zs.c revision 1.5 1 /* $NetBSD: zs.c,v 1.5 1998/08/16 11:24:36 tsubai Exp $ */
2
3 /*
4 * Copyright (c) 1996 Bill Studenmund
5 * Copyright (c) 1995 Gordon W. Ross
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 * derived from this software without specific prior written permission.
18 * 4. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by Gordon Ross
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 /*
35 * Zilog Z8530 Dual UART driver (machine-dependent part)
36 *
37 * Runs two serial lines per chip using slave drivers.
38 * Plain tty/async lines use the zs_async slave.
39 * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
40 * Other ports use their own mice & keyboard slaves.
41 *
42 * Credits & history:
43 *
44 * With NetBSD 1.1, port-mac68k started using a port of the port-sparc
45 * (port-sun3?) zs.c driver (which was in turn based on code in the
46 * Berkeley 4.4 Lite release). Bill Studenmund did the port, with
47 * help from Allen Briggs and Gordon Ross <gwr (at) netbsd.org>. Noud de
48 * Brouwer field-tested the driver at a local ISP.
49 *
50 * Bill Studenmund and Gordon Ross then ported the machine-independant
51 * z8530 driver to work with port-mac68k. NetBSD 1.2 contained an
52 * intermediate version (mac68k using a local, patched version of
53 * the m.i. drivers), with NetBSD 1.3 containing a full version.
54 */
55
56 #include "opt_ddb.h"
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/proc.h>
61 #include <sys/device.h>
62 #include <sys/conf.h>
63 #include <sys/file.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/time.h>
67 #include <sys/kernel.h>
68 #include <sys/syslog.h>
69
70 #include <dev/cons.h>
71 #include <dev/ofw/openfirm.h>
72 #include <dev/ic/z8530reg.h>
73
74 #include <machine/z8530var.h>
75 #include <machine/autoconf.h>
76 #include <machine/cpu.h>
77 #include <machine/pio.h>
78
79 /* Are these in a header file anywhere? */
80 /* Booter flags interface */
81 #define ZSMAC_RAW 0x01
82 #define ZSMAC_LOCALTALK 0x02
83 #define ZS_STD_BRG (57600*4)
84
85 #include "zsc.h" /* get the # of zs chips defined */
86
87 /*
88 * Some warts needed by z8530tty.c -
89 */
90 int zs_def_cflag = (CREAD | CS8 | HUPCL);
91 int zs_major = 12;
92
93 /*
94 * abort detection on console will now timeout after iterating on a loop
95 * the following # of times. Cheep hack. Also, abort detection is turned
96 * off after a timeout (i.e. maybe there's not a terminal hooked up).
97 */
98 #define ZSABORT_DELAY 3000000
99
100 /* The layout of this is hardware-dependent (padding, order). */
101 struct zschan {
102 volatile u_char zc_csr; /* ctrl,status, and indirect access */
103 u_char zc_xxx0[15];
104 volatile u_char zc_data; /* data */
105 u_char zc_xxx1[15];
106 };
107 struct zsdevice {
108 /* Yes, they are backwards. */
109 struct zschan zs_chan_b;
110 struct zschan zs_chan_a;
111 };
112
113 /* Saved PROM mappings */
114 static struct zsdevice *zsaddr[2];
115
116 /* Flags from cninit() */
117 static int zs_hwflags[NZSC][2];
118 /* Default speed for each channel */
119 static int zs_defspeed[NZSC][2] = {
120 { 38400, /* tty00 */
121 38400 }, /* tty01 */
122 };
123 /* console stuff */
124 void *zs_conschan = 0;
125 int zs_consunit;
126 #ifdef ZS_CONSOLE_ABORT
127 int zs_cons_canabort = 1;
128 #else
129 int zs_cons_canabort = 0;
130 #endif /* ZS_CONSOLE_ABORT*/
131
132 /* device to which the console is attached--if serial. */
133 /* Mac stuff */
134
135 static struct zschan *zs_get_chan_addr __P((int zsc_unit, int channel));
136 void zs_init __P((void));
137 int zs_cn_check_speed __P((int bps));
138
139 /*
140 * Even though zsparam will set up the clock multiples, etc., we
141 * still set them here as: 1) mice & keyboards don't use zsparam,
142 * and 2) the console stuff uses these defaults before device
143 * attach.
144 */
145
146 static u_char zs_init_reg[16] = {
147 0, /* 0: CMD (reset, etc.) */
148 0, /* 1: No interrupts yet. */
149 0, /* IVECT */
150 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
151 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
152 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
153 0, /* 6: TXSYNC/SYNCLO */
154 0, /* 7: RXSYNC/SYNCHI */
155 0, /* 8: alias for data port */
156 ZSWR9_MASTER_IE,
157 0, /*10: Misc. TX/RX control bits */
158 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
159 1, /*12: BAUDLO (default=38400) */
160 0, /*13: BAUDHI (default=38400) */
161 ZSWR14_BAUD_ENA,
162 ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
163 };
164
165 struct zschan *
166 zs_get_chan_addr(zs_unit, channel)
167 int zs_unit, channel;
168 {
169 struct zsdevice *addr;
170 struct zschan *zc;
171
172 if (zs_unit >= 1)
173 return NULL;
174 addr = zsaddr[zs_unit];
175 if (addr == NULL)
176 return NULL;
177 if (channel == 0) {
178 zc = &addr->zs_chan_a;
179 } else {
180 zc = &addr->zs_chan_b;
181 }
182 return (zc);
183 }
184
185
186 /****************************************************************
187 * Autoconfig
188 ****************************************************************/
189
190 /* Definition of the driver for autoconfig. */
191 static int zsc_match __P((struct device *, struct cfdata *, void *));
192 static void zsc_attach __P((struct device *, struct device *, void *));
193 static int zsc_print __P((void *, const char *name));
194
195 struct cfattach zsc_ca = {
196 sizeof(struct zsc_softc), zsc_match, zsc_attach
197 };
198
199 extern struct cfdriver zsc_cd;
200
201 int zshard __P((void *));
202 int zssoft __P((void *));
203 #ifdef ZS_TXDMA
204 static int zs_txdma_int __P((void *));
205 #endif
206
207 void zscnprobe __P((struct consdev *));
208 void zscninit __P((struct consdev *));
209 int zscngetc __P((dev_t));
210 void zscnputc __P((dev_t, int));
211 void zscnpollc __P((dev_t, int));
212
213 /*
214 * Is the zs chip present?
215 */
216 static int
217 zsc_match(parent, cf, aux)
218 struct device *parent;
219 struct cfdata *cf;
220 void *aux;
221 {
222 struct confargs *ca = aux;
223 int unit = cf->cf_unit;
224
225 if (strcmp(ca->ca_name, "escc") != 0)
226 return 0;
227
228 if (unit > 1)
229 return 0;
230
231 return 1;
232 }
233
234 /*
235 * Attach a found zs.
236 *
237 * Match slave number to zs unit number, so that misconfiguration will
238 * not set up the keyboard as ttya, etc.
239 */
240 static void
241 zsc_attach(parent, self, aux)
242 struct device *parent;
243 struct device *self;
244 void *aux;
245 {
246 struct zsc_softc *zsc = (void *)self;
247 struct confargs *ca = aux;
248 struct zsc_attach_args zsc_args;
249 volatile struct zschan *zc;
250 struct xzs_chanstate *xcs;
251 struct zs_chanstate *cs;
252 int zsc_unit, channel;
253 int s, chip, theflags;
254 int node, intr[2][3];
255 u_int regs[6];
256
257 zsc_unit = zsc->zsc_dev.dv_unit;
258 node = ca->ca_node;
259
260 node = OF_child(node); /* ch-a */
261
262 for (channel = 0; channel < 2; channel++) {
263 OF_getprop(node, "AAPL,interrupts",
264 intr[channel], sizeof(intr[channel]));
265 OF_getprop(node, "reg", regs, sizeof(regs));
266 regs[0] += ca->ca_baseaddr;
267 regs[2] += ca->ca_baseaddr;
268 regs[4] += ca->ca_baseaddr;
269 #ifdef ZS_TXDMA
270 zsc->zsc_txdmareg[channel] = mapiodev(regs[2], regs[3]);
271 zsc->zsc_txdmacmd[channel] =
272 dbdma_alloc(sizeof(dbdma_command_t) * 3);
273 bzero(zsc->zsc_txdmacmd[channel], sizeof(dbdma_command_t) * 3);
274 dbdma_reset(zsc->zsc_txdmareg[channel]);
275 #endif
276 node = OF_peer(node); /* ch-b */
277 }
278 zsaddr[0] = mapiodev(regs[0], regs[1]);
279
280 printf(": irq %d,%d\n", intr[0][0], intr[1][0]);
281
282 /* Make sure everything's inited ok. */
283 if (zsaddr[zsc_unit] == NULL)
284 panic("zs_attach: zs%d not mapped\n", zsc_unit);
285
286 if ((zs_hwflags[zsc_unit][0] | zs_hwflags[zsc_unit][1]) &
287 ZS_HWFLAG_CONSOLE) {
288
289 zs_conschan = zs_get_chan_addr(zsc_unit, minor(cn_tab->cn_dev));
290 }
291
292 /*
293 * Initialize software state for each channel.
294 */
295 for (channel = 0; channel < 2; channel++) {
296 zsc_args.channel = channel;
297 zsc_args.hwflags = zs_hwflags[zsc_unit][channel];
298 xcs = &zsc->xzsc_xcs_store[channel];
299 cs = &xcs->xzs_cs;
300 zsc->zsc_cs[channel] = cs;
301
302 cs->cs_channel = channel;
303 cs->cs_private = NULL;
304 cs->cs_ops = &zsops_null;
305
306 zc = zs_get_chan_addr(zsc_unit, channel);
307 cs->cs_reg_csr = &zc->zc_csr;
308 cs->cs_reg_data = &zc->zc_data;
309
310 bcopy(zs_init_reg, cs->cs_creg, 16);
311 bcopy(zs_init_reg, cs->cs_preg, 16);
312
313 /* Current BAUD rate generator clock. */
314 cs->cs_brg_clk = ZS_STD_BRG; /* RTxC is 230400*16, so use 230400 */
315 cs->cs_defspeed = zs_defspeed[zsc_unit][channel];
316 cs->cs_defcflag = zs_def_cflag;
317
318 /* Make these correspond to cs_defcflag (-crtscts) */
319 cs->cs_rr0_dcd = ZSRR0_DCD;
320 cs->cs_rr0_cts = 0;
321 cs->cs_wr5_dtr = ZSWR5_DTR;
322 cs->cs_wr5_rts = 0;
323
324 #ifdef __notyet__
325 cs->cs_slave_type = ZS_SLAVE_NONE;
326 #endif
327
328 /* Define BAUD rate stuff. */
329 xcs->cs_clocks[0].clk = ZS_STD_BRG * 16;
330 xcs->cs_clocks[0].flags = ZSC_RTXBRG;
331 xcs->cs_clocks[1].flags =
332 ZSC_RTXBRG | ZSC_RTXDIV | ZSC_VARIABLE | ZSC_EXTERN;
333 xcs->cs_clocks[2].flags = ZSC_TRXDIV | ZSC_VARIABLE;
334 xcs->cs_clock_count = 3;
335 if (channel == 0) {
336 theflags = 0; /*mac68k_machine.modem_flags;*/
337 xcs->cs_clocks[1].clk = 115200 * 32;
338 xcs->cs_clocks[2].clk = 0;
339 } else {
340 theflags = 0; /*mac68k_machine.print_flags;*/
341 xcs->cs_clocks[1].flags = ZSC_VARIABLE;
342 /*
343 * Yes, we aren't defining ANY clock source enables for the
344 * printer's DCD clock in. The hardware won't let us
345 * use it. But a clock will freak out the chip, so we
346 * let you set it, telling us to bar interrupts on the line.
347 */
348 xcs->cs_clocks[1].clk = 115200 * 32;
349 xcs->cs_clocks[2].clk = 0;
350 }
351 if (xcs->cs_clocks[1].clk)
352 zsc_args.hwflags |= ZS_HWFLAG_NO_DCD;
353 if (xcs->cs_clocks[2].clk)
354 zsc_args.hwflags |= ZS_HWFLAG_NO_CTS;
355
356 /* Set defaults in our "extended" chanstate. */
357 xcs->cs_csource = 0;
358 xcs->cs_psource = 0;
359 xcs->cs_cclk_flag = 0; /* Nothing fancy by default */
360 xcs->cs_pclk_flag = 0;
361
362 if (theflags & ZSMAC_RAW) {
363 zsc_args.hwflags |= ZS_HWFLAG_RAW;
364 printf(" (raw defaults)");
365 }
366
367 /*
368 * XXX - This might be better done with a "stub" driver
369 * (to replace zstty) that ignores LocalTalk for now.
370 */
371 if (theflags & ZSMAC_LOCALTALK) {
372 printf(" shielding from LocalTalk");
373 cs->cs_defspeed = 1;
374 cs->cs_creg[ZSRR_BAUDLO] = cs->cs_preg[ZSRR_BAUDLO] = 0xff;
375 cs->cs_creg[ZSRR_BAUDHI] = cs->cs_preg[ZSRR_BAUDHI] = 0xff;
376 zs_write_reg(cs, ZSRR_BAUDLO, 0xff);
377 zs_write_reg(cs, ZSRR_BAUDHI, 0xff);
378 /*
379 * If we might have LocalTalk, then make sure we have the
380 * Baud rate low-enough to not do any damage.
381 */
382 }
383
384 /*
385 * We used to disable chip interrupts here, but we now
386 * do that in zscnprobe, just in case MacOS left the chip on.
387 */
388
389 xcs->cs_chip = chip;
390
391 /* Stash away a copy of the final H/W flags. */
392 xcs->cs_hwflags = zsc_args.hwflags;
393
394 /*
395 * Look for a child driver for this channel.
396 * The child attach will setup the hardware.
397 */
398 if (!config_found(self, (void *)&zsc_args, zsc_print)) {
399 /* No sub-driver. Just reset it. */
400 u_char reset = (channel == 0) ?
401 ZSWR9_A_RESET : ZSWR9_B_RESET;
402 s = splzs();
403 zs_write_reg(cs, 9, reset);
404 splx(s);
405 }
406 }
407
408 /* XXX - Now safe to install interrupt handlers. */
409 intr_establish(intr[0][0], IST_LEVEL, IPL_TTY, zshard, NULL);
410 intr_establish(intr[1][0], IST_LEVEL, IPL_TTY, zshard, NULL);
411 #ifdef ZS_TXDMA
412 intr_establish(intr[0][1], IST_LEVEL, IPL_TTY, zs_txdma_int, (void *)0);
413 intr_establish(intr[1][1], IST_LEVEL, IPL_TTY, zs_txdma_int, (void *)1);
414 #endif
415
416 /*
417 * Set the master interrupt enable and interrupt vector.
418 * (common to both channels, do it on A)
419 */
420 cs = zsc->zsc_cs[0];
421 s = splzs();
422 /* interrupt vector */
423 zs_write_reg(cs, 2, zs_init_reg[2]);
424 /* master interrupt control (enable) */
425 zs_write_reg(cs, 9, zs_init_reg[9]);
426 splx(s);
427 }
428
429 static int
430 zsc_print(aux, name)
431 void *aux;
432 const char *name;
433 {
434 struct zsc_attach_args *args = aux;
435
436 if (name != NULL)
437 printf("%s: ", name);
438
439 if (args->channel != -1)
440 printf(" channel %d", args->channel);
441
442 return UNCONF;
443 }
444
445 static int zssoftpending;
446
447 /*
448 * Our ZS chips all share a common, autovectored interrupt,
449 * so we have to look at all of them on each interrupt.
450 */
451 int
452 zshard(arg)
453 void *arg;
454 {
455 register struct zsc_softc *zsc;
456 register int unit, rval;
457
458 rval = 0;
459 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
460 zsc = zsc_cd.cd_devs[unit];
461 if (zsc == NULL)
462 continue;
463 rval |= zsc_intr_hard(zsc);
464 if ((zsc->zsc_cs[0]->cs_softreq) ||
465 (zsc->zsc_cs[1]->cs_softreq))
466 {
467 /* zsc_req_softint(zsc); */
468 /* We are at splzs here, so no need to lock. */
469 if (zssoftpending == 0) {
470 zssoftpending = 1;
471 setsoftserial();
472 }
473 }
474 }
475 return (rval);
476 }
477
478 /*
479 * Similar scheme as for zshard (look at all of them)
480 */
481 int
482 zssoft(arg)
483 void *arg;
484 {
485 register struct zsc_softc *zsc;
486 register int unit;
487
488 /* This is not the only ISR on this IPL. */
489 if (zssoftpending == 0)
490 return (0);
491
492 /*
493 * The soft intr. bit will be set by zshard only if
494 * the variable zssoftpending is zero.
495 */
496 zssoftpending = 0;
497
498 for (unit = 0; unit < zsc_cd.cd_ndevs; ++unit) {
499 zsc = zsc_cd.cd_devs[unit];
500 if (zsc == NULL)
501 continue;
502 (void) zsc_intr_soft(zsc);
503 }
504 return (1);
505 }
506
507 #ifdef ZS_TXDMA
508 int
509 zs_txdma_int(arg)
510 void *arg;
511 {
512 int ch = (int)arg;
513 struct zsc_softc *zsc;
514 struct zs_chanstate *cs;
515 int unit = 0; /* XXX */
516 extern int zstty_txdma_int();
517
518 zsc = zsc_cd.cd_devs[unit];
519 if (zsc == NULL)
520 panic("zs_txdma_int");
521
522 cs = zsc->zsc_cs[ch];
523 zstty_txdma_int(cs);
524
525 if (cs->cs_softreq) {
526 if (zssoftpending == 0) {
527 zssoftpending = 1;
528 setsoftserial();
529 }
530 }
531 return 1;
532 }
533
534 void
535 zs_dma_setup(cs, pa, len)
536 struct zs_chanstate *cs;
537 caddr_t pa;
538 int len;
539 {
540 struct zsc_softc *zsc;
541 dbdma_command_t *cmdp;
542 int ch = cs->cs_channel;
543
544 zsc = zsc_cd.cd_devs[ch];
545 cmdp = zsc->zsc_txdmacmd[ch];
546
547 DBDMA_BUILD(cmdp, DBDMA_CMD_OUT_LAST, 0, len, kvtop(pa),
548 DBDMA_INT_ALWAYS, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
549 cmdp++;
550 DBDMA_BUILD(cmdp, DBDMA_CMD_STOP, 0, 0, 0,
551 DBDMA_INT_NEVER, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER);
552
553 __asm __volatile("eieio");
554
555 dbdma_start(zsc->zsc_txdmareg[ch], zsc->zsc_txdmacmd[ch]);
556 }
557 #endif
558
559 #ifndef ZS_TOLERANCE
560 #define ZS_TOLERANCE 51
561 /* 5% in tenths of a %, plus 1 so that exactly 5% will be ok. */
562 #endif
563
564 /*
565 * check out a rate for acceptability from the internal clock
566 * source. Used in console config to validate a requested
567 * default speed. Placed here so that all the speed checking code is
568 * in one place.
569 *
570 * != 0 means ok.
571 */
572 int
573 zs_cn_check_speed(bps)
574 int bps; /* target rate */
575 {
576 int tc, rate;
577
578 tc = BPS_TO_TCONST(ZS_STD_BRG, bps);
579 if (tc < 0)
580 return 0;
581 rate = TCONST_TO_BPS(ZS_STD_BRG, tc);
582 if (ZS_TOLERANCE > abs(((rate - bps)*1000)/bps))
583 return 1;
584 else
585 return 0;
586 }
587
588 /*
589 * Search through the signal sources in the channel, and
590 * pick the best one for the baud rate requested. Return
591 * a -1 if not achievable in tolerance. Otherwise return 0
592 * and fill in the values.
593 *
594 * This routine draws inspiration from the Atari port's zs.c
595 * driver in NetBSD 1.1 which did the same type of source switching.
596 * Tolerance code inspired by comspeed routine in isa/com.c.
597 *
598 * By Bill Studenmund, 1996-05-12
599 */
600 int
601 zs_set_speed(cs, bps)
602 struct zs_chanstate *cs;
603 int bps; /* bits per second */
604 {
605 struct xzs_chanstate *xcs = (void *) cs;
606 int i, tc, tc0 = 0, tc1, s, sf = 0;
607 int src, rate0, rate1, err, tol;
608
609 if (bps == 0)
610 return (0);
611
612 src = -1; /* no valid source yet */
613 tol = ZS_TOLERANCE;
614
615 /*
616 * Step through all the sources and see which one matches
617 * the best. A source has to match BETTER than tol to be chosen.
618 * Thus if two sources give the same error, the first one will be
619 * chosen. Also, allow for the possability that one source might run
620 * both the BRG and the direct divider (i.e. RTxC).
621 */
622 for (i = 0; i < xcs->cs_clock_count; i++) {
623 if (xcs->cs_clocks[i].clk <= 0)
624 continue; /* skip non-existant or bad clocks */
625 if (xcs->cs_clocks[i].flags & ZSC_BRG) {
626 /* check out BRG at /16 */
627 tc1 = BPS_TO_TCONST(xcs->cs_clocks[i].clk >> 4, bps);
628 if (tc1 >= 0) {
629 rate1 = TCONST_TO_BPS(xcs->cs_clocks[i].clk >> 4, tc1);
630 err = abs(((rate1 - bps)*1000)/bps);
631 if (err < tol) {
632 tol = err;
633 src = i;
634 sf = xcs->cs_clocks[i].flags & ~ZSC_DIV;
635 tc0 = tc1;
636 rate0 = rate1;
637 }
638 }
639 }
640 if (xcs->cs_clocks[i].flags & ZSC_DIV) {
641 /*
642 * Check out either /1, /16, /32, or /64
643 * Note: for /1, you'd better be using a synchronized
644 * clock!
645 */
646 int b0 = xcs->cs_clocks[i].clk, e0 = abs(b0-bps);
647 int b1 = b0 >> 4, e1 = abs(b1-bps);
648 int b2 = b1 >> 1, e2 = abs(b2-bps);
649 int b3 = b2 >> 1, e3 = abs(b3-bps);
650
651 if (e0 < e1 && e0 < e2 && e0 < e3) {
652 err = e0;
653 rate1 = b0;
654 tc1 = ZSWR4_CLK_X1;
655 } else if (e0 > e1 && e1 < e2 && e1 < e3) {
656 err = e1;
657 rate1 = b1;
658 tc1 = ZSWR4_CLK_X16;
659 } else if (e0 > e2 && e1 > e2 && e2 < e3) {
660 err = e2;
661 rate1 = b2;
662 tc1 = ZSWR4_CLK_X32;
663 } else {
664 err = e3;
665 rate1 = b3;
666 tc1 = ZSWR4_CLK_X64;
667 }
668
669 err = (err * 1000)/bps;
670 if (err < tol) {
671 tol = err;
672 src = i;
673 sf = xcs->cs_clocks[i].flags & ~ZSC_BRG;
674 tc0 = tc1;
675 rate0 = rate1;
676 }
677 }
678 }
679 #ifdef ZSMACDEBUG
680 zsprintf("Checking for rate %d. Found source #%d.\n",bps, src);
681 #endif
682 if (src == -1)
683 return (EINVAL); /* no can do */
684
685 /*
686 * The M.I. layer likes to keep cs_brg_clk current, even though
687 * we are the only ones who should be touching the BRG's rate.
688 *
689 * Note: we are assuming that any ZSC_EXTERN signal source comes in
690 * on the RTxC pin. Correct for the mac68k obio zsc.
691 */
692 if (sf & ZSC_EXTERN)
693 cs->cs_brg_clk = xcs->cs_clocks[i].clk >> 4;
694 else
695 cs->cs_brg_clk = ZS_STD_BRG;
696
697 /*
698 * Now we have a source, so set it up.
699 */
700 s = splzs();
701 xcs->cs_psource = src;
702 xcs->cs_pclk_flag = sf;
703 bps = rate0;
704 if (sf & ZSC_BRG) {
705 cs->cs_preg[4] = ZSWR4_CLK_X16;
706 cs->cs_preg[11]= ZSWR11_RXCLK_BAUD | ZSWR11_TXCLK_BAUD;
707 if (sf & ZSC_PCLK) {
708 cs->cs_preg[14] = ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK;
709 } else {
710 cs->cs_preg[14] = ZSWR14_BAUD_ENA;
711 }
712 tc = tc0;
713 } else {
714 cs->cs_preg[4] = tc0;
715 if (sf & ZSC_RTXDIV) {
716 cs->cs_preg[11] = ZSWR11_RXCLK_RTXC | ZSWR11_TXCLK_RTXC;
717 } else {
718 cs->cs_preg[11] = ZSWR11_RXCLK_TRXC | ZSWR11_TXCLK_TRXC;
719 }
720 cs->cs_preg[14]= 0;
721 tc = 0xffff;
722 }
723 /* Set the BAUD rate divisor. */
724 cs->cs_preg[12] = tc;
725 cs->cs_preg[13] = tc >> 8;
726 splx(s);
727
728 #ifdef ZSMACDEBUG
729 zsprintf("Rate is %7d, tc is %7d, source no. %2d, flags %4x\n", \
730 bps, tc, src, sf);
731 zsprintf("Registers are: 4 %x, 11 %x, 14 %x\n\n",
732 cs->cs_preg[4], cs->cs_preg[11], cs->cs_preg[14]);
733 #endif
734
735 cs->cs_preg[5] |= ZSWR5_RTS; /* Make sure the drivers are on! */
736
737 /* Caller will stuff the pending registers. */
738 return (0);
739 }
740
741 int
742 zs_set_modes(cs, cflag)
743 struct zs_chanstate *cs;
744 int cflag; /* bits per second */
745 {
746 struct xzs_chanstate *xcs = (void*)cs;
747 int s;
748
749 /*
750 * Make sure we don't enable hfc on a signal line we're ignoring.
751 * As we enable CTS interrupts only if we have CRTSCTS or CDTRCTS,
752 * this code also effectivly turns off ZSWR15_CTS_IE.
753 *
754 * Also, disable DCD interrupts if we've been told to ignore
755 * the DCD pin. Happens on mac68k because the input line for
756 * DCD can also be used as a clock input. (Just set CLOCAL.)
757 *
758 * If someone tries to turn an invalid flow mode on, Just Say No
759 * (Suggested by gwr)
760 */
761 if ((cflag & CDTRCTS) && (cflag & (CRTSCTS | MDMBUF)))
762 return (EINVAL);
763 if (xcs->cs_hwflags & ZS_HWFLAG_NO_DCD) {
764 if (cflag & MDMBUF)
765 return (EINVAL);
766 cflag |= CLOCAL;
767 }
768 if ((xcs->cs_hwflags & ZS_HWFLAG_NO_CTS) && (cflag & (CRTSCTS | CDTRCTS)))
769 return (EINVAL);
770
771 /*
772 * Output hardware flow control on the chip is horrendous:
773 * if carrier detect drops, the receiver is disabled, and if
774 * CTS drops, the transmitter is stoped IN MID CHARACTER!
775 * Therefore, NEVER set the HFC bit, and instead use the
776 * status interrupt to detect CTS changes.
777 */
778 s = splzs();
779 if ((cflag & (CLOCAL | MDMBUF)) != 0)
780 cs->cs_rr0_dcd = 0;
781 else
782 cs->cs_rr0_dcd = ZSRR0_DCD;
783 /*
784 * The mac hardware only has one output, DTR (HSKo in Mac
785 * parlance). In HFC mode, we use it for the functions
786 * typically served by RTS and DTR on other ports, so we
787 * have to fake the upper layer out some.
788 *
789 * CRTSCTS we use CTS as an input which tells us when to shut up.
790 * We make no effort to shut up the other side of the connection.
791 * DTR is used to hang up the modem.
792 *
793 * In CDTRCTS, we use CTS to tell us to stop, but we use DTR to
794 * shut up the other side.
795 */
796 if ((cflag & CRTSCTS) != 0) {
797 cs->cs_wr5_dtr = ZSWR5_DTR;
798 cs->cs_wr5_rts = 0;
799 cs->cs_rr0_cts = ZSRR0_CTS;
800 } else if ((cflag & CDTRCTS) != 0) {
801 cs->cs_wr5_dtr = 0;
802 cs->cs_wr5_rts = ZSWR5_DTR;
803 cs->cs_rr0_cts = ZSRR0_CTS;
804 } else if ((cflag & MDMBUF) != 0) {
805 cs->cs_wr5_dtr = 0;
806 cs->cs_wr5_rts = ZSWR5_DTR;
807 cs->cs_rr0_cts = ZSRR0_DCD;
808 } else {
809 cs->cs_wr5_dtr = ZSWR5_DTR;
810 cs->cs_wr5_rts = 0;
811 cs->cs_rr0_cts = 0;
812 }
813 splx(s);
814
815 /* Caller will stuff the pending registers. */
816 return (0);
817 }
818
819
820 /*
821 * Read or write the chip with suitable delays.
822 * MacII hardware has the delay built in.
823 * No need for extra delay. :-) However, some clock-chirped
824 * macs, or zsc's on serial add-on boards might need it.
825 */
826 #define ZS_DELAY()
827
828 u_char
829 zs_read_reg(cs, reg)
830 struct zs_chanstate *cs;
831 u_char reg;
832 {
833 u_char val;
834
835 out8(cs->cs_reg_csr, reg);
836 ZS_DELAY();
837 val = in8(cs->cs_reg_csr);
838 ZS_DELAY();
839 return val;
840 }
841
842 void
843 zs_write_reg(cs, reg, val)
844 struct zs_chanstate *cs;
845 u_char reg, val;
846 {
847 out8(cs->cs_reg_csr, reg);
848 ZS_DELAY();
849 out8(cs->cs_reg_csr, val);
850 ZS_DELAY();
851 }
852
853 u_char zs_read_csr(cs)
854 struct zs_chanstate *cs;
855 {
856 register u_char val;
857
858 val = in8(cs->cs_reg_csr);
859 ZS_DELAY();
860 /* make up for the fact CTS is wired backwards */
861 val ^= ZSRR0_CTS;
862 return val;
863 }
864
865 void zs_write_csr(cs, val)
866 struct zs_chanstate *cs;
867 u_char val;
868 {
869 /* Note, the csr does not write CTS... */
870 out8(cs->cs_reg_csr, val);
871 ZS_DELAY();
872 }
873
874 u_char zs_read_data(cs)
875 struct zs_chanstate *cs;
876 {
877 register u_char val;
878
879 val = in8(cs->cs_reg_data);
880 ZS_DELAY();
881 return val;
882 }
883
884 void zs_write_data(cs, val)
885 struct zs_chanstate *cs;
886 u_char val;
887 {
888 out8(cs->cs_reg_data, val);
889 ZS_DELAY();
890 }
891
892 /****************************************************************
893 * Console support functions (powermac specific!)
894 * Note: this code is allowed to know about the layout of
895 * the chip registers, and uses that to keep things simple.
896 * XXX - I think I like the mvme167 code better. -gwr
897 * XXX - Well :-P :-) -wrs
898 ****************************************************************/
899
900 #define zscnpollc nullcnpollc
901 cons_decl(zs);
902
903 static void zs_putc __P((register volatile struct zschan *, int));
904 static int zs_getc __P((register volatile struct zschan *));
905 extern int zsopen __P(( dev_t dev, int flags, int mode, struct proc *p));
906
907 static int stdin, stdout;
908
909 /*
910 * Console functions.
911 */
912
913 /*
914 * zscnprobe is the routine which gets called as the kernel is trying to
915 * figure out where the console should be. Each io driver which might
916 * be the console (as defined in mac68k/conf.c) gets probed. The probe
917 * fills in the consdev structure. Important parts are the device #,
918 * and the console priority. Values are CN_DEAD (don't touch me),
919 * CN_NORMAL (I'm here, but elsewhere might be better), CN_INTERNAL
920 * (the video, better than CN_NORMAL), and CN_REMOTE (pick me!)
921 *
922 * As the mac's a bit different, we do extra work here. We mainly check
923 * to see if we have serial echo going on. Also chould check for default
924 * speeds.
925 */
926
927 /*
928 * Polled input char.
929 */
930 int
931 zs_getc(zc)
932 register volatile struct zschan *zc;
933 {
934 register int s, c, rr0;
935
936 s = splhigh();
937 /* Wait for a character to arrive. */
938 do {
939 rr0 = in8(&zc->zc_csr);
940 ZS_DELAY();
941 } while ((rr0 & ZSRR0_RX_READY) == 0);
942
943 c = in8(&zc->zc_data);
944 ZS_DELAY();
945 splx(s);
946
947 /*
948 * This is used by the kd driver to read scan codes,
949 * so don't translate '\r' ==> '\n' here...
950 */
951 return (c);
952 }
953
954 /*
955 * Polled output char.
956 */
957 void
958 zs_putc(zc, c)
959 register volatile struct zschan *zc;
960 int c;
961 {
962 register int s, rr0;
963 register long wait = 0;
964
965 s = splhigh();
966 /* Wait for transmitter to become ready. */
967 do {
968 rr0 = in8(&zc->zc_csr);
969 ZS_DELAY();
970 } while (((rr0 & ZSRR0_TX_READY) == 0) && (wait++ < 1000000));
971
972 if ((rr0 & ZSRR0_TX_READY) != 0) {
973 out8(&zc->zc_data, c);
974 ZS_DELAY();
975 }
976 splx(s);
977 }
978
979
980 /*
981 * Polled console input putchar.
982 */
983 int
984 zscngetc(dev)
985 dev_t dev;
986 {
987 register volatile struct zschan *zc = zs_conschan;
988 register int c;
989
990 if (zc) {
991 c = zs_getc(zc);
992 } else {
993 char ch = 0;
994 OF_read(stdin, &ch, 1);
995 c = ch;
996 }
997 return c;
998 }
999
1000 /*
1001 * Polled console output putchar.
1002 */
1003 void
1004 zscnputc(dev, c)
1005 dev_t dev;
1006 int c;
1007 {
1008 register volatile struct zschan *zc = zs_conschan;
1009
1010 if (zc) {
1011 zs_putc(zc, c);
1012 } else {
1013 char ch = c;
1014 OF_write(stdout, &ch, 1);
1015 }
1016 }
1017
1018 /*
1019 * Handle user request to enter kernel debugger.
1020 */
1021 void
1022 zs_abort(cs)
1023 struct zs_chanstate *cs;
1024 {
1025 volatile struct zschan *zc = zs_conschan;
1026 int rr0;
1027 register long wait = 0;
1028
1029 if (zs_cons_canabort == 0)
1030 return;
1031
1032 /* Wait for end of break to avoid PROM abort. */
1033 do {
1034 rr0 = in8(&zc->zc_csr);
1035 ZS_DELAY();
1036 } while ((rr0 & ZSRR0_BREAK) && (wait++ < ZSABORT_DELAY));
1037
1038 if (wait > ZSABORT_DELAY) {
1039 zs_cons_canabort = 0;
1040 /* If we time out, turn off the abort ability! */
1041 }
1042
1043 #ifdef DDB
1044 Debugger();
1045 #endif
1046 }
1047
1048 extern int ofccngetc __P((dev_t));
1049 extern void ofccnputc __P((dev_t, int));
1050
1051 struct consdev consdev_zs = {
1052 zscnprobe,
1053 zscninit,
1054 zscngetc,
1055 zscnputc,
1056 zscnpollc,
1057 };
1058
1059 void
1060 zscnprobe(cp)
1061 struct consdev *cp;
1062 {
1063 int chosen, pkg;
1064 int unit = 0;
1065 char name[16];
1066
1067 if ((chosen = OF_finddevice("/chosen")) == -1)
1068 return;
1069
1070 if (OF_getprop(chosen, "stdin", &stdin, sizeof(stdin)) == -1)
1071 return;
1072 if (OF_getprop(chosen, "stdout", &stdout, sizeof(stdout)) == -1)
1073 return;
1074
1075 if ((pkg = OF_instance_to_package(stdin)) == -1)
1076 return;
1077
1078 bzero(name, sizeof(name));
1079 if (OF_getprop(pkg, "device_type", name, sizeof(name)) == -1)
1080 return;
1081
1082 if (strcmp(name, "serial") != 0)
1083 return;
1084
1085 bzero(name, sizeof(name));
1086 if (OF_getprop(pkg, "name", name, sizeof(name)) == -1)
1087 return;
1088
1089 if (strcmp(name, "ch-b") == 0)
1090 unit = 1;
1091
1092 cp->cn_dev = makedev(zs_major, unit);
1093 cp->cn_pri = CN_REMOTE;
1094 }
1095
1096 void
1097 zscninit(cp)
1098 struct consdev *cp;
1099 {
1100 int pkg;
1101 int unit = 0;
1102 char name[16];
1103
1104 if ((pkg = OF_instance_to_package(stdin)) == -1)
1105 return;
1106
1107 bzero(name, sizeof(name));
1108 if (OF_getprop(pkg, "name", name, sizeof(name)) == -1)
1109 return;
1110
1111 if (strcmp(name, "ch-b") == 0)
1112 unit = 1;
1113
1114 zs_hwflags[0][unit] = ZS_HWFLAG_CONSOLE;
1115 }
1116