zs.c revision 1.27 1 /* $NetBSD: zs.c,v 1.27 2001/05/31 18:46:08 scw Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 *
45 * Modified for NetBSD/mvme68k by Jason R. Thorpe <thorpej (at) NetBSD.ORG>
46 */
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/conf.h>
51 #include <sys/device.h>
52 #include <sys/file.h>
53 #include <sys/ioctl.h>
54 #include <sys/kernel.h>
55 #include <sys/proc.h>
56 #include <sys/tty.h>
57 #include <sys/time.h>
58 #include <sys/syslog.h>
59
60 #include <dev/cons.h>
61 #include <dev/ic/z8530reg.h>
62 #include <machine/z8530var.h>
63
64 #include <machine/cpu.h>
65 #include <machine/bus.h>
66 #include <machine/intr.h>
67
68 #include <mvme68k/dev/zsvar.h>
69
70 /*
71 * Some warts needed by z8530tty.c -
72 * The default parity REALLY needs to be the same as the PROM uses,
73 * or you can not see messages done with printf during boot-up...
74 */
75 int zs_def_cflag = (CREAD | CS8 | HUPCL);
76 /* XXX Shouldn't hardcode the minor number... */
77 int zs_major = 12;
78
79 /* Flags from zscnprobe() */
80 static int zs_hwflags[NZSC][2];
81
82 /* Default speed for each channel */
83 static int zs_defspeed[NZSC][2] = {
84 { 9600, /* port 1 */
85 9600 }, /* port 2 */
86 { 9600, /* port 3 */
87 9600 }, /* port 4 */
88 };
89
90 static struct zs_chanstate zs_conschan_store;
91 static struct zs_chanstate *zs_conschan;
92
93 u_char zs_init_reg[16] = {
94 0, /* 0: CMD (reset, etc.) */
95 0, /* 1: No interrupts yet. */
96 0x18 + ZSHARD_PRI, /* IVECT */
97 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
98 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
99 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
100 0, /* 6: TXSYNC/SYNCLO */
101 0, /* 7: RXSYNC/SYNCHI */
102 0, /* 8: alias for data port */
103 ZSWR9_MASTER_IE,
104 0, /*10: Misc. TX/RX control bits */
105 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
106 0, /*12: BAUDLO (default=9600) */
107 0, /*13: BAUDHI (default=9600) */
108 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
109 ZSWR15_BREAK_IE,
110 };
111
112
113 /****************************************************************
114 * Autoconfig
115 ****************************************************************/
116
117 /* Definition of the driver for autoconfig. */
118 static int zsc_print __P((void *, const char *name));
119 int zs_getc __P((void *));
120 void zs_putc __P((void *, int));
121
122 #if 0
123 static int zs_get_speed __P((struct zs_chanstate *));
124 #endif
125
126 extern struct cfdriver zsc_cd;
127
128 cons_decl(zsc_pcc);
129
130
131 /*
132 * Configure children of an SCC.
133 */
134 void
135 zs_config(zsc, zs, vector, pclk)
136 struct zsc_softc *zsc;
137 struct zsdevice *zs;
138 int vector, pclk;
139 {
140 struct zsc_attach_args zsc_args;
141 volatile struct zschan *zc;
142 struct zs_chanstate *cs;
143 int zsc_unit, channel, s;
144
145 zsc_unit = zsc->zsc_dev.dv_unit;
146 printf(": Zilog 8530 SCC at vector 0x%x\n", vector);
147
148 /*
149 * Initialize software state for each channel.
150 */
151 for (channel = 0; channel < 2; channel++) {
152 zsc_args.channel = channel;
153 zsc_args.hwflags = zs_hwflags[zsc_unit][channel];
154 cs = &zsc->zsc_cs_store[channel];
155 zsc->zsc_cs[channel] = cs;
156
157 /*
158 * If we're the console, copy the channel state, and
159 * adjust the console channel pointer.
160 */
161 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
162 bcopy(zs_conschan, cs, sizeof(struct zs_chanstate));
163 zs_conschan = cs;
164 } else {
165 zc = (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;
166 cs->cs_reg_csr = zc->zc_csr;
167 cs->cs_reg_data = zc->zc_data;
168 bcopy(zs_init_reg, cs->cs_creg, 16);
169 bcopy(zs_init_reg, cs->cs_preg, 16);
170 cs->cs_defspeed = zs_defspeed[zsc_unit][channel];
171 }
172
173 cs->cs_brg_clk = pclk / 16;
174 cs->cs_creg[2] = cs->cs_preg[2] = vector;
175 zs_set_speed(cs, cs->cs_defspeed);
176 cs->cs_creg[12] = cs->cs_preg[12];
177 cs->cs_creg[13] = cs->cs_preg[13];
178 cs->cs_defcflag = zs_def_cflag;
179
180 /* Make these correspond to cs_defcflag (-crtscts) */
181 cs->cs_rr0_dcd = ZSRR0_DCD;
182 cs->cs_rr0_cts = 0;
183 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
184 cs->cs_wr5_rts = 0;
185
186 cs->cs_channel = channel;
187 cs->cs_private = NULL;
188 cs->cs_ops = &zsops_null;
189
190 /*
191 * Clear the master interrupt enable.
192 * The INTENA is common to both channels,
193 * so just do it on the A channel.
194 * Write the interrupt vector while we're at it.
195 */
196 if (channel == 0) {
197 zs_write_reg(cs, 9, 0);
198 zs_write_reg(cs, 2, vector);
199 }
200
201 /*
202 * Look for a child driver for this channel.
203 * The child attach will setup the hardware.
204 */
205 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zsc_print)) {
206 /* No sub-driver. Just reset it. */
207 u_char reset = (channel == 0) ?
208 ZSWR9_A_RESET : ZSWR9_B_RESET;
209 s = splzs();
210 zs_write_reg(cs, 9, reset);
211 splx(s);
212 }
213 }
214
215 /*
216 * Allocate a software interrupt cookie.
217 */
218 zsc->zsc_softintr_cookie = softintr_establish(IPL_SOFTSERIAL,
219 (void (*)(void *)) zsc_intr_soft, zsc);
220 #ifdef DEBUG
221 assert(zsc->zsc_softintr_cookie);
222 #endif
223 }
224
225 static int
226 zsc_print(aux, name)
227 void *aux;
228 const char *name;
229 {
230 struct zsc_attach_args *args = aux;
231
232 if (name != NULL)
233 printf("%s: ", name);
234
235 if (args->channel != -1)
236 printf(" channel %d", args->channel);
237
238 return UNCONF;
239 }
240
241 #if defined(MVME162) || defined(MVME172)
242 /*
243 * Our ZS chips each have their own interrupt vector.
244 */
245 int
246 zshard_unshared(arg)
247 void *arg;
248 {
249 struct zsc_softc *zsc = arg;
250 int rval;
251
252 rval = zsc_intr_hard(zsc);
253
254 if (rval) {
255 if ((zsc->zsc_cs[0]->cs_softreq) ||
256 (zsc->zsc_cs[1]->cs_softreq))
257 softintr_schedule(zsc->zsc_softintr_cookie);
258 zsc->zsc_evcnt.ev_count++;
259 }
260
261 return (rval);
262 }
263 #endif
264
265 #ifdef MVME147
266 /*
267 * Our ZS chips all share a common, PCC-vectored interrupt,
268 * so we have to look at all of them on each interrupt.
269 */
270 int
271 zshard_shared(arg)
272 void *arg;
273 {
274 struct zsc_softc *zsc;
275 int unit, rval;
276
277 rval = 0;
278 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
279 zsc = zsc_cd.cd_devs[unit];
280 if (zsc != NULL && zsc_intr_hard(zsc)) {
281 if ((zsc->zsc_cs[0]->cs_softreq) ||
282 (zsc->zsc_cs[1]->cs_softreq))
283 softintr_schedule(zsc->zsc_softintr_cookie);
284 zsc->zsc_evcnt.ev_count++;
285 rval++;
286 }
287 }
288 return (rval);
289 }
290 #endif
291
292
293 #if 0
294 /*
295 * Compute the current baud rate given a ZSCC channel.
296 */
297 static int
298 zs_get_speed(cs)
299 struct zs_chanstate *cs;
300 {
301 int tconst;
302
303 tconst = zs_read_reg(cs, 12);
304 tconst |= zs_read_reg(cs, 13) << 8;
305 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
306 }
307 #endif
308
309 /*
310 * MD functions for setting the baud rate and control modes.
311 */
312 int
313 zs_set_speed(cs, bps)
314 struct zs_chanstate *cs;
315 int bps; /* bits per second */
316 {
317 int tconst, real_bps;
318
319 if (bps == 0)
320 return (0);
321
322 #ifdef DIAGNOSTIC
323 if (cs->cs_brg_clk == 0)
324 panic("zs_set_speed");
325 #endif
326
327 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
328 if (tconst < 0)
329 return (EINVAL);
330
331 /* Convert back to make sure we can do it. */
332 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
333
334 /* Allow 2% tolerance WRT the required bps */
335 if (((abs(real_bps - bps) * 1000) / bps) > 20)
336 return (EINVAL);
337
338 cs->cs_preg[12] = tconst;
339 cs->cs_preg[13] = tconst >> 8;
340
341 /* Caller will stuff the pending registers. */
342 return (0);
343 }
344
345 int
346 zs_set_modes(cs, cflag)
347 struct zs_chanstate *cs;
348 int cflag; /* bits per second */
349 {
350 int s;
351
352 /*
353 * Output hardware flow control on the chip is horrendous:
354 * if carrier detect drops, the receiver is disabled, and if
355 * CTS drops, the transmitter is stoped IN MID CHARACTER!
356 * Therefore, NEVER set the HFC bit, and instead use the
357 * status interrupt to detect CTS changes.
358 */
359 s = splzs();
360 cs->cs_rr0_pps = 0;
361 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
362 cs->cs_rr0_dcd = 0;
363 if ((cflag & MDMBUF) == 0)
364 cs->cs_rr0_pps = ZSRR0_DCD;
365 } else
366 cs->cs_rr0_dcd = ZSRR0_DCD;
367 if ((cflag & CRTSCTS) != 0) {
368 cs->cs_wr5_dtr = ZSWR5_DTR;
369 cs->cs_wr5_rts = ZSWR5_RTS;
370 cs->cs_rr0_cts = ZSRR0_CTS;
371 } else if ((cflag & MDMBUF) != 0) {
372 cs->cs_wr5_dtr = 0;
373 cs->cs_wr5_rts = ZSWR5_DTR;
374 cs->cs_rr0_cts = ZSRR0_DCD;
375 } else {
376 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
377 cs->cs_wr5_rts = 0;
378 cs->cs_rr0_cts = 0;
379 }
380 splx(s);
381
382 /* Caller will stuff the pending registers. */
383 return (0);
384 }
385
386
387 /*
388 * Read or write the chip with suitable delays.
389 */
390
391 u_char
392 zs_read_reg(cs, reg)
393 struct zs_chanstate *cs;
394 u_char reg;
395 {
396 u_char val;
397
398 *cs->cs_reg_csr = reg;
399 ZS_DELAY();
400 val = *cs->cs_reg_csr;
401 ZS_DELAY();
402 return val;
403 }
404
405 void
406 zs_write_reg(cs, reg, val)
407 struct zs_chanstate *cs;
408 u_char reg, val;
409 {
410 *cs->cs_reg_csr = reg;
411 ZS_DELAY();
412 *cs->cs_reg_csr = val;
413 ZS_DELAY();
414 }
415
416 u_char zs_read_csr(cs)
417 struct zs_chanstate *cs;
418 {
419 u_char val;
420
421 val = *cs->cs_reg_csr;
422 ZS_DELAY();
423 return val;
424 }
425
426 void zs_write_csr(cs, val)
427 struct zs_chanstate *cs;
428 u_char val;
429 {
430 *cs->cs_reg_csr = val;
431 ZS_DELAY();
432 }
433
434 u_char zs_read_data(cs)
435 struct zs_chanstate *cs;
436 {
437 u_char val;
438
439 val = *cs->cs_reg_data;
440 ZS_DELAY();
441 return val;
442 }
443
444 void zs_write_data(cs, val)
445 struct zs_chanstate *cs;
446 u_char val;
447 {
448 *cs->cs_reg_data = val;
449 ZS_DELAY();
450 }
451
452 /****************************************************************
453 * Console support functions (MVME specific!)
454 ****************************************************************/
455
456 /*
457 * Polled input char.
458 */
459 int
460 zs_getc(arg)
461 void *arg;
462 {
463 struct zs_chanstate *cs = arg;
464 int s, c, rr0, stat;
465
466 s = splhigh();
467 top:
468 /* Wait for a character to arrive. */
469 do {
470 rr0 = *cs->cs_reg_csr;
471 ZS_DELAY();
472 } while ((rr0 & ZSRR0_RX_READY) == 0);
473
474 /* Read error register. */
475 stat = zs_read_reg(cs, 1) & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE);
476 if (stat) {
477 zs_write_csr(cs, ZSM_RESET_ERR);
478 goto top;
479 }
480
481 /* Read character. */
482 c = *cs->cs_reg_data;
483 ZS_DELAY();
484 splx(s);
485
486 return (c);
487 }
488
489 /*
490 * Polled output char.
491 */
492 void
493 zs_putc(arg, c)
494 void *arg;
495 int c;
496 {
497 struct zs_chanstate *cs = arg;
498 int s, rr0;
499
500 s = splhigh();
501 /* Wait for transmitter to become ready. */
502 do {
503 rr0 = *cs->cs_reg_csr;
504 ZS_DELAY();
505 } while ((rr0 & ZSRR0_TX_READY) == 0);
506
507 *cs->cs_reg_data = c;
508 ZS_DELAY();
509 splx(s);
510 }
511
512 /*
513 * Common parts of console init.
514 */
515 void
516 zs_cnconfig(zsc_unit, channel, zs, pclk)
517 int zsc_unit, channel;
518 struct zsdevice *zs;
519 int pclk;
520 {
521 struct zs_chanstate *cs;
522 struct zschan *zc;
523
524 zc = (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;
525
526 /*
527 * Pointer to channel state. Later, the console channel
528 * state is copied into the softc, and the console channel
529 * pointer adjusted to point to the new copy.
530 */
531 zs_conschan = cs = &zs_conschan_store;
532 zs_hwflags[zsc_unit][channel] = ZS_HWFLAG_CONSOLE;
533
534 /* Setup temporary chanstate. */
535 cs->cs_brg_clk = pclk / 16;
536 cs->cs_reg_csr = zc->zc_csr;
537 cs->cs_reg_data = zc->zc_data;
538
539 /* Initialize the pending registers. */
540 bcopy(zs_init_reg, cs->cs_preg, 16);
541 cs->cs_preg[5] |= (ZSWR5_DTR | ZSWR5_RTS);
542
543 #if 0
544 /* XXX: Preserve BAUD rate from boot loader. */
545 /* XXX: Also, why reset the chip here? -gwr */
546 cs->cs_defspeed = zs_get_speed(cs);
547 #else
548 cs->cs_defspeed = 9600; /* XXX */
549 #endif
550 zs_set_speed(cs, cs->cs_defspeed);
551 cs->cs_creg[12] = cs->cs_preg[12];
552 cs->cs_creg[13] = cs->cs_preg[13];
553
554 /* Clear the master interrupt enable. */
555 zs_write_reg(cs, 9, 0);
556
557 /* Reset the whole SCC chip. */
558 zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
559
560 /* Copy "pending" to "current" and H/W. */
561 zs_loadchannelregs(cs);
562 }
563
564 /*
565 * Polled console input putchar.
566 */
567 int
568 zsc_pcccngetc(dev)
569 dev_t dev;
570 {
571 struct zs_chanstate *cs = zs_conschan;
572 int c;
573
574 c = zs_getc(cs);
575 return (c);
576 }
577
578 /*
579 * Polled console output putchar.
580 */
581 void
582 zsc_pcccnputc(dev, c)
583 dev_t dev;
584 int c;
585 {
586 struct zs_chanstate *cs = zs_conschan;
587
588 zs_putc(cs, c);
589 }
590
591 /*
592 * Handle user request to enter kernel debugger.
593 */
594 void
595 zs_abort(cs)
596 struct zs_chanstate *cs;
597 {
598 int rr0;
599
600 /* Wait for end of break to avoid PROM abort. */
601 /* XXX - Limit the wait? */
602 do {
603 rr0 = *cs->cs_reg_csr;
604 ZS_DELAY();
605 } while (rr0 & ZSRR0_BREAK);
606
607 mvme68k_abort("SERIAL LINE ABORT");
608 }
609