop(gpio, "name", name, sizeof name);
   1217 		OF_getprop(gpio, "audio-gpio", audio_gpio, sizeof audio_gpio);
   1218 		OF_getprop(gpio, "AAPL,address", &addr, sizeof addr);
   1219 		/* printf("0x%x %s %s\n", gpio, name, audio_gpio); */
   1220 
   1221 		/* gpio5 */
   1222 		if (strcmp(audio_gpio, "headphone-mute") == 0)
   1223 			headphone_mute = addr;
   1224 		/* gpio6 */
   1225 		if (strcmp(audio_gpio, "amp-mute") == 0)
   1226 			amp_mute = addr;
   1227 		/* extint-gpio15 */
   1228 		if (strcmp(audio_gpio, "headphone-detect") == 0) {
   1229 			headphone_detect = addr;
   1230 			OF_getprop(gpio, "audio-gpio-active-state",
   1231 			    &headphone_detect_active, 4);
   1232 			OF_getprop(gpio, "interrupts", intr, 8);
   1233 			headphone_detect_intr = intr[0];
   1234 			headphone_detect_intrtype = intr[1];
   1235 		}
   1236 		/* gpio11 (keywest-11) */
   1237 		if (strcmp(audio_gpio, "audio-hw-reset") == 0)
   1238 			audio_hw_reset = addr;
   1239 		gpio = OF_peer(gpio);
   1240 	}
   1241 	DPRINTF(" headphone-mute %p\n", headphone_mute);
   1242 	DPRINTF(" amp-mute %p\n", amp_mute);
   1243 	DPRINTF(" headphone-detect %p\n", headphone_detect);
   1244 	DPRINTF(" headphone-detect active %x\n", headphone_detect_active);
   1245 	DPRINTF(" headphone-detect intr %x\n", headphone_detect_intr);
   1246 	DPRINTF(" audio-hw-reset %p\n", audio_hw_reset);
   1247 
   1248 	if (headphone_detect_intr != -1)
   1249 		intr_establish(headphone_detect_intr, IST_EDGE, IPL_AUDIO,
   1250 		    snapper_cint, sc);
   1251 
   1252 	/* "sample-rates" (44100, 48000) */
   1253 	snapper_set_rate(sc, 44100);
   1254 
   1255 	/* Enable headphone interrupt? */
   1256 	*headphone_detect |= 0x80;
   1257 	asm volatile ("eieio");
   1258 
   1259 	/* i2c_set_port(port); */
   1260 
   1261 #if 1
   1262 	/* Enable I2C interrupts. */
   1263 #define IER 4
   1264 #define I2C_INT_DATA 0x01
   1265 #define I2C_INT_ADDR 0x02
   1266 #define I2C_INT_STOP 0x04
   1267 	ki2c_writereg(sc->sc_i2c, IER,I2C_INT_DATA|I2C_INT_ADDR|I2C_INT_STOP);
   1268 #endif
   1269 
   1270 	if (tas3004_init(sc))
   1271 		return;
   1272 
   1273 	/* Update headphone status. */
   1274 	snapper_cint(sc);
   1275 
   1276 	snapper_set_volume(sc, 80, 80);
   1277 }
   1278