Home | History | Annotate | Line # | Download | only in dev
zs.c revision 1.29
      1 /*	$NetBSD: zs.c,v 1.29 2004/03/24 19:42:04 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1996, 1998 Bill Studenmund
      5  * Copyright (c) 1995 Gordon W. Ross
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. The name of the author may not be used to endorse or promote products
     17  *    derived from this software without specific prior written permission.
     18  * 4. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *      This product includes software developed by Gordon Ross
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35  * Zilog Z8530 Dual UART driver (machine-dependent part)
     36  *
     37  * Runs two serial lines per chip using slave drivers.
     38  * Plain tty/async lines use the zs_async slave.
     39  * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
     40  * Other ports use their own mice & keyboard slaves.
     41  *
     42  * Credits & history:
     43  *
     44  * With NetBSD 1.1, port-mac68k started using a port of the port-sparc
     45  * (port-sun3?) zs.c driver (which was in turn based on code in the
     46  * Berkeley 4.4 Lite release). Bill Studenmund did the port, with
     47  * help from Allen Briggs and Gordon Ross <gwr (at) NetBSD.org>. Noud de
     48  * Brouwer field-tested the driver at a local ISP.
     49  *
     50  * Bill Studenmund and Gordon Ross then ported the machine-independant
     51  * z8530 driver to work with port-mac68k. NetBSD 1.2 contained an
     52  * intermediate version (mac68k using a local, patched version of
     53  * the m.i. drivers), with NetBSD 1.3 containing a full version.
     54  */
     55 
     56 #include <sys/cdefs.h>
     57 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.29 2004/03/24 19:42:04 matt Exp $");
     58 
     59 #include "opt_ddb.h"
     60 #include "opt_kgdb.h"
     61 
     62 #include <sys/param.h>
     63 #include <sys/systm.h>
     64 #include <sys/proc.h>
     65 #include <sys/device.h>
     66 #include <sys/conf.h>
     67 #include <sys/file.h>
     68 #include <sys/ioctl.h>
     69 #include <sys/tty.h>
     70 #include <sys/time.h>
     71 #include <sys/kernel.h>
     72 #include <sys/syslog.h>
     73 #ifdef KGDB
     74 #include <sys/kgdb.h>
     75 #endif
     76 
     77 #include <dev/cons.h>
     78 #include <dev/ofw/openfirm.h>
     79 #include <dev/ic/z8530reg.h>
     80 
     81 #include <machine/z8530var.h>
     82 #include <machine/autoconf.h>
     83 #include <machine/cpu.h>
     84 #include <machine/pio.h>
     85 
     86 /* Are these in a header file anywhere? */
     87 /* Booter flags interface */
     88 #define ZSMAC_RAW	0x01
     89 #define ZSMAC_LOCALTALK	0x02
     90 
     91 #include "zsc.h"	/* get the # of zs chips defined */
     92 
     93 /*
     94  * Some warts needed by z8530tty.c -
     95  */
     96 int zs_def_cflag = (CREAD | CS8 | HUPCL);
     97 
     98 /*
     99  * abort detection on console will now timeout after iterating on a loop
    100  * the following # of times. Cheep hack. Also, abort detection is turned
    101  * off after a timeout (i.e. maybe there's not a terminal hooked up).
    102  */
    103 #define ZSABORT_DELAY 3000000
    104 
    105 struct zsdevice {
    106 	/* Yes, they are backwards. */
    107 	struct	zschan zs_chan_b;
    108 	struct	zschan zs_chan_a;
    109 };
    110 
    111 /* Flags from cninit() */
    112 static int zs_hwflags[NZSC][2];
    113 /* Default speed for each channel */
    114 static int zs_defspeed[NZSC][2] = {
    115 	{ 38400, 	/* tty00 */
    116 	  38400 },	/* tty01 */
    117 };
    118 
    119 /* console stuff */
    120 void	*zs_conschan = 0;
    121 #ifdef	ZS_CONSOLE_ABORT
    122 int	zs_cons_canabort = 1;
    123 #else
    124 int	zs_cons_canabort = 0;
    125 #endif /* ZS_CONSOLE_ABORT*/
    126 
    127 /* device to which the console is attached--if serial. */
    128 /* Mac stuff */
    129 
    130 static int zs_get_speed __P((struct zs_chanstate *));
    131 
    132 /*
    133  * Even though zsparam will set up the clock multiples, etc., we
    134  * still set them here as: 1) mice & keyboards don't use zsparam,
    135  * and 2) the console stuff uses these defaults before device
    136  * attach.
    137  */
    138 
    139 static u_char zs_init_reg[16] = {
    140 	0,	/* 0: CMD (reset, etc.) */
    141 	0,	/* 1: No interrupts yet. */
    142 	0,	/* IVECT */
    143 	ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
    144 	ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
    145 	ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
    146 	0,	/* 6: TXSYNC/SYNCLO */
    147 	0,	/* 7: RXSYNC/SYNCHI */
    148 	0,	/* 8: alias for data port */
    149 	ZSWR9_MASTER_IE,
    150 	0,	/*10: Misc. TX/RX control bits */
    151 	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
    152 	((PCLK/32)/38400)-2,	/*12: BAUDLO (default=38400) */
    153 	0,			/*13: BAUDHI (default=38400) */
    154 	ZSWR14_BAUD_ENA,
    155 	ZSWR15_BREAK_IE,
    156 };
    157 
    158 /****************************************************************
    159  * Autoconfig
    160  ****************************************************************/
    161 
    162 /* Definition of the driver for autoconfig. */
    163 static int	zsc_match __P((struct device *, struct cfdata *, void *));
    164 static void	zsc_attach __P((struct device *, struct device *, void *));
    165 static int  zsc_print __P((void *, const char *name));
    166 
    167 CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
    168     zsc_match, zsc_attach, NULL, NULL);
    169 
    170 extern struct cfdriver zsc_cd;
    171 
    172 int zshard __P((void *));
    173 int zssoft __P((void *));
    174 #ifdef ZS_TXDMA
    175 static int zs_txdma_int __P((void *));
    176 #endif
    177 
    178 void zscnprobe __P((struct consdev *));
    179 void zscninit __P((struct consdev *));
    180 int  zscngetc __P((dev_t));
    181 void zscnputc __P((dev_t, int));
    182 void zscnpollc __P((dev_t, int));
    183 
    184 /*
    185  * Is the zs chip present?
    186  */
    187 static int
    188 zsc_match(parent, cf, aux)
    189 	struct device *parent;
    190 	struct cfdata *cf;
    191 	void *aux;
    192 {
    193 	struct confargs *ca = aux;
    194 	int unit = cf->cf_unit;
    195 
    196 	if (strcmp(ca->ca_name, "escc") != 0)
    197 		return 0;
    198 
    199 	if (unit > 1)
    200 		return 0;
    201 
    202 	return 1;
    203 }
    204 
    205 /*
    206  * Attach a found zs.
    207  *
    208  * Match slave number to zs unit number, so that misconfiguration will
    209  * not set up the keyboard as ttya, etc.
    210  */
    211 static void
    212 zsc_attach(parent, self, aux)
    213 	struct device *parent;
    214 	struct device *self;
    215 	void *aux;
    216 {
    217 	struct zsc_softc *zsc = (void *)self;
    218 	struct confargs *ca = aux;
    219 	struct zsc_attach_args zsc_args;
    220 	volatile struct zschan *zc;
    221 	struct xzs_chanstate *xcs;
    222 	struct zs_chanstate *cs;
    223 	struct zsdevice *zsd;
    224 	int zsc_unit, channel;
    225 	int s, chip, theflags;
    226 	int node, intr[2][3];
    227 	u_int regs[6];
    228 
    229 	chip = 0;
    230 	zsc_unit = zsc->zsc_dev.dv_unit;
    231 
    232 	ca->ca_reg[0] += ca->ca_baseaddr;
    233 	zsd = mapiodev(ca->ca_reg[0], ca->ca_reg[1]);
    234 
    235 	node = OF_child(ca->ca_node);	/* ch-a */
    236 
    237 	for (channel = 0; channel < 2; channel++) {
    238 		if (OF_getprop(node, "AAPL,interrupts",
    239 			       intr[channel], sizeof(intr[0])) == -1 &&
    240 		    OF_getprop(node, "interrupts",
    241 			       intr[channel], sizeof(intr[0])) == -1) {
    242 			printf(": cannot find interrupt property\n");
    243 			return;
    244 		}
    245 
    246 		if (OF_getprop(node, "reg", regs, sizeof(regs)) < 24) {
    247 			printf(": cannot find reg property\n");
    248 			return;
    249 		}
    250 		regs[2] += ca->ca_baseaddr;
    251 		regs[4] += ca->ca_baseaddr;
    252 #ifdef ZS_TXDMA
    253 		zsc->zsc_txdmareg[channel] = mapiodev(regs[2], regs[3]);
    254 		zsc->zsc_txdmacmd[channel] =
    255 			dbdma_alloc(sizeof(dbdma_command_t) * 3);
    256 		memset(zsc->zsc_txdmacmd[channel], 0,
    257 			sizeof(dbdma_command_t) * 3);
    258 		dbdma_reset(zsc->zsc_txdmareg[channel]);
    259 #endif
    260 		node = OF_peer(node);	/* ch-b */
    261 	}
    262 
    263 	printf(": irq %d,%d\n", intr[0][0], intr[1][0]);
    264 
    265 	/*
    266 	 * Initialize software state for each channel.
    267 	 */
    268 	for (channel = 0; channel < 2; channel++) {
    269 		zsc_args.channel = channel;
    270 		zsc_args.hwflags = zs_hwflags[zsc_unit][channel];
    271 		xcs = &zsc->xzsc_xcs_store[channel];
    272 		cs  = &xcs->xzs_cs;
    273 		zsc->zsc_cs[channel] = cs;
    274 
    275 		simple_lock_init(&cs->cs_lock);
    276 		cs->cs_channel = channel;
    277 		cs->cs_private = NULL;
    278 		cs->cs_ops = &zsops_null;
    279 
    280 		zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b;
    281 
    282 		cs->cs_reg_csr  = &zc->zc_csr;
    283 		cs->cs_reg_data = &zc->zc_data;
    284 
    285 		memcpy(cs->cs_creg, zs_init_reg, 16);
    286 		memcpy(cs->cs_preg, zs_init_reg, 16);
    287 
    288 		/* Current BAUD rate generator clock. */
    289 		cs->cs_brg_clk = PCLK / 16;	/* RTxC is 230400*16, so use 230400 */
    290 		if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
    291 			cs->cs_defspeed = zs_get_speed(cs);
    292 		else
    293 			cs->cs_defspeed = zs_defspeed[zsc_unit][channel];
    294 		cs->cs_defcflag = zs_def_cflag;
    295 
    296 		/* Make these correspond to cs_defcflag (-crtscts) */
    297 		cs->cs_rr0_dcd = ZSRR0_DCD;
    298 		cs->cs_rr0_cts = 0;
    299 		cs->cs_wr5_dtr = ZSWR5_DTR;
    300 		cs->cs_wr5_rts = 0;
    301 
    302 #ifdef __notyet__
    303 		cs->cs_slave_type = ZS_SLAVE_NONE;
    304 #endif
    305 
    306 		/* Define BAUD rate stuff. */
    307 		xcs->cs_clocks[0].clk = PCLK;
    308 		xcs->cs_clocks[0].flags = ZSC_RTXBRG | ZSC_RTXDIV;
    309 		xcs->cs_clocks[1].flags =
    310 			ZSC_RTXBRG | ZSC_RTXDIV | ZSC_VARIABLE | ZSC_EXTERN;
    311 		xcs->cs_clocks[2].flags = ZSC_TRXDIV | ZSC_VARIABLE;
    312 		xcs->cs_clock_count = 3;
    313 		if (channel == 0) {
    314 			theflags = 0; /*mac68k_machine.modem_flags;*/
    315 			/*xcs->cs_clocks[1].clk = mac68k_machine.modem_dcd_clk;*/
    316 			/*xcs->cs_clocks[2].clk = mac68k_machine.modem_cts_clk;*/
    317 			xcs->cs_clocks[1].clk = 0;
    318 			xcs->cs_clocks[2].clk = 0;
    319 		} else {
    320 			theflags = 0; /*mac68k_machine.print_flags;*/
    321 			xcs->cs_clocks[1].flags = ZSC_VARIABLE;
    322 			/*
    323 			 * Yes, we aren't defining ANY clock source enables for the
    324 			 * printer's DCD clock in. The hardware won't let us
    325 			 * use it. But a clock will freak out the chip, so we
    326 			 * let you set it, telling us to bar interrupts on the line.
    327 			 */
    328 			/*xcs->cs_clocks[1].clk = mac68k_machine.print_dcd_clk;*/
    329 			/*xcs->cs_clocks[2].clk = mac68k_machine.print_cts_clk;*/
    330 			xcs->cs_clocks[1].clk = 0;
    331 			xcs->cs_clocks[2].clk = 0;
    332 		}
    333 		if (xcs->cs_clocks[1].clk)
    334 			zsc_args.hwflags |= ZS_HWFLAG_NO_DCD;
    335 		if (xcs->cs_clocks[2].clk)
    336 			zsc_args.hwflags |= ZS_HWFLAG_NO_CTS;
    337 
    338 		/* Set defaults in our "extended" chanstate. */
    339 		xcs->cs_csource = 0;
    340 		xcs->cs_psource = 0;
    341 		xcs->cs_cclk_flag = 0;  /* Nothing fancy by default */
    342 		xcs->cs_pclk_flag = 0;
    343 
    344 		if (theflags & ZSMAC_RAW) {
    345 			zsc_args.hwflags |= ZS_HWFLAG_RAW;
    346 			printf(" (raw defaults)");
    347 		}
    348 
    349 		/*
    350 		 * XXX - This might be better done with a "stub" driver
    351 		 * (to replace zstty) that ignores LocalTalk for now.
    352 		 */
    353 		if (theflags & ZSMAC_LOCALTALK) {
    354 			printf(" shielding from LocalTalk");
    355 			cs->cs_defspeed = 1;
    356 			cs->cs_creg[ZSRR_BAUDLO] = cs->cs_preg[ZSRR_BAUDLO] = 0xff;
    357 			cs->cs_creg[ZSRR_BAUDHI] = cs->cs_preg[ZSRR_BAUDHI] = 0xff;
    358 			zs_write_reg(cs, ZSRR_BAUDLO, 0xff);
    359 			zs_write_reg(cs, ZSRR_BAUDHI, 0xff);
    360 			/*
    361 			 * If we might have LocalTalk, then make sure we have the
    362 			 * Baud rate low-enough to not do any damage.
    363 			 */
    364 		}
    365 
    366 		/*
    367 		 * We used to disable chip interrupts here, but we now
    368 		 * do that in zscnprobe, just in case MacOS left the chip on.
    369 		 */
    370 
    371 		xcs->cs_chip = chip;
    372 
    373 		/* Stash away a copy of the final H/W flags. */
    374 		xcs->cs_hwflags = zsc_args.hwflags;
    375 
    376 		/*
    377 		 * Look for a child driver for this channel.
    378 		 * The child attach will setup the hardware.
    379 		 */
    380 		if (!config_found(self, (void *)&zsc_args, zsc_print)) {
    381 			/* No sub-driver.  Just reset it. */
    382 			u_char reset = (channel == 0) ?
    383 				ZSWR9_A_RESET : ZSWR9_B_RESET;
    384 			s = splzs();
    385 			zs_write_reg(cs, 9, reset);
    386 			splx(s);
    387 		}
    388 	}
    389 
    390 	/* XXX - Now safe to install interrupt handlers. */
    391 	intr_establish(intr[0][0], IST_LEVEL, IPL_TTY, zshard, NULL);
    392 	intr_establish(intr[1][0], IST_LEVEL, IPL_TTY, zshard, NULL);
    393 #ifdef ZS_TXDMA
    394 	intr_establish(intr[0][1], IST_LEVEL, IPL_TTY, zs_txdma_int, (void *)0);
    395 	intr_establish(intr[1][1], IST_LEVEL, IPL_TTY, zs_txdma_int, (void *)1);
    396 #endif
    397 
    398 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    399 	zsc->zsc_si = softintr_establish(IPL_SOFTSERIAL,
    400 		(void (*)(void *)) zsc_intr_soft, zsc);
    401 #endif
    402 
    403 	/*
    404 	 * Set the master interrupt enable and interrupt vector.
    405 	 * (common to both channels, do it on A)
    406 	 */
    407 	cs = zsc->zsc_cs[0];
    408 	s = splzs();
    409 	/* interrupt vector */
    410 	zs_write_reg(cs, 2, zs_init_reg[2]);
    411 	/* master interrupt control (enable) */
    412 	zs_write_reg(cs, 9, zs_init_reg[9]);
    413 	splx(s);
    414 }
    415 
    416 static int
    417 zsc_print(aux, name)
    418 	void *aux;
    419 	const char *name;
    420 {
    421 	struct zsc_attach_args *args = aux;
    422 
    423 	if (name != NULL)
    424 		aprint_normal("%s: ", name);
    425 
    426 	if (args->channel != -1)
    427 		aprint_normal(" channel %d", args->channel);
    428 
    429 	return UNCONF;
    430 }
    431 
    432 int
    433 zsmdioctl(cs, cmd, data)
    434 	struct zs_chanstate *cs;
    435 	u_long cmd;
    436 	caddr_t data;
    437 {
    438 	switch (cmd) {
    439 	default:
    440 		return (EPASSTHROUGH);
    441 	}
    442 	return (0);
    443 }
    444 
    445 void
    446 zsmd_setclock(cs)
    447 	struct zs_chanstate *cs;
    448 {
    449 #ifdef NOTYET
    450 	struct xzs_chanstate *xcs = (void *)cs;
    451 
    452 	if (cs->cs_channel != 0)
    453 		return;
    454 
    455 	/*
    456 	 * If the new clock has the external bit set, then select the
    457 	 * external source.
    458 	 */
    459 	via_set_modem((xcs->cs_pclk_flag & ZSC_EXTERN) ? 1 : 0);
    460 #endif
    461 }
    462 
    463 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
    464 static int zssoftpending;
    465 #endif
    466 
    467 /*
    468  * Our ZS chips all share a common, autovectored interrupt,
    469  * so we have to look at all of them on each interrupt.
    470  */
    471 int
    472 zshard(arg)
    473 	void *arg;
    474 {
    475 	register struct zsc_softc *zsc;
    476 	register int unit, rval;
    477 
    478 	rval = 0;
    479 	for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
    480 		zsc = zsc_cd.cd_devs[unit];
    481 		if (zsc == NULL)
    482 			continue;
    483 		rval |= zsc_intr_hard(zsc);
    484 		if ((zsc->zsc_cs[0]->cs_softreq) ||
    485 			(zsc->zsc_cs[1]->cs_softreq))
    486 		{
    487 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    488 			softintr_schedule(zsc->zsc_si);
    489 #else
    490 			/* zsc_req_softint(zsc); */
    491 			/* We are at splzs here, so no need to lock. */
    492 			if (zssoftpending == 0) {
    493 				zssoftpending = 1;
    494 				setsoftserial();
    495 			}
    496 #endif
    497 		}
    498 	}
    499 	return (rval);
    500 }
    501 
    502 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
    503 /*
    504  * Similar scheme as for zshard (look at all of them)
    505  */
    506 int
    507 zssoft(arg)
    508 	void *arg;
    509 {
    510 	register struct zsc_softc *zsc;
    511 	register int unit;
    512 
    513 	/* This is not the only ISR on this IPL. */
    514 	if (zssoftpending == 0)
    515 		return (0);
    516 
    517 	/*
    518 	 * The soft intr. bit will be set by zshard only if
    519 	 * the variable zssoftpending is zero.
    520 	 */
    521 	zssoftpending = 0;
    522 
    523 	for (unit = 0; unit < zsc_cd.cd_ndevs; ++unit) {
    524 		zsc = zsc_cd.cd_devs[unit];
    525 		if (zsc == NULL)
    526 			continue;
    527 		(void) zsc_intr_soft(zsc);
    528 	}
    529 	return (1);
    530 }
    531 #endif
    532 
    533 #ifdef ZS_TXDMA
    534 int
    535 zs_txdma_int(arg)
    536 	void *arg;
    537 {
    538 	int ch = (int)arg;
    539 	struct zsc_softc *zsc;
    540 	struct zs_chanstate *cs;
    541 	int unit = 0;			/* XXX */
    542 
    543 	zsc = zsc_cd.cd_devs[unit];
    544 	if (zsc == NULL)
    545 		panic("zs_txdma_int");
    546 
    547 	cs = zsc->zsc_cs[ch];
    548 	zstty_txdma_int(cs);
    549 
    550 	if (cs->cs_softreq) {
    551 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
    552 		softintr_schedule(zsc->zsc_si);
    553 #else
    554 		if (zssoftpending == 0) {
    555 			zssoftpending = 1;
    556 			setsoftserial();
    557 		}
    558 #endif
    559 	}
    560 	return 1;
    561 }
    562 
    563 void
    564 zs_dma_setup(cs, pa, len)
    565 	struct zs_chanstate *cs;
    566 	caddr_t pa;
    567 	int len;
    568 {
    569 	struct zsc_softc *zsc;
    570 	dbdma_command_t *cmdp;
    571 	int ch = cs->cs_channel;
    572 
    573 	zsc = zsc_cd.cd_devs[ch];
    574 	cmdp = zsc->zsc_txdmacmd[ch];
    575 
    576 	DBDMA_BUILD(cmdp, DBDMA_CMD_OUT_LAST, 0, len, kvtop(pa),
    577 		DBDMA_INT_ALWAYS, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
    578 	cmdp++;
    579 	DBDMA_BUILD(cmdp, DBDMA_CMD_STOP, 0, 0, 0,
    580 		DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
    581 
    582 	__asm __volatile("eieio");
    583 
    584 	dbdma_start(zsc->zsc_txdmareg[ch], zsc->zsc_txdmacmd[ch]);
    585 }
    586 #endif
    587 
    588 /*
    589  * Compute the current baud rate given a ZS channel.
    590  * XXX Assume internal BRG.
    591  */
    592 int
    593 zs_get_speed(cs)
    594 	struct zs_chanstate *cs;
    595 {
    596 	int tconst;
    597 
    598 	tconst = zs_read_reg(cs, 12);
    599 	tconst |= zs_read_reg(cs, 13) << 8;
    600 	return TCONST_TO_BPS(cs->cs_brg_clk, tconst);
    601 }
    602 
    603 #ifndef ZS_TOLERANCE
    604 #define ZS_TOLERANCE 51
    605 /* 5% in tenths of a %, plus 1 so that exactly 5% will be ok. */
    606 #endif
    607 
    608 /*
    609  * Search through the signal sources in the channel, and
    610  * pick the best one for the baud rate requested. Return
    611  * a -1 if not achievable in tolerance. Otherwise return 0
    612  * and fill in the values.
    613  *
    614  * This routine draws inspiration from the Atari port's zs.c
    615  * driver in NetBSD 1.1 which did the same type of source switching.
    616  * Tolerance code inspired by comspeed routine in isa/com.c.
    617  *
    618  * By Bill Studenmund, 1996-05-12
    619  */
    620 int
    621 zs_set_speed(cs, bps)
    622 	struct zs_chanstate *cs;
    623 	int bps;	/* bits per second */
    624 {
    625 	struct xzs_chanstate *xcs = (void *) cs;
    626 	int i, tc, tc0 = 0, tc1, s, sf = 0;
    627 	int src, rate0, rate1, err, tol;
    628 
    629 	if (bps == 0)
    630 		return (0);
    631 
    632 	src = -1;		/* no valid source yet */
    633 	tol = ZS_TOLERANCE;
    634 
    635 	/*
    636 	 * Step through all the sources and see which one matches
    637 	 * the best. A source has to match BETTER than tol to be chosen.
    638 	 * Thus if two sources give the same error, the first one will be
    639 	 * chosen. Also, allow for the possability that one source might run
    640 	 * both the BRG and the direct divider (i.e. RTxC).
    641 	 */
    642 	for (i = 0; i < xcs->cs_clock_count; i++) {
    643 		if (xcs->cs_clocks[i].clk <= 0)
    644 			continue;	/* skip non-existent or bad clocks */
    645 		if (xcs->cs_clocks[i].flags & ZSC_BRG) {
    646 			/* check out BRG at /16 */
    647 			tc1 = BPS_TO_TCONST(xcs->cs_clocks[i].clk >> 4, bps);
    648 			if (tc1 >= 0) {
    649 				rate1 = TCONST_TO_BPS(xcs->cs_clocks[i].clk >> 4, tc1);
    650 				err = abs(((rate1 - bps)*1000)/bps);
    651 				if (err < tol) {
    652 					tol = err;
    653 					src = i;
    654 					sf = xcs->cs_clocks[i].flags & ~ZSC_DIV;
    655 					tc0 = tc1;
    656 					rate0 = rate1;
    657 				}
    658 			}
    659 		}
    660 		if (xcs->cs_clocks[i].flags & ZSC_DIV) {
    661 			/*
    662 			 * Check out either /1, /16, /32, or /64
    663 			 * Note: for /1, you'd better be using a synchronized
    664 			 * clock!
    665 			 */
    666 			int b0 = xcs->cs_clocks[i].clk, e0 = abs(b0-bps);
    667 			int b1 = b0 >> 4, e1 = abs(b1-bps);
    668 			int b2 = b1 >> 1, e2 = abs(b2-bps);
    669 			int b3 = b2 >> 1, e3 = abs(b3-bps);
    670 
    671 			if (e0 < e1 && e0 < e2 && e0 < e3) {
    672 				err = e0;
    673 				rate1 = b0;
    674 				tc1 = ZSWR4_CLK_X1;
    675 			} else if (e0 > e1 && e1 < e2  && e1 < e3) {
    676 				err = e1;
    677 				rate1 = b1;
    678 				tc1 = ZSWR4_CLK_X16;
    679 			} else if (e0 > e2 && e1 > e2 && e2 < e3) {
    680 				err = e2;
    681 				rate1 = b2;
    682 				tc1 = ZSWR4_CLK_X32;
    683 			} else {
    684 				err = e3;
    685 				rate1 = b3;
    686 				tc1 = ZSWR4_CLK_X64;
    687 			}
    688 
    689 			err = (err * 1000)/bps;
    690 			if (err < tol) {
    691 				tol = err;
    692 				src = i;
    693 				sf = xcs->cs_clocks[i].flags & ~ZSC_BRG;
    694 				tc0 = tc1;
    695 				rate0 = rate1;
    696 			}
    697 		}
    698 	}
    699 #ifdef ZSMACDEBUG
    700 	zsprintf("Checking for rate %d. Found source #%d.\n",bps, src);
    701 #endif
    702 	if (src == -1)
    703 		return (EINVAL); /* no can do */
    704 
    705 	/*
    706 	 * The M.I. layer likes to keep cs_brg_clk current, even though
    707 	 * we are the only ones who should be touching the BRG's rate.
    708 	 *
    709 	 * Note: we are assuming that any ZSC_EXTERN signal source comes in
    710 	 * on the RTxC pin. Correct for the mac68k obio zsc.
    711 	 */
    712 	if (sf & ZSC_EXTERN)
    713 		cs->cs_brg_clk = xcs->cs_clocks[i].clk >> 4;
    714 	else
    715 		cs->cs_brg_clk = PCLK / 16;
    716 
    717 	/*
    718 	 * Now we have a source, so set it up.
    719 	 */
    720 	s = splzs();
    721 	xcs->cs_psource = src;
    722 	xcs->cs_pclk_flag = sf;
    723 	bps = rate0;
    724 	if (sf & ZSC_BRG) {
    725 		cs->cs_preg[4] = ZSWR4_CLK_X16;
    726 		cs->cs_preg[11]= ZSWR11_RXCLK_BAUD | ZSWR11_TXCLK_BAUD;
    727 		if (sf & ZSC_PCLK) {
    728 			cs->cs_preg[14] = ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK;
    729 		} else {
    730 			cs->cs_preg[14] = ZSWR14_BAUD_ENA;
    731 		}
    732 		tc = tc0;
    733 	} else {
    734 		cs->cs_preg[4] = tc0;
    735 		if (sf & ZSC_RTXDIV) {
    736 			cs->cs_preg[11] = ZSWR11_RXCLK_RTXC | ZSWR11_TXCLK_RTXC;
    737 		} else {
    738 			cs->cs_preg[11] = ZSWR11_RXCLK_TRXC | ZSWR11_TXCLK_TRXC;
    739 		}
    740 		cs->cs_preg[14]= 0;
    741 		tc = 0xffff;
    742 	}
    743 	/* Set the BAUD rate divisor. */
    744 	cs->cs_preg[12] = tc;
    745 	cs->cs_preg[13] = tc >> 8;
    746 	splx(s);
    747 
    748 #ifdef ZSMACDEBUG
    749 	zsprintf("Rate is %7d, tc is %7d, source no. %2d, flags %4x\n", \
    750 	    bps, tc, src, sf);
    751 	zsprintf("Registers are: 4 %x, 11 %x, 14 %x\n\n",
    752 		cs->cs_preg[4], cs->cs_preg[11], cs->cs_preg[14]);
    753 #endif
    754 
    755 	cs->cs_preg[5] |= ZSWR5_RTS;	/* Make sure the drivers are on! */
    756 
    757 	/* Caller will stuff the pending registers. */
    758 	return (0);
    759 }
    760 
    761 int
    762 zs_set_modes(cs, cflag)
    763 	struct zs_chanstate *cs;
    764 	int cflag;	/* bits per second */
    765 {
    766 	struct xzs_chanstate *xcs = (void*)cs;
    767 	int s;
    768 
    769 	/*
    770 	 * Make sure we don't enable hfc on a signal line we're ignoring.
    771 	 * As we enable CTS interrupts only if we have CRTSCTS or CDTRCTS,
    772 	 * this code also effectivly turns off ZSWR15_CTS_IE.
    773 	 *
    774 	 * Also, disable DCD interrupts if we've been told to ignore
    775 	 * the DCD pin. Happens on mac68k because the input line for
    776 	 * DCD can also be used as a clock input.  (Just set CLOCAL.)
    777 	 *
    778 	 * If someone tries to turn an invalid flow mode on, Just Say No
    779 	 * (Suggested by gwr)
    780 	 */
    781 	if ((cflag & CDTRCTS) && (cflag & (CRTSCTS | MDMBUF)))
    782 		return (EINVAL);
    783 	if (xcs->cs_hwflags & ZS_HWFLAG_NO_DCD) {
    784 		if (cflag & MDMBUF)
    785 			return (EINVAL);
    786 		cflag |= CLOCAL;
    787 	}
    788 	if ((xcs->cs_hwflags & ZS_HWFLAG_NO_CTS) && (cflag & (CRTSCTS | CDTRCTS)))
    789 		return (EINVAL);
    790 
    791 	/*
    792 	 * Output hardware flow control on the chip is horrendous:
    793 	 * if carrier detect drops, the receiver is disabled, and if
    794 	 * CTS drops, the transmitter is stoped IN MID CHARACTER!
    795 	 * Therefore, NEVER set the HFC bit, and instead use the
    796 	 * status interrupt to detect CTS changes.
    797 	 */
    798 	s = splzs();
    799 	if ((cflag & (CLOCAL | MDMBUF)) != 0)
    800 		cs->cs_rr0_dcd = 0;
    801 	else
    802 		cs->cs_rr0_dcd = ZSRR0_DCD;
    803 	/*
    804 	 * The mac hardware only has one output, DTR (HSKo in Mac
    805 	 * parlance). In HFC mode, we use it for the functions
    806 	 * typically served by RTS and DTR on other ports, so we
    807 	 * have to fake the upper layer out some.
    808 	 *
    809 	 * CRTSCTS we use CTS as an input which tells us when to shut up.
    810 	 * We make no effort to shut up the other side of the connection.
    811 	 * DTR is used to hang up the modem.
    812 	 *
    813 	 * In CDTRCTS, we use CTS to tell us to stop, but we use DTR to
    814 	 * shut up the other side.
    815 	 */
    816 	if ((cflag & CRTSCTS) != 0) {
    817 		cs->cs_wr5_dtr = ZSWR5_DTR;
    818 		cs->cs_wr5_rts = 0;
    819 		cs->cs_rr0_cts = ZSRR0_CTS;
    820 	} else if ((cflag & CDTRCTS) != 0) {
    821 		cs->cs_wr5_dtr = 0;
    822 		cs->cs_wr5_rts = ZSWR5_DTR;
    823 		cs->cs_rr0_cts = ZSRR0_CTS;
    824 	} else if ((cflag & MDMBUF) != 0) {
    825 		cs->cs_wr5_dtr = 0;
    826 		cs->cs_wr5_rts = ZSWR5_DTR;
    827 		cs->cs_rr0_cts = ZSRR0_DCD;
    828 	} else {
    829 		cs->cs_wr5_dtr = ZSWR5_DTR;
    830 		cs->cs_wr5_rts = 0;
    831 		cs->cs_rr0_cts = 0;
    832 	}
    833 	splx(s);
    834 
    835 	/* Caller will stuff the pending registers. */
    836 	return (0);
    837 }
    838 
    839 
    840 /*
    841  * Read or write the chip with suitable delays.
    842  * MacII hardware has the delay built in.
    843  * No need for extra delay. :-) However, some clock-chirped
    844  * macs, or zsc's on serial add-on boards might need it.
    845  */
    846 #define	ZS_DELAY()
    847 
    848 u_char
    849 zs_read_reg(cs, reg)
    850 	struct zs_chanstate *cs;
    851 	u_char reg;
    852 {
    853 	u_char val;
    854 
    855 	out8(cs->cs_reg_csr, reg);
    856 	ZS_DELAY();
    857 	val = in8(cs->cs_reg_csr);
    858 	ZS_DELAY();
    859 	return val;
    860 }
    861 
    862 void
    863 zs_write_reg(cs, reg, val)
    864 	struct zs_chanstate *cs;
    865 	u_char reg, val;
    866 {
    867 	out8(cs->cs_reg_csr, reg);
    868 	ZS_DELAY();
    869 	out8(cs->cs_reg_csr, val);
    870 	ZS_DELAY();
    871 }
    872 
    873 u_char zs_read_csr(cs)
    874 	struct zs_chanstate *cs;
    875 {
    876 	register u_char val;
    877 
    878 	val = in8(cs->cs_reg_csr);
    879 	ZS_DELAY();
    880 	/* make up for the fact CTS is wired backwards */
    881 	val ^= ZSRR0_CTS;
    882 	return val;
    883 }
    884 
    885 void  zs_write_csr(cs, val)
    886 	struct zs_chanstate *cs;
    887 	u_char val;
    888 {
    889 	/* Note, the csr does not write CTS... */
    890 	out8(cs->cs_reg_csr, val);
    891 	ZS_DELAY();
    892 }
    893 
    894 u_char zs_read_data(cs)
    895 	struct zs_chanstate *cs;
    896 {
    897 	register u_char val;
    898 
    899 	val = in8(cs->cs_reg_data);
    900 	ZS_DELAY();
    901 	return val;
    902 }
    903 
    904 void  zs_write_data(cs, val)
    905 	struct zs_chanstate *cs;
    906 	u_char val;
    907 {
    908 	out8(cs->cs_reg_data, val);
    909 	ZS_DELAY();
    910 }
    911 
    912 /****************************************************************
    913  * Console support functions (powermac specific!)
    914  * Note: this code is allowed to know about the layout of
    915  * the chip registers, and uses that to keep things simple.
    916  * XXX - I think I like the mvme167 code better. -gwr
    917  * XXX - Well :-P  :-)  -wrs
    918  ****************************************************************/
    919 
    920 #define zscnpollc	nullcnpollc
    921 cons_decl(zs);
    922 
    923 static int stdin, stdout;
    924 
    925 /*
    926  * Console functions.
    927  */
    928 
    929 /*
    930  * zscnprobe is the routine which gets called as the kernel is trying to
    931  * figure out where the console should be. Each io driver which might
    932  * be the console (as defined in mac68k/conf.c) gets probed. The probe
    933  * fills in the consdev structure. Important parts are the device #,
    934  * and the console priority. Values are CN_DEAD (don't touch me),
    935  * CN_NORMAL (I'm here, but elsewhere might be better), CN_INTERNAL
    936  * (the video, better than CN_NORMAL), and CN_REMOTE (pick me!)
    937  *
    938  * As the mac's a bit different, we do extra work here. We mainly check
    939  * to see if we have serial echo going on. Also chould check for default
    940  * speeds.
    941  */
    942 
    943 /*
    944  * Polled input char.
    945  */
    946 int
    947 zs_getc(v)
    948 	void *v;
    949 {
    950 	register volatile struct zschan *zc = v;
    951 	register int s, c, rr0;
    952 
    953 	s = splhigh();
    954 	/* Wait for a character to arrive. */
    955 	do {
    956 		rr0 = in8(&zc->zc_csr);
    957 		ZS_DELAY();
    958 	} while ((rr0 & ZSRR0_RX_READY) == 0);
    959 
    960 	c = in8(&zc->zc_data);
    961 	ZS_DELAY();
    962 	splx(s);
    963 
    964 	/*
    965 	 * This is used by the kd driver to read scan codes,
    966 	 * so don't translate '\r' ==> '\n' here...
    967 	 */
    968 	return (c);
    969 }
    970 
    971 /*
    972  * Polled output char.
    973  */
    974 void
    975 zs_putc(v, c)
    976 	void *v;
    977 	int c;
    978 {
    979 	register volatile struct zschan *zc = v;
    980 	register int s, rr0;
    981 	register long wait = 0;
    982 
    983 	s = splhigh();
    984 	/* Wait for transmitter to become ready. */
    985 	do {
    986 		rr0 = in8(&zc->zc_csr);
    987 		ZS_DELAY();
    988 	} while (((rr0 & ZSRR0_TX_READY) == 0) && (wait++ < 1000000));
    989 
    990 	if ((rr0 & ZSRR0_TX_READY) != 0) {
    991 		out8(&zc->zc_data, c);
    992 		ZS_DELAY();
    993 	}
    994 	splx(s);
    995 }
    996 
    997 
    998 /*
    999  * Polled console input putchar.
   1000  */
   1001 int
   1002 zscngetc(dev)
   1003 	dev_t dev;
   1004 {
   1005 	register volatile struct zschan *zc = zs_conschan;
   1006 	register int c;
   1007 
   1008 	if (zc) {
   1009 		c = zs_getc((void *)zc);
   1010 	} else {
   1011 		char ch = 0;
   1012 		OF_read(stdin, &ch, 1);
   1013 		c = ch;
   1014 	}
   1015 	return c;
   1016 }
   1017 
   1018 /*
   1019  * Polled console output putchar.
   1020  */
   1021 void
   1022 zscnputc(dev, c)
   1023 	dev_t dev;
   1024 	int c;
   1025 {
   1026 	register volatile struct zschan *zc = zs_conschan;
   1027 
   1028 	if (zc) {
   1029 		zs_putc((void *)zc, c);
   1030 	} else {
   1031 		char ch = c;
   1032 		OF_write(stdout, &ch, 1);
   1033 	}
   1034 }
   1035 
   1036 /*
   1037  * Handle user request to enter kernel debugger.
   1038  */
   1039 void
   1040 zs_abort(cs)
   1041 	struct zs_chanstate *cs;
   1042 {
   1043 	volatile struct zschan *zc = zs_conschan;
   1044 	int rr0;
   1045 	register long wait = 0;
   1046 
   1047 	if (zs_cons_canabort == 0)
   1048 		return;
   1049 
   1050 	/* Wait for end of break to avoid PROM abort. */
   1051 	do {
   1052 		rr0 = in8(&zc->zc_csr);
   1053 		ZS_DELAY();
   1054 	} while ((rr0 & ZSRR0_BREAK) && (wait++ < ZSABORT_DELAY));
   1055 
   1056 	if (wait > ZSABORT_DELAY) {
   1057 		zs_cons_canabort = 0;
   1058 	/* If we time out, turn off the abort ability! */
   1059 	}
   1060 
   1061 #if defined(KGDB)
   1062 	kgdb_connect(1);
   1063 #elif defined(DDB)
   1064 	Debugger();
   1065 #endif
   1066 }
   1067 
   1068 extern int ofccngetc __P((dev_t));
   1069 extern void ofccnputc __P((dev_t, int));
   1070 
   1071 struct consdev consdev_zs = {
   1072 	zscnprobe,
   1073 	zscninit,
   1074 	zscngetc,
   1075 	zscnputc,
   1076 	zscnpollc,
   1077 	NULL,
   1078 };
   1079 
   1080 void
   1081 zscnprobe(cp)
   1082 	struct consdev *cp;
   1083 {
   1084 	int chosen, pkg;
   1085 	int unit = 0;
   1086 	char name[16];
   1087 	extern const struct cdevsw zstty_cdevsw;
   1088 
   1089 	if ((chosen = OF_finddevice("/chosen")) == -1)
   1090 		return;
   1091 
   1092 	if (OF_getprop(chosen, "stdin", &stdin, sizeof(stdin)) == -1)
   1093 		return;
   1094 	if (OF_getprop(chosen, "stdout", &stdout, sizeof(stdout)) == -1)
   1095 		return;
   1096 
   1097 	if ((pkg = OF_instance_to_package(stdin)) == -1)
   1098 		return;
   1099 
   1100 	memset(name, 0, sizeof(name));
   1101 	if (OF_getprop(pkg, "device_type", name, sizeof(name)) == -1)
   1102 		return;
   1103 
   1104 	if (strcmp(name, "serial") != 0)
   1105 		return;
   1106 
   1107 	memset(name, 0, sizeof(name));
   1108 	if (OF_getprop(pkg, "name", name, sizeof(name)) == -1)
   1109 		return;
   1110 
   1111 	if (strcmp(name, "ch-b") == 0)
   1112 		unit = 1;
   1113 
   1114 	cp->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), unit);
   1115 	cp->cn_pri = CN_REMOTE;
   1116 }
   1117 
   1118 void
   1119 zscninit(cp)
   1120 	struct consdev *cp;
   1121 {
   1122 	int escc, escc_ch, obio, zs_offset;
   1123 	int ch = 0;
   1124 	u_int32_t reg[5];
   1125 	char name[16];
   1126 
   1127 	if ((escc_ch = OF_instance_to_package(stdin)) == -1)
   1128 		return;
   1129 
   1130 	memset(name, 0, sizeof(name));
   1131 	if (OF_getprop(escc_ch, "name", name, sizeof(name)) == -1)
   1132 		return;
   1133 
   1134 	if (strcmp(name, "ch-b") == 0)
   1135 		ch = 1;
   1136 
   1137 	if (OF_getprop(escc_ch, "reg", reg, sizeof(reg)) < 4)
   1138 		return;
   1139 	zs_offset = reg[0];
   1140 
   1141 	escc = OF_parent(escc_ch);
   1142 	obio = OF_parent(escc);
   1143 
   1144 	if (OF_getprop(obio, "assigned-addresses", reg, sizeof(reg)) < 12)
   1145 		return;
   1146 	zs_conschan = (void *)(reg[2] + zs_offset);
   1147 
   1148 	zs_hwflags[0][ch] = ZS_HWFLAG_CONSOLE;
   1149 }
   1150