zs.c revision 1.27 1 /* $NetBSD: zs.c,v 1.27 2003/07/15 02:43:31 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1996, 1998 Bill Studenmund
5 * Copyright (c) 1995 Gordon W. Ross
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 * 4. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Gordon Ross
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Zilog Z8530 Dual UART driver (machine-dependent part)
36 *
37 * Runs two serial lines per chip using slave drivers.
38 * Plain tty/async lines use the zs_async slave.
39 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
40 * Other ports use their own mice & keyboard slaves.
41 *
42 * Credits & history:
43 *
44 * With NetBSD 1.1, port-mac68k started using a port of the port-sparc
45 * (port-sun3?) zs.c driver (which was in turn based on code in the
46 * Berkeley 4.4 Lite release). Bill Studenmund did the port, with
47 * help from Allen Briggs and Gordon Ross <gwr (at) netbsd.org>. Noud de
48 * Brouwer field-tested the driver at a local ISP.
49 *
50 * Bill Studenmund and Gordon Ross then ported the machine-independant
51 * z8530 driver to work with port-mac68k. NetBSD 1.2 contained an
52 * intermediate version (mac68k using a local, patched version of
53 * the m.i. drivers), with NetBSD 1.3 containing a full version.
54 */
55
56 #include <sys/cdefs.h>
57 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.27 2003/07/15 02:43:31 lukem Exp $");
58
59 #include "opt_ddb.h"
60 #include "opt_kgdb.h"
61
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/proc.h>
65 #include <sys/device.h>
66 #include <sys/conf.h>
67 #include <sys/file.h>
68 #include <sys/ioctl.h>
69 #include <sys/tty.h>
70 #include <sys/time.h>
71 #include <sys/kernel.h>
72 #include <sys/syslog.h>
73 #ifdef KGDB
74 #include <sys/kgdb.h>
75 #endif
76
77 #include <dev/cons.h>
78 #include <dev/ofw/openfirm.h>
79 #include <dev/ic/z8530reg.h>
80
81 #include <machine/z8530var.h>
82 #include <machine/autoconf.h>
83 #include <machine/cpu.h>
84 #include <machine/pio.h>
85
86 /* Are these in a header file anywhere? */
87 /* Booter flags interface */
88 #define ZSMAC_RAW 0x01
89 #define ZSMAC_LOCALTALK 0x02
90
91 #include "zsc.h" /* get the # of zs chips defined */
92
93 /*
94 * Some warts needed by z8530tty.c -
95 */
96 int zs_def_cflag = (CREAD | CS8 | HUPCL);
97
98 /*
99 * abort detection on console will now timeout after iterating on a loop
100 * the following # of times. Cheep hack. Also, abort detection is turned
101 * off after a timeout (i.e. maybe there's not a terminal hooked up).
102 */
103 #define ZSABORT_DELAY 3000000
104
105 struct zsdevice {
106 /* Yes, they are backwards. */
107 struct zschan zs_chan_b;
108 struct zschan zs_chan_a;
109 };
110
111 /* Flags from cninit() */
112 static int zs_hwflags[NZSC][2];
113 /* Default speed for each channel */
114 static int zs_defspeed[NZSC][2] = {
115 { 38400, /* tty00 */
116 38400 }, /* tty01 */
117 };
118
119 /* console stuff */
120 void *zs_conschan = 0;
121 #ifdef ZS_CONSOLE_ABORT
122 int zs_cons_canabort = 1;
123 #else
124 int zs_cons_canabort = 0;
125 #endif /* ZS_CONSOLE_ABORT*/
126
127 /* device to which the console is attached--if serial. */
128 /* Mac stuff */
129
130 static int zs_get_speed __P((struct zs_chanstate *));
131
132 /*
133 * Even though zsparam will set up the clock multiples, etc., we
134 * still set them here as: 1) mice & keyboards don't use zsparam,
135 * and 2) the console stuff uses these defaults before device
136 * attach.
137 */
138
139 static u_char zs_init_reg[16] = {
140 0, /* 0: CMD (reset, etc.) */
141 0, /* 1: No interrupts yet. */
142 0, /* IVECT */
143 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
144 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
145 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
146 0, /* 6: TXSYNC/SYNCLO */
147 0, /* 7: RXSYNC/SYNCHI */
148 0, /* 8: alias for data port */
149 ZSWR9_MASTER_IE,
150 0, /*10: Misc. TX/RX control bits */
151 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
152 ((PCLK/32)/38400)-2, /*12: BAUDLO (default=38400) */
153 0, /*13: BAUDHI (default=38400) */
154 ZSWR14_BAUD_ENA,
155 ZSWR15_BREAK_IE,
156 };
157
158 /****************************************************************
159 * Autoconfig
160 ****************************************************************/
161
162 /* Definition of the driver for autoconfig. */
163 static int zsc_match __P((struct device *, struct cfdata *, void *));
164 static void zsc_attach __P((struct device *, struct device *, void *));
165 static int zsc_print __P((void *, const char *name));
166
167 CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
168 zsc_match, zsc_attach, NULL, NULL);
169
170 extern struct cfdriver zsc_cd;
171
172 int zshard __P((void *));
173 int zssoft __P((void *));
174 #ifdef ZS_TXDMA
175 static int zs_txdma_int __P((void *));
176 #endif
177
178 void zscnprobe __P((struct consdev *));
179 void zscninit __P((struct consdev *));
180 int zscngetc __P((dev_t));
181 void zscnputc __P((dev_t, int));
182 void zscnpollc __P((dev_t, int));
183
184 /*
185 * Is the zs chip present?
186 */
187 static int
188 zsc_match(parent, cf, aux)
189 struct device *parent;
190 struct cfdata *cf;
191 void *aux;
192 {
193 struct confargs *ca = aux;
194 int unit = cf->cf_unit;
195
196 if (strcmp(ca->ca_name, "escc") != 0)
197 return 0;
198
199 if (unit > 1)
200 return 0;
201
202 return 1;
203 }
204
205 /*
206 * Attach a found zs.
207 *
208 * Match slave number to zs unit number, so that misconfiguration will
209 * not set up the keyboard as ttya, etc.
210 */
211 static void
212 zsc_attach(parent, self, aux)
213 struct device *parent;
214 struct device *self;
215 void *aux;
216 {
217 struct zsc_softc *zsc = (void *)self;
218 struct confargs *ca = aux;
219 struct zsc_attach_args zsc_args;
220 volatile struct zschan *zc;
221 struct xzs_chanstate *xcs;
222 struct zs_chanstate *cs;
223 struct zsdevice *zsd;
224 int zsc_unit, channel;
225 int s, chip, theflags;
226 int node, intr[2][3];
227 u_int regs[6];
228
229 chip = 0;
230 zsc_unit = zsc->zsc_dev.dv_unit;
231
232 ca->ca_reg[0] += ca->ca_baseaddr;
233 zsd = mapiodev(ca->ca_reg[0], ca->ca_reg[1]);
234
235 node = OF_child(ca->ca_node); /* ch-a */
236
237 for (channel = 0; channel < 2; channel++) {
238 if (OF_getprop(node, "AAPL,interrupts",
239 intr[channel], sizeof(intr[0])) == -1 &&
240 OF_getprop(node, "interrupts",
241 intr[channel], sizeof(intr[0])) == -1) {
242 printf(": cannot find interrupt property\n");
243 return;
244 }
245
246 if (OF_getprop(node, "reg", regs, sizeof(regs)) < 24) {
247 printf(": cannot find reg property\n");
248 return;
249 }
250 regs[2] += ca->ca_baseaddr;
251 regs[4] += ca->ca_baseaddr;
252 #ifdef ZS_TXDMA
253 zsc->zsc_txdmareg[channel] = mapiodev(regs[2], regs[3]);
254 zsc->zsc_txdmacmd[channel] =
255 dbdma_alloc(sizeof(dbdma_command_t) * 3);
256 memset(zsc->zsc_txdmacmd[channel], 0,
257 sizeof(dbdma_command_t) * 3);
258 dbdma_reset(zsc->zsc_txdmareg[channel]);
259 #endif
260 node = OF_peer(node); /* ch-b */
261 }
262
263 printf(": irq %d,%d\n", intr[0][0], intr[1][0]);
264
265 /*
266 * Initialize software state for each channel.
267 */
268 for (channel = 0; channel < 2; channel++) {
269 zsc_args.channel = channel;
270 zsc_args.hwflags = zs_hwflags[zsc_unit][channel];
271 xcs = &zsc->xzsc_xcs_store[channel];
272 cs = &xcs->xzs_cs;
273 zsc->zsc_cs[channel] = cs;
274
275 simple_lock_init(&cs->cs_lock);
276 cs->cs_channel = channel;
277 cs->cs_private = NULL;
278 cs->cs_ops = &zsops_null;
279
280 zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
281
282 cs->cs_reg_csr = &zc->zc_csr;
283 cs->cs_reg_data = &zc->zc_data;
284
285 memcpy(cs->cs_creg, zs_init_reg, 16);
286 memcpy(cs->cs_preg, zs_init_reg, 16);
287
288 /* Current BAUD rate generator clock. */
289 cs->cs_brg_clk = PCLK / 16; /* RTxC is 230400*16, so use 230400 */
290 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
291 cs->cs_defspeed = zs_get_speed(cs);
292 else
293 cs->cs_defspeed = zs_defspeed[zsc_unit][channel];
294 cs->cs_defcflag = zs_def_cflag;
295
296 /* Make these correspond to cs_defcflag (-crtscts) */
297 cs->cs_rr0_dcd = ZSRR0_DCD;
298 cs->cs_rr0_cts = 0;
299 cs->cs_wr5_dtr = ZSWR5_DTR;
300 cs->cs_wr5_rts = 0;
301
302 #ifdef __notyet__
303 cs->cs_slave_type = ZS_SLAVE_NONE;
304 #endif
305
306 /* Define BAUD rate stuff. */
307 xcs->cs_clocks[0].clk = PCLK;
308 xcs->cs_clocks[0].flags = ZSC_RTXBRG | ZSC_RTXDIV;
309 xcs->cs_clocks[1].flags =
310 ZSC_RTXBRG | ZSC_RTXDIV | ZSC_VARIABLE | ZSC_EXTERN;
311 xcs->cs_clocks[2].flags = ZSC_TRXDIV | ZSC_VARIABLE;
312 xcs->cs_clock_count = 3;
313 if (channel == 0) {
314 theflags = 0; /*mac68k_machine.modem_flags;*/
315 /*xcs->cs_clocks[1].clk = mac68k_machine.modem_dcd_clk;*/
316 /*xcs->cs_clocks[2].clk = mac68k_machine.modem_cts_clk;*/
317 xcs->cs_clocks[1].clk = 0;
318 xcs->cs_clocks[2].clk = 0;
319 } else {
320 theflags = 0; /*mac68k_machine.print_flags;*/
321 xcs->cs_clocks[1].flags = ZSC_VARIABLE;
322 /*
323 * Yes, we aren't defining ANY clock source enables for the
324 * printer's DCD clock in. The hardware won't let us
325 * use it. But a clock will freak out the chip, so we
326 * let you set it, telling us to bar interrupts on the line.
327 */
328 /*xcs->cs_clocks[1].clk = mac68k_machine.print_dcd_clk;*/
329 /*xcs->cs_clocks[2].clk = mac68k_machine.print_cts_clk;*/
330 xcs->cs_clocks[1].clk = 0;
331 xcs->cs_clocks[2].clk = 0;
332 }
333 if (xcs->cs_clocks[1].clk)
334 zsc_args.hwflags |= ZS_HWFLAG_NO_DCD;
335 if (xcs->cs_clocks[2].clk)
336 zsc_args.hwflags |= ZS_HWFLAG_NO_CTS;
337
338 /* Set defaults in our "extended" chanstate. */
339 xcs->cs_csource = 0;
340 xcs->cs_psource = 0;
341 xcs->cs_cclk_flag = 0; /* Nothing fancy by default */
342 xcs->cs_pclk_flag = 0;
343
344 if (theflags & ZSMAC_RAW) {
345 zsc_args.hwflags |= ZS_HWFLAG_RAW;
346 printf(" (raw defaults)");
347 }
348
349 /*
350 * XXX - This might be better done with a "stub" driver
351 * (to replace zstty) that ignores LocalTalk for now.
352 */
353 if (theflags & ZSMAC_LOCALTALK) {
354 printf(" shielding from LocalTalk");
355 cs->cs_defspeed = 1;
356 cs->cs_creg[ZSRR_BAUDLO] = cs->cs_preg[ZSRR_BAUDLO] = 0xff;
357 cs->cs_creg[ZSRR_BAUDHI] = cs->cs_preg[ZSRR_BAUDHI] = 0xff;
358 zs_write_reg(cs, ZSRR_BAUDLO, 0xff);
359 zs_write_reg(cs, ZSRR_BAUDHI, 0xff);
360 /*
361 * If we might have LocalTalk, then make sure we have the
362 * Baud rate low-enough to not do any damage.
363 */
364 }
365
366 /*
367 * We used to disable chip interrupts here, but we now
368 * do that in zscnprobe, just in case MacOS left the chip on.
369 */
370
371 xcs->cs_chip = chip;
372
373 /* Stash away a copy of the final H/W flags. */
374 xcs->cs_hwflags = zsc_args.hwflags;
375
376 /*
377 * Look for a child driver for this channel.
378 * The child attach will setup the hardware.
379 */
380 if (!config_found(self, (void *)&zsc_args, zsc_print)) {
381 /* No sub-driver. Just reset it. */
382 u_char reset = (channel == 0) ?
383 ZSWR9_A_RESET : ZSWR9_B_RESET;
384 s = splzs();
385 zs_write_reg(cs, 9, reset);
386 splx(s);
387 }
388 }
389
390 /* XXX - Now safe to install interrupt handlers. */
391 intr_establish(intr[0][0], IST_LEVEL, IPL_TTY, zshard, NULL);
392 intr_establish(intr[1][0], IST_LEVEL, IPL_TTY, zshard, NULL);
393 #ifdef ZS_TXDMA
394 intr_establish(intr[0][1], IST_LEVEL, IPL_TTY, zs_txdma_int, (void *)0);
395 intr_establish(intr[1][1], IST_LEVEL, IPL_TTY, zs_txdma_int, (void *)1);
396 #endif
397
398 /*
399 * Set the master interrupt enable and interrupt vector.
400 * (common to both channels, do it on A)
401 */
402 cs = zsc->zsc_cs[0];
403 s = splzs();
404 /* interrupt vector */
405 zs_write_reg(cs, 2, zs_init_reg[2]);
406 /* master interrupt control (enable) */
407 zs_write_reg(cs, 9, zs_init_reg[9]);
408 splx(s);
409 }
410
411 static int
412 zsc_print(aux, name)
413 void *aux;
414 const char *name;
415 {
416 struct zsc_attach_args *args = aux;
417
418 if (name != NULL)
419 aprint_normal("%s: ", name);
420
421 if (args->channel != -1)
422 aprint_normal(" channel %d", args->channel);
423
424 return UNCONF;
425 }
426
427 int
428 zsmdioctl(cs, cmd, data)
429 struct zs_chanstate *cs;
430 u_long cmd;
431 caddr_t data;
432 {
433 switch (cmd) {
434 default:
435 return (EPASSTHROUGH);
436 }
437 return (0);
438 }
439
440 void
441 zsmd_setclock(cs)
442 struct zs_chanstate *cs;
443 {
444 #ifdef NOTYET
445 struct xzs_chanstate *xcs = (void *)cs;
446
447 if (cs->cs_channel != 0)
448 return;
449
450 /*
451 * If the new clock has the external bit set, then select the
452 * external source.
453 */
454 via_set_modem((xcs->cs_pclk_flag & ZSC_EXTERN) ? 1 : 0);
455 #endif
456 }
457
458 static int zssoftpending;
459
460 /*
461 * Our ZS chips all share a common, autovectored interrupt,
462 * so we have to look at all of them on each interrupt.
463 */
464 int
465 zshard(arg)
466 void *arg;
467 {
468 register struct zsc_softc *zsc;
469 register int unit, rval;
470
471 rval = 0;
472 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
473 zsc = zsc_cd.cd_devs[unit];
474 if (zsc == NULL)
475 continue;
476 rval |= zsc_intr_hard(zsc);
477 if ((zsc->zsc_cs[0]->cs_softreq) ||
478 (zsc->zsc_cs[1]->cs_softreq))
479 {
480 /* zsc_req_softint(zsc); */
481 /* We are at splzs here, so no need to lock. */
482 if (zssoftpending == 0) {
483 zssoftpending = 1;
484 setsoftserial();
485 }
486 }
487 }
488 return (rval);
489 }
490
491 /*
492 * Similar scheme as for zshard (look at all of them)
493 */
494 int
495 zssoft(arg)
496 void *arg;
497 {
498 register struct zsc_softc *zsc;
499 register int unit;
500
501 /* This is not the only ISR on this IPL. */
502 if (zssoftpending == 0)
503 return (0);
504
505 /*
506 * The soft intr. bit will be set by zshard only if
507 * the variable zssoftpending is zero.
508 */
509 zssoftpending = 0;
510
511 for (unit = 0; unit < zsc_cd.cd_ndevs; ++unit) {
512 zsc = zsc_cd.cd_devs[unit];
513 if (zsc == NULL)
514 continue;
515 (void) zsc_intr_soft(zsc);
516 }
517 return (1);
518 }
519
520 #ifdef ZS_TXDMA
521 int
522 zs_txdma_int(arg)
523 void *arg;
524 {
525 int ch = (int)arg;
526 struct zsc_softc *zsc;
527 struct zs_chanstate *cs;
528 int unit = 0; /* XXX */
529
530 zsc = zsc_cd.cd_devs[unit];
531 if (zsc == NULL)
532 panic("zs_txdma_int");
533
534 cs = zsc->zsc_cs[ch];
535 zstty_txdma_int(cs);
536
537 if (cs->cs_softreq) {
538 if (zssoftpending == 0) {
539 zssoftpending = 1;
540 setsoftserial();
541 }
542 }
543 return 1;
544 }
545
546 void
547 zs_dma_setup(cs, pa, len)
548 struct zs_chanstate *cs;
549 caddr_t pa;
550 int len;
551 {
552 struct zsc_softc *zsc;
553 dbdma_command_t *cmdp;
554 int ch = cs->cs_channel;
555
556 zsc = zsc_cd.cd_devs[ch];
557 cmdp = zsc->zsc_txdmacmd[ch];
558
559 DBDMA_BUILD(cmdp, DBDMA_CMD_OUT_LAST, 0, len, kvtop(pa),
560 DBDMA_INT_ALWAYS, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
561 cmdp++;
562 DBDMA_BUILD(cmdp, DBDMA_CMD_STOP, 0, 0, 0,
563 DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
564
565 __asm __volatile("eieio");
566
567 dbdma_start(zsc->zsc_txdmareg[ch], zsc->zsc_txdmacmd[ch]);
568 }
569 #endif
570
571 /*
572 * Compute the current baud rate given a ZS channel.
573 * XXX Assume internal BRG.
574 */
575 int
576 zs_get_speed(cs)
577 struct zs_chanstate *cs;
578 {
579 int tconst;
580
581 tconst = zs_read_reg(cs, 12);
582 tconst |= zs_read_reg(cs, 13) << 8;
583 return TCONST_TO_BPS(cs->cs_brg_clk, tconst);
584 }
585
586 #ifndef ZS_TOLERANCE
587 #define ZS_TOLERANCE 51
588 /* 5% in tenths of a %, plus 1 so that exactly 5% will be ok. */
589 #endif
590
591 /*
592 * Search through the signal sources in the channel, and
593 * pick the best one for the baud rate requested. Return
594 * a -1 if not achievable in tolerance. Otherwise return 0
595 * and fill in the values.
596 *
597 * This routine draws inspiration from the Atari port's zs.c
598 * driver in NetBSD 1.1 which did the same type of source switching.
599 * Tolerance code inspired by comspeed routine in isa/com.c.
600 *
601 * By Bill Studenmund, 1996-05-12
602 */
603 int
604 zs_set_speed(cs, bps)
605 struct zs_chanstate *cs;
606 int bps; /* bits per second */
607 {
608 struct xzs_chanstate *xcs = (void *) cs;
609 int i, tc, tc0 = 0, tc1, s, sf = 0;
610 int src, rate0, rate1, err, tol;
611
612 if (bps == 0)
613 return (0);
614
615 src = -1; /* no valid source yet */
616 tol = ZS_TOLERANCE;
617
618 /*
619 * Step through all the sources and see which one matches
620 * the best. A source has to match BETTER than tol to be chosen.
621 * Thus if two sources give the same error, the first one will be
622 * chosen. Also, allow for the possability that one source might run
623 * both the BRG and the direct divider (i.e. RTxC).
624 */
625 for (i = 0; i < xcs->cs_clock_count; i++) {
626 if (xcs->cs_clocks[i].clk <= 0)
627 continue; /* skip non-existent or bad clocks */
628 if (xcs->cs_clocks[i].flags & ZSC_BRG) {
629 /* check out BRG at /16 */
630 tc1 = BPS_TO_TCONST(xcs->cs_clocks[i].clk >> 4, bps);
631 if (tc1 >= 0) {
632 rate1 = TCONST_TO_BPS(xcs->cs_clocks[i].clk >> 4, tc1);
633 err = abs(((rate1 - bps)*1000)/bps);
634 if (err < tol) {
635 tol = err;
636 src = i;
637 sf = xcs->cs_clocks[i].flags & ~ZSC_DIV;
638 tc0 = tc1;
639 rate0 = rate1;
640 }
641 }
642 }
643 if (xcs->cs_clocks[i].flags & ZSC_DIV) {
644 /*
645 * Check out either /1, /16, /32, or /64
646 * Note: for /1, you'd better be using a synchronized
647 * clock!
648 */
649 int b0 = xcs->cs_clocks[i].clk, e0 = abs(b0-bps);
650 int b1 = b0 >> 4, e1 = abs(b1-bps);
651 int b2 = b1 >> 1, e2 = abs(b2-bps);
652 int b3 = b2 >> 1, e3 = abs(b3-bps);
653
654 if (e0 < e1 && e0 < e2 && e0 < e3) {
655 err = e0;
656 rate1 = b0;
657 tc1 = ZSWR4_CLK_X1;
658 } else if (e0 > e1 && e1 < e2 && e1 < e3) {
659 err = e1;
660 rate1 = b1;
661 tc1 = ZSWR4_CLK_X16;
662 } else if (e0 > e2 && e1 > e2 && e2 < e3) {
663 err = e2;
664 rate1 = b2;
665 tc1 = ZSWR4_CLK_X32;
666 } else {
667 err = e3;
668 rate1 = b3;
669 tc1 = ZSWR4_CLK_X64;
670 }
671
672 err = (err * 1000)/bps;
673 if (err < tol) {
674 tol = err;
675 src = i;
676 sf = xcs->cs_clocks[i].flags & ~ZSC_BRG;
677 tc0 = tc1;
678 rate0 = rate1;
679 }
680 }
681 }
682 #ifdef ZSMACDEBUG
683 zsprintf("Checking for rate %d. Found source #%d.\n",bps, src);
684 #endif
685 if (src == -1)
686 return (EINVAL); /* no can do */
687
688 /*
689 * The M.I. layer likes to keep cs_brg_clk current, even though
690 * we are the only ones who should be touching the BRG's rate.
691 *
692 * Note: we are assuming that any ZSC_EXTERN signal source comes in
693 * on the RTxC pin. Correct for the mac68k obio zsc.
694 */
695 if (sf & ZSC_EXTERN)
696 cs->cs_brg_clk = xcs->cs_clocks[i].clk >> 4;
697 else
698 cs->cs_brg_clk = PCLK / 16;
699
700 /*
701 * Now we have a source, so set it up.
702 */
703 s = splzs();
704 xcs->cs_psource = src;
705 xcs->cs_pclk_flag = sf;
706 bps = rate0;
707 if (sf & ZSC_BRG) {
708 cs->cs_preg[4] = ZSWR4_CLK_X16;
709 cs->cs_preg[11]= ZSWR11_RXCLK_BAUD | ZSWR11_TXCLK_BAUD;
710 if (sf & ZSC_PCLK) {
711 cs->cs_preg[14] = ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK;
712 } else {
713 cs->cs_preg[14] = ZSWR14_BAUD_ENA;
714 }
715 tc = tc0;
716 } else {
717 cs->cs_preg[4] = tc0;
718 if (sf & ZSC_RTXDIV) {
719 cs->cs_preg[11] = ZSWR11_RXCLK_RTXC | ZSWR11_TXCLK_RTXC;
720 } else {
721 cs->cs_preg[11] = ZSWR11_RXCLK_TRXC | ZSWR11_TXCLK_TRXC;
722 }
723 cs->cs_preg[14]= 0;
724 tc = 0xffff;
725 }
726 /* Set the BAUD rate divisor. */
727 cs->cs_preg[12] = tc;
728 cs->cs_preg[13] = tc >> 8;
729 splx(s);
730
731 #ifdef ZSMACDEBUG
732 zsprintf("Rate is %7d, tc is %7d, source no. %2d, flags %4x\n", \
733 bps, tc, src, sf);
734 zsprintf("Registers are: 4 %x, 11 %x, 14 %x\n\n",
735 cs->cs_preg[4], cs->cs_preg[11], cs->cs_preg[14]);
736 #endif
737
738 cs->cs_preg[5] |= ZSWR5_RTS; /* Make sure the drivers are on! */
739
740 /* Caller will stuff the pending registers. */
741 return (0);
742 }
743
744 int
745 zs_set_modes(cs, cflag)
746 struct zs_chanstate *cs;
747 int cflag; /* bits per second */
748 {
749 struct xzs_chanstate *xcs = (void*)cs;
750 int s;
751
752 /*
753 * Make sure we don't enable hfc on a signal line we're ignoring.
754 * As we enable CTS interrupts only if we have CRTSCTS or CDTRCTS,
755 * this code also effectivly turns off ZSWR15_CTS_IE.
756 *
757 * Also, disable DCD interrupts if we've been told to ignore
758 * the DCD pin. Happens on mac68k because the input line for
759 * DCD can also be used as a clock input. (Just set CLOCAL.)
760 *
761 * If someone tries to turn an invalid flow mode on, Just Say No
762 * (Suggested by gwr)
763 */
764 if ((cflag & CDTRCTS) && (cflag & (CRTSCTS | MDMBUF)))
765 return (EINVAL);
766 if (xcs->cs_hwflags & ZS_HWFLAG_NO_DCD) {
767 if (cflag & MDMBUF)
768 return (EINVAL);
769 cflag |= CLOCAL;
770 }
771 if ((xcs->cs_hwflags & ZS_HWFLAG_NO_CTS) && (cflag & (CRTSCTS | CDTRCTS)))
772 return (EINVAL);
773
774 /*
775 * Output hardware flow control on the chip is horrendous:
776 * if carrier detect drops, the receiver is disabled, and if
777 * CTS drops, the transmitter is stoped IN MID CHARACTER!
778 * Therefore, NEVER set the HFC bit, and instead use the
779 * status interrupt to detect CTS changes.
780 */
781 s = splzs();
782 if ((cflag & (CLOCAL | MDMBUF)) != 0)
783 cs->cs_rr0_dcd = 0;
784 else
785 cs->cs_rr0_dcd = ZSRR0_DCD;
786 /*
787 * The mac hardware only has one output, DTR (HSKo in Mac
788 * parlance). In HFC mode, we use it for the functions
789 * typically served by RTS and DTR on other ports, so we
790 * have to fake the upper layer out some.
791 *
792 * CRTSCTS we use CTS as an input which tells us when to shut up.
793 * We make no effort to shut up the other side of the connection.
794 * DTR is used to hang up the modem.
795 *
796 * In CDTRCTS, we use CTS to tell us to stop, but we use DTR to
797 * shut up the other side.
798 */
799 if ((cflag & CRTSCTS) != 0) {
800 cs->cs_wr5_dtr = ZSWR5_DTR;
801 cs->cs_wr5_rts = 0;
802 cs->cs_rr0_cts = ZSRR0_CTS;
803 } else if ((cflag & CDTRCTS) != 0) {
804 cs->cs_wr5_dtr = 0;
805 cs->cs_wr5_rts = ZSWR5_DTR;
806 cs->cs_rr0_cts = ZSRR0_CTS;
807 } else if ((cflag & MDMBUF) != 0) {
808 cs->cs_wr5_dtr = 0;
809 cs->cs_wr5_rts = ZSWR5_DTR;
810 cs->cs_rr0_cts = ZSRR0_DCD;
811 } else {
812 cs->cs_wr5_dtr = ZSWR5_DTR;
813 cs->cs_wr5_rts = 0;
814 cs->cs_rr0_cts = 0;
815 }
816 splx(s);
817
818 /* Caller will stuff the pending registers. */
819 return (0);
820 }
821
822
823 /*
824 * Read or write the chip with suitable delays.
825 * MacII hardware has the delay built in.
826 * No need for extra delay. :-) However, some clock-chirped
827 * macs, or zsc's on serial add-on boards might need it.
828 */
829 #define ZS_DELAY()
830
831 u_char
832 zs_read_reg(cs, reg)
833 struct zs_chanstate *cs;
834 u_char reg;
835 {
836 u_char val;
837
838 out8(cs->cs_reg_csr, reg);
839 ZS_DELAY();
840 val = in8(cs->cs_reg_csr);
841 ZS_DELAY();
842 return val;
843 }
844
845 void
846 zs_write_reg(cs, reg, val)
847 struct zs_chanstate *cs;
848 u_char reg, val;
849 {
850 out8(cs->cs_reg_csr, reg);
851 ZS_DELAY();
852 out8(cs->cs_reg_csr, val);
853 ZS_DELAY();
854 }
855
856 u_char zs_read_csr(cs)
857 struct zs_chanstate *cs;
858 {
859 register u_char val;
860
861 val = in8(cs->cs_reg_csr);
862 ZS_DELAY();
863 /* make up for the fact CTS is wired backwards */
864 val ^= ZSRR0_CTS;
865 return val;
866 }
867
868 void zs_write_csr(cs, val)
869 struct zs_chanstate *cs;
870 u_char val;
871 {
872 /* Note, the csr does not write CTS... */
873 out8(cs->cs_reg_csr, val);
874 ZS_DELAY();
875 }
876
877 u_char zs_read_data(cs)
878 struct zs_chanstate *cs;
879 {
880 register u_char val;
881
882 val = in8(cs->cs_reg_data);
883 ZS_DELAY();
884 return val;
885 }
886
887 void zs_write_data(cs, val)
888 struct zs_chanstate *cs;
889 u_char val;
890 {
891 out8(cs->cs_reg_data, val);
892 ZS_DELAY();
893 }
894
895 /****************************************************************
896 * Console support functions (powermac specific!)
897 * Note: this code is allowed to know about the layout of
898 * the chip registers, and uses that to keep things simple.
899 * XXX - I think I like the mvme167 code better. -gwr
900 * XXX - Well :-P :-) -wrs
901 ****************************************************************/
902
903 #define zscnpollc nullcnpollc
904 cons_decl(zs);
905
906 static int stdin, stdout;
907
908 /*
909 * Console functions.
910 */
911
912 /*
913 * zscnprobe is the routine which gets called as the kernel is trying to
914 * figure out where the console should be. Each io driver which might
915 * be the console (as defined in mac68k/conf.c) gets probed. The probe
916 * fills in the consdev structure. Important parts are the device #,
917 * and the console priority. Values are CN_DEAD (don't touch me),
918 * CN_NORMAL (I'm here, but elsewhere might be better), CN_INTERNAL
919 * (the video, better than CN_NORMAL), and CN_REMOTE (pick me!)
920 *
921 * As the mac's a bit different, we do extra work here. We mainly check
922 * to see if we have serial echo going on. Also chould check for default
923 * speeds.
924 */
925
926 /*
927 * Polled input char.
928 */
929 int
930 zs_getc(v)
931 void *v;
932 {
933 register volatile struct zschan *zc = v;
934 register int s, c, rr0;
935
936 s = splhigh();
937 /* Wait for a character to arrive. */
938 do {
939 rr0 = in8(&zc->zc_csr);
940 ZS_DELAY();
941 } while ((rr0 & ZSRR0_RX_READY) == 0);
942
943 c = in8(&zc->zc_data);
944 ZS_DELAY();
945 splx(s);
946
947 /*
948 * This is used by the kd driver to read scan codes,
949 * so don't translate '\r' ==> '\n' here...
950 */
951 return (c);
952 }
953
954 /*
955 * Polled output char.
956 */
957 void
958 zs_putc(v, c)
959 void *v;
960 int c;
961 {
962 register volatile struct zschan *zc = v;
963 register int s, rr0;
964 register long wait = 0;
965
966 s = splhigh();
967 /* Wait for transmitter to become ready. */
968 do {
969 rr0 = in8(&zc->zc_csr);
970 ZS_DELAY();
971 } while (((rr0 & ZSRR0_TX_READY) == 0) && (wait++ < 1000000));
972
973 if ((rr0 & ZSRR0_TX_READY) != 0) {
974 out8(&zc->zc_data, c);
975 ZS_DELAY();
976 }
977 splx(s);
978 }
979
980
981 /*
982 * Polled console input putchar.
983 */
984 int
985 zscngetc(dev)
986 dev_t dev;
987 {
988 register volatile struct zschan *zc = zs_conschan;
989 register int c;
990
991 if (zc) {
992 c = zs_getc((void *)zc);
993 } else {
994 char ch = 0;
995 OF_read(stdin, &ch, 1);
996 c = ch;
997 }
998 return c;
999 }
1000
1001 /*
1002 * Polled console output putchar.
1003 */
1004 void
1005 zscnputc(dev, c)
1006 dev_t dev;
1007 int c;
1008 {
1009 register volatile struct zschan *zc = zs_conschan;
1010
1011 if (zc) {
1012 zs_putc((void *)zc, c);
1013 } else {
1014 char ch = c;
1015 OF_write(stdout, &ch, 1);
1016 }
1017 }
1018
1019 /*
1020 * Handle user request to enter kernel debugger.
1021 */
1022 void
1023 zs_abort(cs)
1024 struct zs_chanstate *cs;
1025 {
1026 volatile struct zschan *zc = zs_conschan;
1027 int rr0;
1028 register long wait = 0;
1029
1030 if (zs_cons_canabort == 0)
1031 return;
1032
1033 /* Wait for end of break to avoid PROM abort. */
1034 do {
1035 rr0 = in8(&zc->zc_csr);
1036 ZS_DELAY();
1037 } while ((rr0 & ZSRR0_BREAK) && (wait++ < ZSABORT_DELAY));
1038
1039 if (wait > ZSABORT_DELAY) {
1040 zs_cons_canabort = 0;
1041 /* If we time out, turn off the abort ability! */
1042 }
1043
1044 #if defined(KGDB)
1045 kgdb_connect(1);
1046 #elif defined(DDB)
1047 Debugger();
1048 #endif
1049 }
1050
1051 extern int ofccngetc __P((dev_t));
1052 extern void ofccnputc __P((dev_t, int));
1053
1054 struct consdev consdev_zs = {
1055 zscnprobe,
1056 zscninit,
1057 zscngetc,
1058 zscnputc,
1059 zscnpollc,
1060 NULL,
1061 };
1062
1063 void
1064 zscnprobe(cp)
1065 struct consdev *cp;
1066 {
1067 int chosen, pkg;
1068 int unit = 0;
1069 char name[16];
1070 extern const struct cdevsw zstty_cdevsw;
1071
1072 if ((chosen = OF_finddevice("/chosen")) == -1)
1073 return;
1074
1075 if (OF_getprop(chosen, "stdin", &stdin, sizeof(stdin)) == -1)
1076 return;
1077 if (OF_getprop(chosen, "stdout", &stdout, sizeof(stdout)) == -1)
1078 return;
1079
1080 if ((pkg = OF_instance_to_package(stdin)) == -1)
1081 return;
1082
1083 memset(name, 0, sizeof(name));
1084 if (OF_getprop(pkg, "device_type", name, sizeof(name)) == -1)
1085 return;
1086
1087 if (strcmp(name, "serial") != 0)
1088 return;
1089
1090 memset(name, 0, sizeof(name));
1091 if (OF_getprop(pkg, "name", name, sizeof(name)) == -1)
1092 return;
1093
1094 if (strcmp(name, "ch-b") == 0)
1095 unit = 1;
1096
1097 cp->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), unit);
1098 cp->cn_pri = CN_REMOTE;
1099 }
1100
1101 void
1102 zscninit(cp)
1103 struct consdev *cp;
1104 {
1105 int escc, escc_ch, obio, zs_offset;
1106 int ch = 0;
1107 u_int32_t reg[5];
1108 char name[16];
1109
1110 if ((escc_ch = OF_instance_to_package(stdin)) == -1)
1111 return;
1112
1113 memset(name, 0, sizeof(name));
1114 if (OF_getprop(escc_ch, "name", name, sizeof(name)) == -1)
1115 return;
1116
1117 if (strcmp(name, "ch-b") == 0)
1118 ch = 1;
1119
1120 if (OF_getprop(escc_ch, "reg", reg, sizeof(reg)) < 4)
1121 return;
1122 zs_offset = reg[0];
1123
1124 escc = OF_parent(escc_ch);
1125 obio = OF_parent(escc);
1126
1127 if (OF_getprop(obio, "assigned-addresses", reg, sizeof(reg)) < 12)
1128 return;
1129 zs_conschan = (void *)(reg[2] + zs_offset);
1130
1131 zs_hwflags[0][ch] = ZS_HWFLAG_CONSOLE;
1132 }
1133