zs.c revision 1.21 1 /* $NetBSD: zs.c,v 1.21 2007/11/26 23:29:36 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1996, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross and Wayne Knowles
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.21 2007/11/26 23:29:36 ad Exp $");
48
49 #include "opt_ddb.h"
50 #include "opt_kgdb.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/conf.h>
55 #include <sys/device.h>
56 #include <sys/file.h>
57 #include <sys/ioctl.h>
58 #include <sys/kernel.h>
59 #include <sys/proc.h>
60 #include <sys/tty.h>
61 #include <sys/time.h>
62 #include <sys/syslog.h>
63 #include <sys/cpu.h>
64 #include <sys/intr.h>
65
66 #include <machine/mainboard.h>
67 #include <machine/autoconf.h>
68 #include <machine/prom.h>
69 #include <machine/z8530var.h>
70
71 #include <dev/cons.h>
72 #include <dev/ic/z8530reg.h>
73
74 #include "zsc.h" /* NZSC */
75 #define NZS NZSC
76
77 /* Make life easier for the initialized arrays here. */
78 #if NZS < 2
79 #undef NZS
80 #define NZS 2
81 #endif
82
83 /*
84 * Some warts needed by z8530tty.c -
85 * The default parity REALLY needs to be the same as the PROM uses,
86 * or you can not see messages done with printf during boot-up...
87 */
88 int zs_def_cflag = (CREAD | CS8 | HUPCL);
89
90
91 #define PCLK 10000000 /* PCLK pin input clock rate */
92
93 #ifndef ZS_DEFSPEED
94 #define ZS_DEFSPEED 9600
95 #endif
96
97 /*
98 * Define interrupt levels.
99 */
100 #define ZSHARD_PRI 64
101
102 /* Register recovery time is 3.5 to 4 PCLK Cycles */
103 #define ZS_RECOVERY 1 /* 1us = 10 PCLK Cycles */
104 #define ZS_DELAY() delay(ZS_RECOVERY)
105
106 /* The layout of this is hardware-dependent (padding, order). */
107 struct zschan {
108 u_char pad1[3];
109 volatile u_char zc_csr; /* ctrl,status, and indirect access */
110 u_char pad2[3];
111 volatile u_char zc_data; /* data */
112 };
113 struct zsdevice {
114 /* Yes, they are backwards. */
115 struct zschan zs_chan_b;
116 struct zschan zs_chan_a;
117 };
118
119 /* Return the byte offset of element within a structure */
120 #define OFFSET(struct_def, el) ((size_t)&((struct_def *)0)->el)
121
122 #define ZS_CHAN_A OFFSET(struct zsdevice, zs_chan_a)
123 #define ZS_CHAN_B OFFSET(struct zsdevice, zs_chan_b)
124 #define ZS_REG_CSR OFFSET(struct zschan, zc_csr)
125 #define ZS_REG_DATA OFFSET(struct zschan, zc_data)
126 static int zs_chan_offset[] = {ZS_CHAN_A, ZS_CHAN_B};
127
128 /* Flags from cninit() */
129 static int zs_hwflags[NZS][2];
130
131 /* Default speed for all channels */
132 static int zs_defspeed = ZS_DEFSPEED;
133 static volatile int zssoftpending;
134
135 static u_char zs_init_reg[16] = {
136 0, /* 0: CMD (reset, etc.) */
137 0, /* 1: No interrupts yet. */
138 ZSHARD_PRI, /* 2: IVECT */
139 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
140 ZSWR4_CLK_X16 | ZSWR4_ONESB,
141 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
142 0, /* 6: TXSYNC/SYNCLO */
143 0, /* 7: RXSYNC/SYNCHI */
144 0, /* 8: alias for data port */
145 ZSWR9_MASTER_IE,
146 0, /*10: Misc. TX/RX control bits */
147 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD | ZSWR11_TRXC_OUT_ENA,
148 BPS_TO_TCONST(PCLK/16, ZS_DEFSPEED), /*12: BAUDLO (default=9600) */
149 0, /*13: BAUDHI (default=9600) */
150 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
151 ZSWR15_BREAK_IE,
152 };
153
154
155 /****************************************************************
156 * Autoconfig
157 ****************************************************************/
158
159 /* Definition of the driver for autoconfig. */
160 static int zs_match __P((struct device *, struct cfdata *, void *));
161 static void zs_attach __P((struct device *, struct device *, void *));
162 static int zs_print __P((void *, const char *name));
163
164 CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
165 zs_match, zs_attach, NULL, NULL);
166
167 extern struct cfdriver zsc_cd;
168
169 static int zshard __P((void *));
170 void zssoft __P((void *));
171 static int zs_get_speed __P((struct zs_chanstate *));
172 struct zschan *zs_get_chan_addr (int zs_unit, int channel);
173 int zs_getc __P((void *));
174 void zs_putc __P((void *, int));
175
176 /*
177 * Is the zs chip present?
178 */
179 static int
180 zs_match(parent, cf, aux)
181 struct device *parent;
182 struct cfdata *cf;
183 void *aux;
184 {
185 struct confargs *ca = aux;
186 void *va;
187
188 if (strcmp(ca->ca_name, "zsc"))
189 return 0;
190
191 va = (void *)cf->cf_addr;
192
193 /* This returns -1 on a fault (bus error). */
194 if (badaddr(va, 1))
195 return 0;
196 return 1;
197 }
198
199 /*
200 * Attach a found zs.
201 *
202 * Match slave number to zs unit number, so that misconfiguration will
203 * not set up the keyboard as ttya, etc.
204 */
205 static void
206 zs_attach(parent, self, aux)
207 struct device *parent;
208 struct device *self;
209 void *aux;
210 {
211 struct zsc_softc *zsc = (void *) self;
212 struct confargs *ca = aux;
213 struct zsc_attach_args zsc_args;
214 struct zs_chanstate *cs;
215 struct zs_channel *ch;
216 int zs_unit, channel, s;
217
218 zsc->zsc_bustag = ca->ca_bustag;
219 if (bus_space_map(ca->ca_bustag, ca->ca_addr,
220 sizeof(struct zsdevice),
221 BUS_SPACE_MAP_LINEAR,
222 &zsc->zsc_base) != 0) {
223 printf(": cannot map registers\n");
224 return;
225 }
226
227 zs_unit = device_unit(&zsc->zsc_dev);
228 printf("\n");
229
230 /*
231 * Initialize software state for each channel.
232 */
233 for (channel = 0; channel < 2; channel++) {
234 zsc_args.channel = channel;
235 zsc_args.hwflags = zs_hwflags[zs_unit][channel];
236 ch = &zsc->zsc_cs_store[channel];
237 cs = zsc->zsc_cs[channel] = (struct zs_chanstate *)ch;
238
239 zs_lock_init(cs);
240 cs->cs_reg_csr = NULL;
241 cs->cs_reg_data = NULL;
242 cs->cs_channel = channel;
243 cs->cs_private = NULL;
244 cs->cs_ops = &zsops_null;
245 cs->cs_brg_clk = PCLK / 16;
246
247 if (bus_space_subregion(ca->ca_bustag, zsc->zsc_base,
248 zs_chan_offset[channel],
249 sizeof(struct zschan),
250 &ch->cs_regs) != 0) {
251 printf(": cannot map regs\n");
252 return;
253 }
254 ch->cs_bustag = ca->ca_bustag;
255
256 memcpy(cs->cs_creg, zs_init_reg, 16);
257 memcpy(cs->cs_preg, zs_init_reg, 16);
258
259 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
260 cs->cs_defspeed = zs_get_speed(cs);
261 else
262 cs->cs_defspeed = zs_defspeed;
263 cs->cs_defcflag = zs_def_cflag;
264
265 /* Make these correspond to cs_defcflag (-crtscts) */
266 cs->cs_rr0_dcd = ZSRR0_DCD;
267 cs->cs_rr0_cts = 0;
268 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
269 cs->cs_wr5_rts = 0;
270
271 /*
272 * Clear the master interrupt enable.
273 * The INTENA is common to both channels,
274 * so just do it on the A channel.
275 */
276 if (channel == 0) {
277 zs_write_reg(cs, 9, 0);
278 }
279 /*
280 * Look for a child driver for this channel.
281 * The child attach will setup the hardware.
282 */
283 if (!config_found(self, (void *)&zsc_args, zs_print)) {
284 /* No sub-driver. Just reset it. */
285 u_char reset = (channel == 0) ?
286 ZSWR9_A_RESET : ZSWR9_B_RESET;
287
288 s = splhigh();
289 zs_write_reg(cs, 9, reset);
290 splx(s);
291 }
292 }
293
294
295 zsc->sc_si = softint_establish(SOFTINT_SERIAL, zssoft, zsc);
296 bus_intr_establish(zsc->zsc_bustag, SYS_INTR_SCC0, 0, 0, zshard, NULL);
297
298 evcnt_attach_dynamic(&zsc->zs_intrcnt, EVCNT_TYPE_INTR, NULL,
299 self->dv_xname, "intr");
300
301 /*
302 * Set the master interrupt enable and interrupt vector.
303 * (common to both channels, do it on A)
304 */
305 cs = zsc->zsc_cs[0];
306 s = splhigh();
307 /* interrupt vector */
308 zs_write_reg(cs, 2, zs_init_reg[2]);
309 /* master interrupt control (enable) */
310 zs_write_reg(cs, 9, zs_init_reg[9]);
311 splx(s);
312 }
313
314 static int
315 zs_print(aux, name)
316 void *aux;
317 const char *name;
318 {
319 struct zsc_attach_args *args = aux;
320
321 if (name != NULL)
322 aprint_normal("%s: ", name);
323
324 if (args->channel != -1)
325 aprint_normal(" channel %d", args->channel);
326
327 return UNCONF;
328 }
329
330 /*
331 * Our ZS chips all share a common, autovectored interrupt,
332 * so we have to look at all of them on each interrupt.
333 */
334 static int
335 zshard(arg)
336 void *arg;
337 {
338 register struct zsc_softc *zsc;
339 register int unit, rval, softreq;
340
341 rval = 0;
342 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
343 zsc = zsc_cd.cd_devs[unit];
344 if (zsc == NULL)
345 continue;
346 rval |= zsc_intr_hard(zsc);
347 softreq = zsc->zsc_cs[0]->cs_softreq;
348 softreq |= zsc->zsc_cs[1]->cs_softreq;
349 if (softreq && (zssoftpending == 0)) {
350 zssoftpending = 1;
351 softint_schedule(zsc->sc_si);
352 }
353 zsc->zs_intrcnt.ev_count++;
354 }
355 return rval;
356 }
357
358 /*
359 * Similar scheme as for zshard (look at all of them)
360 */
361 void
362 zssoft(arg)
363 void *arg;
364 {
365 register struct zsc_softc *zsc;
366 register int s, unit;
367
368 /* This is not the only ISR on this IPL. */
369 if (zssoftpending == 0)
370 return;
371
372 /*
373 * The soft intr. bit will be set by zshard only if
374 * the variable zssoftpending is zero. The order of
375 * these next two statements prevents our clearing
376 * the soft intr bit just after zshard has set it.
377 */
378 /*isr_soft_clear(ZSSOFT_PRI);*/
379 zssoftpending = 0;
380
381 /* Make sure we call the tty layer at spltty. */
382 s = spltty();
383 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
384 zsc = zsc_cd.cd_devs[unit];
385 if (zsc == NULL)
386 continue;
387 (void) zsc_intr_soft(zsc);
388 }
389 splx(s);
390 return;
391 }
392
393
394 /*
395 * Compute the current baud rate given a ZS channel.
396 */
397 static int
398 zs_get_speed(cs)
399 struct zs_chanstate *cs;
400 {
401 int tconst;
402
403 tconst = zs_read_reg(cs, 12);
404 tconst |= zs_read_reg(cs, 13) << 8;
405 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
406 }
407
408 /*
409 * MD functions for setting the baud rate and control modes.
410 */
411 int
412 zs_set_speed(cs, bps)
413 struct zs_chanstate *cs;
414 int bps; /* bits per second */
415 {
416 int tconst, real_bps;
417
418 #if 0
419 while (!(zs_read_csr(cs) & ZSRR0_TX_READY))
420 {/*nop*/}
421 #endif
422 /* Wait for transmit buffer to empty */
423 if (bps == 0) {
424 return (0);
425 }
426
427 #ifdef DIAGNOSTIC
428 if (cs->cs_brg_clk == 0)
429 panic("zs_set_speed");
430 #endif
431
432 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
433 if (tconst < 0)
434 return (EINVAL);
435
436 /* Convert back to make sure we can do it. */
437 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
438
439 /* XXX - Allow some tolerance here? */
440 #if 0
441 if (real_bps != bps)
442 return (EINVAL);
443 #endif
444
445 cs->cs_preg[12] = tconst;
446 cs->cs_preg[13] = tconst >> 8;
447
448 /* Caller will stuff the pending registers. */
449 return (0);
450 }
451
452 int
453 zs_set_modes(cs, cflag)
454 struct zs_chanstate *cs;
455 int cflag; /* bits per second */
456 {
457 int s;
458
459 /*
460 * Output hardware flow control on the chip is horrendous:
461 * if carrier detect drops, the receiver is disabled, and if
462 * CTS drops, the transmitter is stoped IN MID CHARACTER!
463 * Therefore, NEVER set the HFC bit, and instead use the
464 * status interrupt to detect CTS changes.
465 */
466 s = splzs();
467 cs->cs_rr0_pps = 0;
468 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
469 cs->cs_rr0_dcd = 0;
470 if ((cflag & MDMBUF) == 0)
471 cs->cs_rr0_pps = ZSRR0_DCD;
472 } else
473 cs->cs_rr0_dcd = ZSRR0_DCD;
474 if ((cflag & CRTSCTS) != 0) {
475 cs->cs_wr5_dtr = ZSWR5_DTR;
476 cs->cs_wr5_rts = ZSWR5_RTS;
477 cs->cs_rr0_cts = ZSRR0_CTS;
478 } else if ((cflag & MDMBUF) != 0) {
479 cs->cs_wr5_dtr = 0;
480 cs->cs_wr5_rts = ZSWR5_DTR;
481 cs->cs_rr0_cts = ZSRR0_DCD;
482 } else {
483 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
484 cs->cs_wr5_rts = 0;
485 cs->cs_rr0_cts = 0;
486 }
487 splx(s);
488
489 /* Caller will stuff the pending registers. */
490 return (0);
491 }
492
493
494 /*
495 * Read or write the chip with suitable delays.
496 */
497
498 u_char
499 zs_read_reg(cs, reg)
500 struct zs_chanstate *cs;
501 u_char reg;
502 {
503 u_char val;
504 struct zs_channel *zsc = (struct zs_channel *)cs;
505
506 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg);
507 ZS_DELAY();
508 val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR);
509 ZS_DELAY();
510 return val;
511 }
512
513 void
514 zs_write_reg(cs, reg, val)
515 struct zs_chanstate *cs;
516 u_char reg, val;
517 {
518 struct zs_channel *zsc = (struct zs_channel *)cs;
519
520 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, reg);
521 ZS_DELAY();
522 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val);
523 ZS_DELAY();
524 }
525
526 u_char zs_read_csr(cs)
527 struct zs_chanstate *cs;
528 {
529 struct zs_channel *zsc = (struct zs_channel *)cs;
530 register u_char val;
531
532 val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR);
533 ZS_DELAY();
534 return val;
535 }
536
537 void zs_write_csr(cs, val)
538 struct zs_chanstate *cs;
539 u_char val;
540 {
541 struct zs_channel *zsc = (struct zs_channel *)cs;
542
543 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_CSR, val);
544 ZS_DELAY();
545 }
546
547 u_char zs_read_data(cs)
548 struct zs_chanstate *cs;
549 {
550 struct zs_channel *zsc = (struct zs_channel *)cs;
551 register u_char val;
552
553 val = bus_space_read_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA);
554 ZS_DELAY();
555 return val;
556 }
557
558 void zs_write_data(cs, val)
559 struct zs_chanstate *cs;
560 u_char val;
561 {
562 struct zs_channel *zsc = (struct zs_channel *)cs;
563
564 bus_space_write_1(zsc->cs_bustag, zsc->cs_regs, ZS_REG_DATA, val);
565 ZS_DELAY();
566 }
567
568 void
569 zs_abort(cs)
570 struct zs_chanstate *cs;
571 {
572 #if defined(KGDB)
573 zskgdb(cs);
574 #elif defined(DDB)
575 Debugger();
576 #endif
577 }
578
579
580 /*********************************************************/
581 /* Polled character I/O functions for console and KGDB */
582 /*********************************************************/
583
584 struct zschan *
585 zs_get_chan_addr(zs_unit, channel)
586 int zs_unit, channel;
587 {
588 struct zsdevice *addr;
589 struct zschan *zc;
590
591 if (zs_unit >= NZS)
592 return NULL;
593
594 addr = (struct zsdevice *) ZS0_ADDR;
595
596 if (channel == 0) {
597 zc = &addr->zs_chan_a;
598 } else {
599 zc = &addr->zs_chan_b;
600 }
601 return (zc);
602 }
603
604 int
605 zs_getc(arg)
606 void *arg;
607 {
608 register volatile struct zschan *zc = arg;
609 register int s, c, rr0;
610
611 s = splhigh();
612 /* Wait for a character to arrive. */
613 do {
614 rr0 = zc->zc_csr;
615 ZS_DELAY();
616 } while ((rr0 & ZSRR0_RX_READY) == 0);
617
618 c = zc->zc_data;
619 ZS_DELAY();
620 splx(s);
621
622 return (c);
623 }
624
625 /*
626 * Polled output char.
627 */
628 void
629 zs_putc(arg, c)
630 void *arg;
631 int c;
632 {
633 register volatile struct zschan *zc = arg;
634 register int s, rr0;
635
636 s = splhigh();
637 /* Wait for transmitter to become ready. */
638 do {
639 rr0 = zc->zc_csr;
640 ZS_DELAY();
641 } while ((rr0 & ZSRR0_TX_READY) == 0);
642
643 zc->zc_data = c;
644 wbflush();
645 ZS_DELAY();
646 splx(s);
647 }
648
649 /***************************************************************/
650
651 static void zscnprobe __P((struct consdev *));
652 static void zscninit __P((struct consdev *));
653 static int zscngetc __P((dev_t));
654 static void zscnputc __P((dev_t, int));
655 static void zscnpollc __P((dev_t, int));
656
657 static int cons_port;
658
659 struct consdev consdev_zs = {
660 zscnprobe,
661 zscninit,
662 zscngetc,
663 zscnputc,
664 zscnpollc
665 };
666
667 void
668 zscnprobe(cn)
669 struct consdev *cn;
670 {
671 }
672
673 void
674 zscninit(cn)
675 struct consdev *cn;
676 {
677 extern const struct cdevsw zstty_cdevsw;
678
679 cons_port = prom_getconsole();
680 cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), cons_port);
681 cn->cn_pri = CN_REMOTE;
682 zs_hwflags[0][cons_port] = ZS_HWFLAG_CONSOLE;
683 }
684
685 int
686 zscngetc(dev)
687 dev_t dev;
688 {
689 struct zschan *zs;
690
691 zs = zs_get_chan_addr(0, cons_port);
692 return zs_getc(zs);
693 }
694
695 void
696 zscnputc(dev, c)
697 dev_t dev;
698 int c;
699 {
700 struct zschan *zs;
701
702 zs = zs_get_chan_addr(0, cons_port);
703 zs_putc(zs, c);
704 }
705
706 void
707 zscnpollc(dev, on)
708 dev_t dev;
709 int on;
710 {
711 }
712