zs.c revision 1.19 1 /* $NetBSD: zs.c,v 1.19 2006/03/28 17:38:25 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross and Wayne Knowles
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.19 2006/03/28 17:38:25 thorpej Exp $");
48
49 #include "opt_ddb.h"
50 #include "opt_kgdb.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/conf.h>
55 #include <sys/device.h>
56 #include <sys/file.h>
57 #include <sys/ioctl.h>
58 #include <sys/kernel.h>
59 #include <sys/proc.h>
60 #include <sys/tty.h>
61 #include <sys/time.h>
62 #include <sys/syslog.h>
63
64 #include <machine/cpu.h>
65 #include <machine/mainboard.h>
66 #include <machine/autoconf.h>
67 #include <machine/prom.h>
68 #include <machine/z8530var.h>
69
70 #include <dev/cons.h>
71 #include <dev/ic/z8530reg.h>
72
73 #include "zsc.h" /* NZSC */
74 #define NZS NZSC
75
76 /* Make life easier for the initialized arrays here. */
77 #if NZS < 2
78 #undef NZS
79 #define NZS 2
80 #endif
81
82 /*
83 * Some warts needed by z8530tty.c -
84 * The default parity REALLY needs to be the same as the PROM uses,
85 * or you can not see messages done with printf during boot-up...
86 */
87 int zs_def_cflag = (CREAD | CS8 | HUPCL);
88
89
90 #define PCLK 10000000 /* PCLK pin input clock rate */
91
92 #ifndef ZS_DEFSPEED
93 #define ZS_DEFSPEED 9600
94 #endif
95
96 /*
97 * Define interrupt levels.
98 */
99 #define ZSHARD_PRI 64
100
101 /* Register recovery time is 3.5 to 4 PCLK Cycles */
102 #define ZS_RECOVERY 1 /* 1us = 10 PCLK Cycles */
103 #define ZS_DELAY() delay(ZS_RECOVERY)
104
105 /* The layout of this is hardware-dependent (padding, order). */
106 struct zschan {
107 u_char pad1[3];
108 volatile u_char zc_csr; /* ctrl,status, and indirect access */
109 u_char pad2[3];
110 volatile u_char zc_data; /* data */
111 };
112 struct zsdevice {
113 /* Yes, they are backwards. */
114 struct zschan zs_chan_b;
115 struct zschan zs_chan_a;
116 };
117
118 /* Return the byte offset of element within a structure */
119 #define OFFSET(struct_def, el) ((size_t)&((struct_def *)0)->el)
120
121 #define ZS_CHAN_A OFFSET(struct zsdevice, zs_chan_a)
122 #define ZS_CHAN_B OFFSET(struct zsdevice, zs_chan_b)
123 #define ZS_REG_CSR OFFSET(struct zschan, zc_csr)
124 #define ZS_REG_DATA OFFSET(struct zschan, zc_data)
125 static int zs_chan_offset[] = {ZS_CHAN_A, ZS_CHAN_B};
126
127 /* Flags from cninit() */
128 static int zs_hwflags[NZS][2];
129
130 /* Default speed for all channels */
131 static int zs_defspeed = ZS_DEFSPEED;
132 static volatile int zssoftpending;
133
134 static u_char zs_init_reg[16] = {
135 0, /* 0: CMD (reset, etc.) */
136 0, /* 1: No interrupts yet. */
137 ZSHARD_PRI, /* 2: IVECT */
138 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
139 ZSWR4_CLK_X16 | ZSWR4_ONESB,
140 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
141 0, /* 6: TXSYNC/SYNCLO */
142 0, /* 7: RXSYNC/SYNCHI */
143 0, /* 8: alias for data port */
144 ZSWR9_MASTER_IE,
145 0, /*10: Misc. TX/RX control bits */
146 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD | ZSWR11_TRXC_OUT_ENA,
147 BPS_TO_TCONST(PCLK/16, ZS_DEFSPEED), /*12: BAUDLO (default=9600) */
148 0, /*13: BAUDHI (default=9600) */
149 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
150 ZSWR15_BREAK_IE,
151 };
152
153
154 /****************************************************************
155 * Autoconfig
156 ****************************************************************/
157
158 /* Definition of the driver for autoconfig. */
159 static int zs_match __P((struct device *, struct cfdata *, void *));
160 static void zs_attach __P((struct device *, struct device *, void *));
161 static int zs_print __P((void *, const char *name));
162
163 CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
164 zs_match, zs_attach, NULL, NULL);
165
166 extern struct cfdriver zsc_cd;
167
168 static int zshard __P((void *));
169 void zssoft __P((void *));
170 static int zs_get_speed __P((struct zs_chanstate *));
171 struct zschan *zs_get_chan_addr (int zs_unit, int channel);
172 int zs_getc __P((void *));
173 void zs_putc __P((void *, int));
174
175 /*
176 * Is the zs chip present?
177 */
178 static int
179 zs_match(parent, cf, aux)
180 struct device *parent;
181 struct cfdata *cf;
182 void *aux;
183 {
184 struct confargs *ca = aux;
185 void *va;
186
187 if (strcmp(ca->ca_name, "zsc"))
188 return 0;
189
190 va = (void *)cf->cf_addr;
191
192 /* This returns -1 on a fault (bus error). */
193 if (badaddr(va, 1))
194 return 0;
195 return 1;
196 }
197
198 /*
199 * Attach a found zs.
200 *
201 * Match slave number to zs unit number, so that misconfiguration will
202 * not set up the keyboard as ttya, etc.
203 */
204 static void
205 zs_attach(parent, self, aux)
206 struct device *parent;
207 struct device *self;
208 void *aux;
209 {
210 struct zsc_softc *zsc = (void *) self;
211 struct confargs *ca = aux;
212 struct zsc_attach_args zsc_args;
213 struct zs_chanstate *cs;
214 struct zs_channel *ch;
215 int zs_unit, channel, s;
216
217 zsc->zsc_bustag = ca->ca_bustag;
218 if (bus_space_map(ca->ca_bustag, ca->ca_addr,
219 sizeof(struct zsdevice),
220 BUS_SPACE_MAP_LINEAR,
221 &zsc->zsc_base) != 0) {
222 printf(": cannot map registers\n");
223 return;
224 }
225
226 zs_unit = device_unit(&zsc->zsc_dev);
227 printf("\n");
228
229 /*
230 * Initialize software state for each channel.
231 */
232 for (channel = 0; channel < 2; channel++) {
233 zsc_args.channel = channel;
234 zsc_args.hwflags = zs_hwflags[zs_unit][channel];
235 ch = &zsc->zsc_cs_store[channel];
236 cs = zsc->zsc_cs[channel] = (struct zs_chanstate *)ch;
237
238 simple_lock_init(&cs->cs_lock);
239 cs->cs_reg_csr = NULL;
240 cs->cs_reg_data = NULL;
241 cs->cs_channel = channel;
242 cs->cs_private = NULL;
243 cs->cs_ops = &zsops_null;
244 cs->cs_brg_clk = PCLK / 16;
245
246 if (bus_space_subregion(ca->ca_bustag, zsc->zsc_base,
247 zs_chan_offset[channel],
248 sizeof(struct zschan),
249 &ch->cs_regs) != 0) {
250 printf(": cannot map regs\n");
251 return;
252 }
253 ch->cs_bustag = ca->ca_bustag;
254
255 memcpy(cs->cs_creg, zs_init_reg, 16);
256 memcpy(cs->cs_preg, zs_init_reg, 16);
257
258 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
259 cs->cs_defspeed = zs_get_speed(cs);
260 else
261 cs->cs_defspeed = zs_defspeed;
262 cs->cs_defcflag = zs_def_cflag;
263
264 /* Make these correspond to cs_defcflag (-crtscts) */
265 cs->cs_rr0_dcd = ZSRR0_DCD;
266 cs->cs_rr0_cts = 0;
267 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
268 cs->cs_wr5_rts = 0;
269
270 /*
271 * Clear the master interrupt enable.
272 * The INTENA is common to both channels,
273 * so just do it on the A channel.
274 */
275 if (channel == 0) {
276 zs_write_reg(cs, 9, 0);
277 }
278 /*
279 * Look for a child driver for this channel.
280 * The child attach will setup the hardware.
281 */
282 if (!config_found(self, (void *)&zsc_args, zs_print)) {
283 /* No sub-driver. Just reset it. */
284 u_char reset = (channel == 0) ?
285 ZSWR9_A_RESET : ZSWR9_B_RESET;
286
287 s = splhigh();
288 zs_write_reg(cs, 9, reset);
289 splx(s);
290 }
291 }
292
293
294 zsc->sc_si = softintr_establish(IPL_SOFTSERIAL, zssoft, zsc);
295 bus_intr_establish(zsc->zsc_bustag, SYS_INTR_SCC0, 0, 0, zshard, NULL);
296
297 evcnt_attach_dynamic(&zsc->zs_intrcnt, EVCNT_TYPE_INTR, NULL,
298 self->dv_xname, "intr");
299
300 /*
301 * Set the master interrupt enable and interrupt vector.
302 * (common to both channels, do it on A)
303 */
304 cs = zsc->zsc_cs[0];
305 s = splhigh();
306 /* interrupt vector */
307 zs_write_reg(cs, 2, zs_init_reg[2]);
308 /* master interrupt control (enable) */
309 zs_write_reg(cs, 9, zs_init_reg[9]);
310 splx(s);
311 }
312
313 static int
314 zs_print(aux, name)
315 void *aux;
316 const char *name;
317 {
318 struct zsc_attach_args *args = aux;
319
320 if (name != NULL)
321 aprint_normal("%s: ", name);
322
323 if (args->channel != -1)
324 aprint_normal(" channel %d", args->channel);
325
326 return UNCONF;
327 }
328
329 /*
330 * Our ZS chips all share a common, autovectored interrupt,
331 * so we have to look at all of them on each interrupt.
332 */
333 static int
334 zshard(arg)
335 void *arg;
336 {
337 register struct zsc_softc *zsc;
338 register int unit, rval, softreq;
339
340 rval = 0;
341 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
342 zsc = zsc_cd.cd_devs[unit];
343 if (zsc == NULL)
344 continue;
345 rval |= zsc_intr_hard(zsc);
346 softreq = zsc->zsc_cs[0]->cs_softreq;
347 softreq |= zsc->zsc_cs[1]->cs_softreq;
348 if (softreq && (zssoftpending == 0)) {
349 zssoftpending = 1;
350 softintr_schedule(zsc->sc_si);
351 }
352 zsc->zs_intrcnt.ev_count++;
353 }
354 return rval;
355 }
356
357 /*
358 * Similar scheme as for zshard (look at all of them)
359 */
360 void
361 zssoft(arg)
362 void *arg;
363 {
364 register struct zsc_softc *zsc;
365 register int s, unit;
366
367 /* This is not the only ISR on this IPL. */
368 if (zssoftpending == 0)
369 return;
370
371 /*
372 * The soft intr. bit will be set by zshard only if
373 * the variable zssoftpending is zero. The order of
374 * these next two statements prevents our clearing
375 * the soft intr bit just after zshard has set it.
376 */
377 /*isr_soft_clear(ZSSOFT_PRI);*/
378 zssoftpending = 0;
379
380 /* Make sure we call the tty layer at spltty. */
381 s = spltty();
382 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
383 zsc = zsc_cd.cd_devs[unit];
384 if (zsc == NULL)
385 continue;
386 (void) zsc_intr_soft(zsc);
387 }
388 splx(s);
389 return;
390 }
391
392
393 /*
394 * Compute the current baud rate given a ZS channel.
395 */
396 static int
397 zs_get_speed(cs)
398 struct zs_chanstate *cs;
399 {
400 int tconst;
401
402 tconst = zs_read_reg(cs, 12);
403 tconst |= zs_read_reg(cs, 13) << 8;
404 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
405 }
406
407 /*
408 * MD functions for setting the baud rate and control modes.
409 */
410 int
411 zs_set_speed(cs, bps)
412 struct zs_chanstate *cs;
413 int bps; /* bits per second */
414 {
415 int tconst, real_bps;
416
417 #if 0
418 while (!(zs_read_csr(cs) & ZSRR0_TX_READY))
419 {/*nop*/}
420 #endif
421 /* Wait for transmit buffer to empty */
422 if (bps == 0) {
423 return (0);
424 }
425
426 #ifdef DIAGNOSTIC
427 if (cs->cs_brg_clk == 0)
428 panic("zs_set_speed");
429 #endif
430
431 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
432 if (tconst < 0)
433 return (EINVAL);
434
435 /* Convert back to make sure we can do it. */
436 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
437
438 /* XXX - Allow some tolerance here? */
439 #if 0
440 if (real_bps != bps)
441 return (EINVAL);
442 #endif
443
444 cs->cs_preg[12] = tconst;
445 cs->cs_preg[13] = tconst >> 8;
446
447 /* Caller will stuff the pending registers. */
448 return (0);
449 }
450
451 int
452 zs_set_modes(cs, cflag)
453 struct zs_chanstate *cs;
454 int cflag; /* bits per second */
455 {
456 int s;
457
458 /*
459 * Output hardware flow control on the chip is horrendous:
460 * if carrier detect drops, the receiver is disabled, and if
461 * CTS drops, the transmitter is stoped IN MID CHARACTER!
462 * Therefore, NEVER set the HFC bit, and instead use the
463 * status interrupt to detect CTS changes.
464 */
465 s = splzs();
466 cs->cs_rr0_pps = 0;
467 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
468 cs->cs_rr0_dcd = 0;
469 if ((cflag & MDMBUF) == 0)
470 cs->cs_rr0_pps = ZSRR0_DCD;
471 } else
472 cs->cs_rr0_dcd = ZSRR0_DCD;
473 if ((cflag & CRTSCTS) != 0) {
474 cs->cs_wr5_dtr = ZSWR5_DTR;
475 cs->cs_wr5_rts = ZSWR5_RTS;
476 cs->cs_rr0_cts = ZSRR0_CTS;
477 } else if ((cflag & MDMBUF) != 0) {
478 cs->cs_wr5_dtr = 0;
479 cs->cs_wr5_rts = ZSWR5_DTR;
480 cs->cs_rr0_cts = ZSRR0_DCD;
481 } else {
482 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
483 cs->cs_wr5_rts = 0;
484 cs->cs_rr0_cts = 0;
485 }
486 splx(s);
487
488 /* Caller will stuff the pending registers. */
489 return (0);
490 }
491
492
493 /*
494 * Read or write the chip with suitable delays.
495 */
496
497 u_char
498 zs_read_reg(cs, reg)
499 struct zs_chanstate *cs;
500 u_char reg;
501 {
502 u_char val;
503 struct zs_channel *zsc = (struct zs_channel *)cs;
504
505 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg);
506 ZS_DELAY();
507 val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR);
508 ZS_DELAY();
509 return val;
510 }
511
512 void
513 zs_write_reg(cs, reg, val)
514 struct zs_chanstate *cs;
515 u_char reg, val;
516 {
517 struct zs_channel *zsc = (struct zs_channel *)cs;
518
519 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg);
520 ZS_DELAY();
521 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val);
522 ZS_DELAY();
523 }
524
525 u_char zs_read_csr(cs)
526 struct zs_chanstate *cs;
527 {
528 struct zs_channel *zsc = (struct zs_channel *)cs;
529 register u_char val;
530
531 val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR);
532 ZS_DELAY();
533 return val;
534 }
535
536 void zs_write_csr(cs, val)
537 struct zs_chanstate *cs;
538 u_char val;
539 {
540 struct zs_channel *zsc = (struct zs_channel *)cs;
541
542 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val);
543 ZS_DELAY();
544 }
545
546 u_char zs_read_data(cs)
547 struct zs_chanstate *cs;
548 {
549 struct zs_channel *zsc = (struct zs_channel *)cs;
550 register u_char val;
551
552 val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA);
553 ZS_DELAY();
554 return val;
555 }
556
557 void zs_write_data(cs, val)
558 struct zs_chanstate *cs;
559 u_char val;
560 {
561 struct zs_channel *zsc = (struct zs_channel *)cs;
562
563 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA, val);
564 ZS_DELAY();
565 }
566
567 void
568 zs_abort(cs)
569 struct zs_chanstate *cs;
570 {
571 #if defined(KGDB)
572 zskgdb(cs);
573 #elif defined(DDB)
574 Debugger();
575 #endif
576 }
577
578
579 /*********************************************************/
580 /* Polled character I/O functions for console and KGDB */
581 /*********************************************************/
582
583 struct zschan *
584 zs_get_chan_addr(zs_unit, channel)
585 int zs_unit, channel;
586 {
587 struct zsdevice *addr;
588 struct zschan *zc;
589
590 if (zs_unit >= NZS)
591 return NULL;
592
593 addr = (struct zsdevice *) ZS0_ADDR;
594
595 if (channel == 0) {
596 zc = &addr->zs_chan_a;
597 } else {
598 zc = &addr->zs_chan_b;
599 }
600 return (zc);
601 }
602
603 int
604 zs_getc(arg)
605 void *arg;
606 {
607 register volatile struct zschan *zc = arg;
608 register int s, c, rr0;
609
610 s = splhigh();
611 /* Wait for a character to arrive. */
612 do {
613 rr0 = zc->zc_csr;
614 ZS_DELAY();
615 } while ((rr0 & ZSRR0_RX_READY) == 0);
616
617 c = zc->zc_data;
618 ZS_DELAY();
619 splx(s);
620
621 return (c);
622 }
623
624 /*
625 * Polled output char.
626 */
627 void
628 zs_putc(arg, c)
629 void *arg;
630 int c;
631 {
632 register volatile struct zschan *zc = arg;
633 register int s, rr0;
634
635 s = splhigh();
636 /* Wait for transmitter to become ready. */
637 do {
638 rr0 = zc->zc_csr;
639 ZS_DELAY();
640 } while ((rr0 & ZSRR0_TX_READY) == 0);
641
642 zc->zc_data = c;
643 wbflush();
644 ZS_DELAY();
645 splx(s);
646 }
647
648 /***************************************************************/
649
650 static void zscnprobe __P((struct consdev *));
651 static void zscninit __P((struct consdev *));
652 static int zscngetc __P((dev_t));
653 static void zscnputc __P((dev_t, int));
654 static void zscnpollc __P((dev_t, int));
655
656 static int cons_port;
657
658 struct consdev consdev_zs = {
659 zscnprobe,
660 zscninit,
661 zscngetc,
662 zscnputc,
663 zscnpollc
664 };
665
666 void
667 zscnprobe(cn)
668 struct consdev *cn;
669 {
670 }
671
672 void
673 zscninit(cn)
674 struct consdev *cn;
675 {
676 extern const struct cdevsw zstty_cdevsw;
677
678 cons_port = prom_getconsole();
679 cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), cons_port);
680 cn->cn_pri = CN_REMOTE;
681 zs_hwflags[0][cons_port] = ZS_HWFLAG_CONSOLE;
682 }
683
684 int
685 zscngetc(dev)
686 dev_t dev;
687 {
688 struct zschan *zs;
689
690 zs = zs_get_chan_addr(0, cons_port);
691 return zs_getc(zs);
692 }
693
694 void
695 zscnputc(dev, c)
696 dev_t dev;
697 int c;
698 {
699 struct zschan *zs;
700
701 zs = zs_get_chan_addr(0, cons_port);
702 zs_putc(zs, c);
703 }
704
705 void
706 zscnpollc(dev, on)
707 dev_t dev;
708 int on;
709 {
710 }
711