Home | History | Annotate | Line # | Download | only in obio
zs.c revision 1.15
      1 /*	$NetBSD: zs.c,v 1.15 2003/01/01 01:49:56 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1996, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Gordon W. Ross and Wayne Knowles
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *        This product includes software developed by the NetBSD
     21  *        Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * Zilog Z8530 Dual UART driver (machine-dependent part)
     41  *
     42  * Runs two serial lines per chip using slave drivers.
     43  * Plain tty/async lines use the zs_async slave.
     44  */
     45 
     46 #include "opt_ddb.h"
     47 #include "opt_kgdb.h"
     48 
     49 #include <sys/param.h>
     50 #include <sys/systm.h>
     51 #include <sys/conf.h>
     52 #include <sys/device.h>
     53 #include <sys/file.h>
     54 #include <sys/ioctl.h>
     55 #include <sys/kernel.h>
     56 #include <sys/proc.h>
     57 #include <sys/tty.h>
     58 #include <sys/time.h>
     59 #include <sys/syslog.h>
     60 
     61 #include <machine/cpu.h>
     62 #include <machine/mainboard.h>
     63 #include <machine/autoconf.h>
     64 #include <machine/prom.h>
     65 #include <machine/z8530var.h>
     66 
     67 #include <dev/cons.h>
     68 #include <dev/ic/z8530reg.h>
     69 
     70 #include "zsc.h"	/* NZSC */
     71 #define NZS NZSC
     72 
     73 /* Make life easier for the initialized arrays here. */
     74 #if NZS < 2
     75 #undef  NZS
     76 #define NZS 2
     77 #endif
     78 
     79 /*
     80  * Some warts needed by z8530tty.c -
     81  * The default parity REALLY needs to be the same as the PROM uses,
     82  * or you can not see messages done with printf during boot-up...
     83  */
     84 int zs_def_cflag = (CREAD | CS8 | HUPCL);
     85 
     86 
     87 #define PCLK		10000000	/* PCLK pin input clock rate */
     88 
     89 #ifndef ZS_DEFSPEED
     90 #define ZS_DEFSPEED	9600
     91 #endif
     92 
     93 /*
     94  * Define interrupt levels.
     95  */
     96 #define ZSHARD_PRI 64
     97 
     98 /* Register recovery time is 3.5 to 4 PCLK Cycles */
     99 #define ZS_RECOVERY	1		/* 1us = 10 PCLK Cycles */
    100 #define ZS_DELAY()	delay(ZS_RECOVERY)
    101 
    102 /* The layout of this is hardware-dependent (padding, order). */
    103 struct zschan {
    104 	u_char   pad1[3];
    105 	volatile u_char	zc_csr;		/* ctrl,status, and indirect access */
    106 	u_char   pad2[3];
    107 	volatile u_char	zc_data;	/* data */
    108 };
    109 struct zsdevice {
    110 	/* Yes, they are backwards. */
    111 	struct	zschan zs_chan_b;
    112 	struct	zschan zs_chan_a;
    113 };
    114 
    115 /* Return the byte offset of element within a structure */
    116 #define OFFSET(struct_def, el)		((size_t)&((struct_def *)0)->el)
    117 
    118 #define ZS_CHAN_A	OFFSET(struct zsdevice, zs_chan_a)
    119 #define ZS_CHAN_B	OFFSET(struct zsdevice, zs_chan_b)
    120 #define ZS_REG_CSR	OFFSET(struct zschan, zc_csr)
    121 #define ZS_REG_DATA	OFFSET(struct zschan, zc_data)
    122 static int zs_chan_offset[] = {ZS_CHAN_A, ZS_CHAN_B};
    123 
    124 /* Flags from cninit() */
    125 static int zs_hwflags[NZS][2];
    126 
    127 /* Default speed for all channels */
    128 static int zs_defspeed = ZS_DEFSPEED;
    129 static volatile int zssoftpending;
    130 
    131 static u_char zs_init_reg[16] = {
    132 	0,				/* 0: CMD (reset, etc.) */
    133 	0,				/* 1: No interrupts yet. */
    134 	ZSHARD_PRI,			/* 2: IVECT */
    135 	ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
    136 	ZSWR4_CLK_X16 | ZSWR4_ONESB,
    137 	ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
    138 	0,				/* 6: TXSYNC/SYNCLO */
    139 	0,				/* 7: RXSYNC/SYNCHI */
    140 	0,				/* 8: alias for data port */
    141 	ZSWR9_MASTER_IE,
    142 	0,				/*10: Misc. TX/RX control bits */
    143 	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD | ZSWR11_TRXC_OUT_ENA,
    144 	BPS_TO_TCONST(PCLK/16, ZS_DEFSPEED), /*12: BAUDLO (default=9600) */
    145 	0,				/*13: BAUDHI (default=9600) */
    146 	ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
    147 	ZSWR15_BREAK_IE,
    148 };
    149 
    150 
    151 /****************************************************************
    152  * Autoconfig
    153  ****************************************************************/
    154 
    155 /* Definition of the driver for autoconfig. */
    156 static int	zs_match __P((struct device *, struct cfdata *, void *));
    157 static void	zs_attach __P((struct device *, struct device *, void *));
    158 static int	zs_print __P((void *, const char *name));
    159 
    160 CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
    161     zs_match, zs_attach, NULL, NULL);
    162 
    163 extern struct	cfdriver zsc_cd;
    164 
    165 static int	zshard __P((void *));
    166 void		zssoft __P((void *));
    167 static int	zs_get_speed __P((struct zs_chanstate *));
    168 struct		zschan *zs_get_chan_addr (int zs_unit, int channel);
    169 int		zs_getc __P((void *));
    170 void		zs_putc __P((void *, int));
    171 
    172 /*
    173  * Is the zs chip present?
    174  */
    175 static int
    176 zs_match(parent, cf, aux)
    177 	struct device *parent;
    178 	struct cfdata *cf;
    179 	void *aux;
    180 {
    181 	struct confargs *ca = aux;
    182 	void *va;
    183 
    184 	if (strcmp(ca->ca_name, "zsc"))
    185 		return 0;
    186 
    187 	va = (void *)cf->cf_addr;
    188 
    189 	/* This returns -1 on a fault (bus error). */
    190 	if (badaddr(va, 1))
    191 		return 0;
    192 	return 1;
    193 }
    194 
    195 /*
    196  * Attach a found zs.
    197  *
    198  * Match slave number to zs unit number, so that misconfiguration will
    199  * not set up the keyboard as ttya, etc.
    200  */
    201 static void
    202 zs_attach(parent, self, aux)
    203 	struct device *parent;
    204 	struct device *self;
    205 	void *aux;
    206 {
    207 	struct zsc_softc *zsc = (void *) self;
    208 	struct confargs *ca = aux;
    209 	struct zsc_attach_args zsc_args;
    210 	struct zs_chanstate *cs;
    211 	struct zs_channel *ch;
    212 	int    zs_unit, channel, s;
    213 
    214 	zsc->zsc_bustag = ca->ca_bustag;
    215 	if (bus_space_map(ca->ca_bustag, ca->ca_addr,
    216 			  sizeof(struct zsdevice),
    217 			  BUS_SPACE_MAP_LINEAR,
    218 			  &zsc->zsc_base) != 0) {
    219 		printf(": cannot map registers\n");
    220 		return;
    221 	}
    222 
    223 	zs_unit = zsc->zsc_dev.dv_unit;
    224 	printf("\n");
    225 
    226 	/*
    227 	 * Initialize software state for each channel.
    228 	 */
    229 	for (channel = 0; channel < 2; channel++) {
    230 		zsc_args.channel = channel;
    231 		zsc_args.hwflags = zs_hwflags[zs_unit][channel];
    232 		ch = &zsc->zsc_cs_store[channel];
    233 		cs = zsc->zsc_cs[channel] = (struct zs_chanstate *)ch;
    234 
    235 		cs->cs_reg_csr = NULL;
    236 		cs->cs_reg_data = NULL;
    237 		cs->cs_channel = channel;
    238 		cs->cs_private = NULL;
    239 		cs->cs_ops = &zsops_null;
    240 		cs->cs_brg_clk = PCLK / 16;
    241 
    242 		if (bus_space_subregion(ca->ca_bustag, zsc->zsc_base,
    243 					zs_chan_offset[channel],
    244 					sizeof(struct zschan),
    245 					&ch->cs_regs) != 0) {
    246 			printf(": cannot map regs\n");
    247 			return;
    248 		}
    249 		ch->cs_bustag = ca->ca_bustag;
    250 
    251 		memcpy(cs->cs_creg, zs_init_reg, 16);
    252 		memcpy(cs->cs_preg, zs_init_reg, 16);
    253 
    254 		if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
    255 			cs->cs_defspeed = zs_get_speed(cs);
    256 		else
    257 			cs->cs_defspeed = zs_defspeed;
    258 		cs->cs_defcflag = zs_def_cflag;
    259 
    260 		/* Make these correspond to cs_defcflag (-crtscts) */
    261 		cs->cs_rr0_dcd = ZSRR0_DCD;
    262 		cs->cs_rr0_cts = 0;
    263 		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
    264 		cs->cs_wr5_rts = 0;
    265 
    266 		/*
    267 		 * Clear the master interrupt enable.
    268 		 * The INTENA is common to both channels,
    269 		 * so just do it on the A channel.
    270 		 */
    271 		if (channel == 0) {
    272 			zs_write_reg(cs, 9, 0);
    273 		}
    274 		/*
    275 		 * Look for a child driver for this channel.
    276 		 * The child attach will setup the hardware.
    277 		 */
    278 		if (!config_found(self, (void *)&zsc_args, zs_print)) {
    279 			/* No sub-driver.  Just reset it. */
    280 			u_char reset = (channel == 0) ?
    281 				ZSWR9_A_RESET : ZSWR9_B_RESET;
    282 
    283 			s = splhigh();
    284  			zs_write_reg(cs,  9, reset);
    285 			splx(s);
    286 		}
    287 	}
    288 
    289 
    290 	zsc->sc_si = softintr_establish(IPL_SOFTSERIAL, zssoft, zsc);
    291 	bus_intr_establish(zsc->zsc_bustag, SYS_INTR_SCC0, 0, 0, zshard, NULL);
    292 
    293 	evcnt_attach_dynamic(&zsc->zs_intrcnt, EVCNT_TYPE_INTR, NULL,
    294 			     self->dv_xname, "intr");
    295 
    296 	/*
    297 	 * Set the master interrupt enable and interrupt vector.
    298 	 * (common to both channels, do it on A)
    299 	 */
    300 	cs = zsc->zsc_cs[0];
    301 	s = splhigh();
    302 	/* interrupt vector */
    303 	zs_write_reg(cs, 2, zs_init_reg[2]);
    304 	/* master interrupt control (enable) */
    305 	zs_write_reg(cs, 9, zs_init_reg[9]);
    306 	splx(s);
    307 }
    308 
    309 static int
    310 zs_print(aux, name)
    311 	void *aux;
    312 	const char *name;
    313 {
    314 	struct zsc_attach_args *args = aux;
    315 
    316 	if (name != NULL)
    317 		aprint_normal("%s: ", name);
    318 
    319 	if (args->channel != -1)
    320 		aprint_normal(" channel %d", args->channel);
    321 
    322 	return UNCONF;
    323 }
    324 
    325 /*
    326  * Our ZS chips all share a common, autovectored interrupt,
    327  * so we have to look at all of them on each interrupt.
    328  */
    329 static int
    330 zshard(arg)
    331 	void *arg;
    332 {
    333 	register struct zsc_softc *zsc;
    334 	register int unit, rval, softreq;
    335 
    336 	rval = 0;
    337 	for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
    338 		zsc = zsc_cd.cd_devs[unit];
    339 		if (zsc == NULL)
    340 			continue;
    341 		rval |= zsc_intr_hard(zsc);
    342 		softreq = zsc->zsc_cs[0]->cs_softreq;
    343 		softreq |= zsc->zsc_cs[1]->cs_softreq;
    344 		if (softreq && (zssoftpending == 0)) {
    345 		    zssoftpending = 1;
    346 		    softintr_schedule(zsc->sc_si);
    347 		}
    348 		zsc->zs_intrcnt.ev_count++;
    349 	}
    350 	return rval;
    351 }
    352 
    353 /*
    354  * Similar scheme as for zshard (look at all of them)
    355  */
    356 void
    357 zssoft(arg)
    358 	void *arg;
    359 {
    360 	register struct zsc_softc *zsc;
    361 	register int s, unit;
    362 
    363 	/* This is not the only ISR on this IPL. */
    364 	if (zssoftpending == 0)
    365 		return;
    366 
    367 	/*
    368 	 * The soft intr. bit will be set by zshard only if
    369 	 * the variable zssoftpending is zero.  The order of
    370 	 * these next two statements prevents our clearing
    371 	 * the soft intr bit just after zshard has set it.
    372 	 */
    373 	/*isr_soft_clear(ZSSOFT_PRI);*/
    374 	zssoftpending = 0;
    375 
    376 	/* Make sure we call the tty layer at spltty. */
    377 	s = spltty();
    378 	for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
    379 		zsc = zsc_cd.cd_devs[unit];
    380 		if (zsc == NULL)
    381 			continue;
    382 		(void) zsc_intr_soft(zsc);
    383 	}
    384 	splx(s);
    385 	return;
    386 }
    387 
    388 
    389 /*
    390  * Compute the current baud rate given a ZS channel.
    391  */
    392 static int
    393 zs_get_speed(cs)
    394 	struct zs_chanstate *cs;
    395 {
    396 	int tconst;
    397 
    398 	tconst = zs_read_reg(cs, 12);
    399 	tconst |= zs_read_reg(cs, 13) << 8;
    400 	return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
    401 }
    402 
    403 /*
    404  * MD functions for setting the baud rate and control modes.
    405  */
    406 int
    407 zs_set_speed(cs, bps)
    408 	struct zs_chanstate *cs;
    409 	int bps;	/* bits per second */
    410 {
    411 	int tconst, real_bps;
    412 
    413 #if 0
    414 	while (!(zs_read_csr(cs) & ZSRR0_TX_READY))
    415 	        {/*nop*/}
    416 #endif
    417 	/* Wait for transmit buffer to empty */
    418 	if (bps == 0) {
    419 		return (0);
    420 	}
    421 
    422 #ifdef	DIAGNOSTIC
    423 	if (cs->cs_brg_clk == 0)
    424 		panic("zs_set_speed");
    425 #endif
    426 
    427 	tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
    428 	if (tconst < 0)
    429 		return (EINVAL);
    430 
    431 	/* Convert back to make sure we can do it. */
    432 	real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
    433 
    434 	/* XXX - Allow some tolerance here? */
    435 #if 0
    436 	if (real_bps != bps)
    437 		return (EINVAL);
    438 #endif
    439 
    440 	cs->cs_preg[12] = tconst;
    441 	cs->cs_preg[13] = tconst >> 8;
    442 
    443 	/* Caller will stuff the pending registers. */
    444 	return (0);
    445 }
    446 
    447 int
    448 zs_set_modes(cs, cflag)
    449 	struct zs_chanstate *cs;
    450 	int cflag;	/* bits per second */
    451 {
    452 	int s;
    453 
    454 	/*
    455 	 * Output hardware flow control on the chip is horrendous:
    456 	 * if carrier detect drops, the receiver is disabled, and if
    457 	 * CTS drops, the transmitter is stoped IN MID CHARACTER!
    458 	 * Therefore, NEVER set the HFC bit, and instead use the
    459 	 * status interrupt to detect CTS changes.
    460 	 */
    461 	s = splzs();
    462 	cs->cs_rr0_pps = 0;
    463 	if ((cflag & (CLOCAL | MDMBUF)) != 0) {
    464 		cs->cs_rr0_dcd = 0;
    465 		if ((cflag & MDMBUF) == 0)
    466 			cs->cs_rr0_pps = ZSRR0_DCD;
    467 	} else
    468 		cs->cs_rr0_dcd = ZSRR0_DCD;
    469 	if ((cflag & CRTSCTS) != 0) {
    470 		cs->cs_wr5_dtr = ZSWR5_DTR;
    471 		cs->cs_wr5_rts = ZSWR5_RTS;
    472 		cs->cs_rr0_cts = ZSRR0_CTS;
    473 	} else if ((cflag & MDMBUF) != 0) {
    474 		cs->cs_wr5_dtr = 0;
    475 		cs->cs_wr5_rts = ZSWR5_DTR;
    476 		cs->cs_rr0_cts = ZSRR0_DCD;
    477 	} else {
    478 		cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
    479 		cs->cs_wr5_rts = 0;
    480 		cs->cs_rr0_cts = 0;
    481 	}
    482 	splx(s);
    483 
    484 	/* Caller will stuff the pending registers. */
    485 	return (0);
    486 }
    487 
    488 
    489 /*
    490  * Read or write the chip with suitable delays.
    491  */
    492 
    493 u_char
    494 zs_read_reg(cs, reg)
    495 	struct zs_chanstate *cs;
    496 	u_char reg;
    497 {
    498 	u_char val;
    499 	struct zs_channel *zsc = (struct zs_channel *)cs;
    500 
    501 	bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg);
    502 	ZS_DELAY();
    503 	val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR);
    504 	ZS_DELAY();
    505 	return val;
    506 }
    507 
    508 void
    509 zs_write_reg(cs, reg, val)
    510 	struct zs_chanstate *cs;
    511 	u_char reg, val;
    512 {
    513 	struct zs_channel *zsc = (struct zs_channel *)cs;
    514 
    515 	bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg);
    516 	ZS_DELAY();
    517 	bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val);
    518 	ZS_DELAY();
    519 }
    520 
    521 u_char zs_read_csr(cs)
    522 	struct zs_chanstate *cs;
    523 {
    524 	struct zs_channel *zsc = (struct zs_channel *)cs;
    525 	register u_char val;
    526 
    527 	val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR);
    528 	ZS_DELAY();
    529 	return val;
    530 }
    531 
    532 void  zs_write_csr(cs, val)
    533 	struct zs_chanstate *cs;
    534 	u_char val;
    535 {
    536 	struct zs_channel *zsc = (struct zs_channel *)cs;
    537 
    538 	bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val);
    539 	ZS_DELAY();
    540 }
    541 
    542 u_char zs_read_data(cs)
    543 	struct zs_chanstate *cs;
    544 {
    545 	struct zs_channel *zsc = (struct zs_channel *)cs;
    546 	register u_char val;
    547 
    548 	val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA);
    549 	ZS_DELAY();
    550 	return val;
    551 }
    552 
    553 void  zs_write_data(cs, val)
    554 	struct zs_chanstate *cs;
    555 	u_char val;
    556 {
    557 	struct zs_channel *zsc = (struct zs_channel *)cs;
    558 
    559 	bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA, val);
    560 	ZS_DELAY();
    561 }
    562 
    563 void
    564 zs_abort(cs)
    565 	struct zs_chanstate *cs;
    566 {
    567 #if defined(KGDB)
    568 	zskgdb(cs);
    569 #elif defined(DDB)
    570 	Debugger();
    571 #endif
    572 }
    573 
    574 
    575 /*********************************************************/
    576 /*  Polled character I/O functions for console and KGDB  */
    577 /*********************************************************/
    578 
    579 struct zschan *
    580 zs_get_chan_addr(zs_unit, channel)
    581         int zs_unit, channel;
    582 {
    583         struct zsdevice *addr;
    584         struct zschan *zc;
    585 
    586         if (zs_unit >= NZS)
    587                 return NULL;
    588 
    589         addr = (struct zsdevice *) ZS0_ADDR;
    590 
    591         if (channel == 0) {
    592                 zc = &addr->zs_chan_a;
    593         } else {
    594                 zc = &addr->zs_chan_b;
    595         }
    596         return (zc);
    597 }
    598 
    599 int
    600 zs_getc(arg)
    601 	void *arg;
    602 {
    603 	register volatile struct zschan *zc = arg;
    604 	register int s, c, rr0;
    605 
    606 	s = splhigh();
    607 	/* Wait for a character to arrive. */
    608 	do {
    609 		rr0 = zc->zc_csr;
    610 		ZS_DELAY();
    611 	} while ((rr0 & ZSRR0_RX_READY) == 0);
    612 
    613 	c = zc->zc_data;
    614 	ZS_DELAY();
    615 	splx(s);
    616 
    617 	return (c);
    618 }
    619 
    620 /*
    621  * Polled output char.
    622  */
    623 void
    624 zs_putc(arg, c)
    625 	void *arg;
    626 	int c;
    627 {
    628 	register volatile struct zschan *zc = arg;
    629 	register int s, rr0;
    630 
    631 	s = splhigh();
    632 	/* Wait for transmitter to become ready. */
    633 	do {
    634 		rr0 = zc->zc_csr;
    635 		ZS_DELAY();
    636 	} while ((rr0 & ZSRR0_TX_READY) == 0);
    637 
    638 	zc->zc_data = c;
    639 	wbflush();
    640 	ZS_DELAY();
    641 	splx(s);
    642 }
    643 
    644 /***************************************************************/
    645 
    646 static void zscnprobe __P((struct consdev *));
    647 static void zscninit __P((struct consdev *));
    648 static int  zscngetc __P((dev_t));
    649 static void zscnputc __P((dev_t, int));
    650 static void zscnpollc __P((dev_t, int));
    651 
    652 static int  cons_port;
    653 
    654 struct consdev consdev_zs = {
    655 	zscnprobe,
    656 	zscninit,
    657 	zscngetc,
    658 	zscnputc,
    659 	zscnpollc
    660 };
    661 
    662 void
    663 zscnprobe(cn)
    664 	struct consdev *cn;
    665 {
    666 }
    667 
    668 void
    669 zscninit(cn)
    670 	struct consdev *cn;
    671 {
    672 	extern const struct cdevsw zstty_cdevsw;
    673 
    674 	cons_port = prom_getconsole();
    675 	cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), cons_port);
    676 	cn->cn_pri = CN_REMOTE;
    677 	zs_hwflags[0][cons_port] = ZS_HWFLAG_CONSOLE;
    678 }
    679 
    680 int
    681 zscngetc(dev)
    682 	dev_t dev;
    683 {
    684 	struct zschan *zs;
    685 
    686 	zs = zs_get_chan_addr(0, cons_port);
    687 	return zs_getc(zs);
    688 }
    689 
    690 void
    691 zscnputc(dev, c)
    692 	dev_t dev;
    693 	int c;
    694 {
    695 	struct zschan *zs;
    696 
    697 	zs = zs_get_chan_addr(0, cons_port);
    698 	zs_putc(zs, c);
    699 }
    700 
    701 void
    702 zscnpollc(dev, on)
    703 	dev_t dev;
    704 	int on;
    705 {
    706 }
    707