zs.c revision 1.31 1 /* $NetBSD: zs.c,v 1.31 2003/01/28 12:35:33 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 *
45 * Modified for NetBSD/mvme68k by Jason R. Thorpe <thorpej (at) NetBSD.ORG>
46 */
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/conf.h>
51 #include <sys/device.h>
52 #include <sys/file.h>
53 #include <sys/ioctl.h>
54 #include <sys/kernel.h>
55 #include <sys/proc.h>
56 #include <sys/tty.h>
57 #include <sys/time.h>
58 #include <sys/syslog.h>
59
60 #include <dev/cons.h>
61 #include <dev/ic/z8530reg.h>
62 #include <machine/z8530var.h>
63
64 #include <machine/cpu.h>
65 #include <machine/bus.h>
66 #include <machine/intr.h>
67
68 #include <mvme68k/dev/zsvar.h>
69
70 /*
71 * Some warts needed by z8530tty.c -
72 * The default parity REALLY needs to be the same as the PROM uses,
73 * or you can not see messages done with printf during boot-up...
74 */
75 int zs_def_cflag = (CREAD | CS8 | HUPCL);
76
77 /* Flags from zscnprobe() */
78 static int zs_hwflags[NZSC][2];
79
80 /* Default speed for each channel */
81 static int zs_defspeed[NZSC][2] = {
82 { 9600, /* port 1 */
83 9600 }, /* port 2 */
84 { 9600, /* port 3 */
85 9600 }, /* port 4 */
86 };
87
88 static struct zs_chanstate zs_conschan_store;
89 static struct zs_chanstate *zs_conschan;
90
91 u_char zs_init_reg[16] = {
92 0, /* 0: CMD (reset, etc.) */
93 0, /* 1: No interrupts yet. */
94 0x18 + ZSHARD_PRI, /* IVECT */
95 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
96 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
97 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
98 0, /* 6: TXSYNC/SYNCLO */
99 0, /* 7: RXSYNC/SYNCHI */
100 0, /* 8: alias for data port */
101 ZSWR9_MASTER_IE,
102 0, /*10: Misc. TX/RX control bits */
103 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
104 0, /*12: BAUDLO (default=9600) */
105 0, /*13: BAUDHI (default=9600) */
106 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
107 ZSWR15_BREAK_IE,
108 };
109
110
111 /****************************************************************
112 * Autoconfig
113 ****************************************************************/
114
115 /* Definition of the driver for autoconfig. */
116 static int zsc_print __P((void *, const char *name));
117 int zs_getc __P((void *));
118 void zs_putc __P((void *, int));
119
120 #if 0
121 static int zs_get_speed __P((struct zs_chanstate *));
122 #endif
123
124 extern struct cfdriver zsc_cd;
125
126 cons_decl(zsc_pcc);
127
128
129 /*
130 * Configure children of an SCC.
131 */
132 void
133 zs_config(zsc, zs, vector, pclk)
134 struct zsc_softc *zsc;
135 struct zsdevice *zs;
136 int vector, pclk;
137 {
138 struct zsc_attach_args zsc_args;
139 volatile struct zschan *zc;
140 struct zs_chanstate *cs;
141 int zsc_unit, channel, s;
142
143 zsc_unit = zsc->zsc_dev.dv_unit;
144 printf(": Zilog 8530 SCC at vector 0x%x\n", vector);
145
146 /*
147 * Initialize software state for each channel.
148 */
149 for (channel = 0; channel < 2; channel++) {
150 zsc_args.channel = channel;
151 zsc_args.hwflags = zs_hwflags[zsc_unit][channel];
152 cs = &zsc->zsc_cs_store[channel];
153 zsc->zsc_cs[channel] = cs;
154 simple_lock_init(&cs->cs_lock);
155
156 /*
157 * If we're the console, copy the channel state, and
158 * adjust the console channel pointer.
159 */
160 if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) {
161 memcpy(cs, zs_conschan, sizeof(struct zs_chanstate));
162 zs_conschan = cs;
163 } else {
164 zc = (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;
165 cs->cs_reg_csr = zc->zc_csr;
166 cs->cs_reg_data = zc->zc_data;
167 memcpy(cs->cs_creg, zs_init_reg, 16);
168 memcpy(cs->cs_preg, zs_init_reg, 16);
169 cs->cs_defspeed = zs_defspeed[zsc_unit][channel];
170 }
171
172 cs->cs_brg_clk = pclk / 16;
173 cs->cs_creg[2] = cs->cs_preg[2] = vector;
174 zs_set_speed(cs, cs->cs_defspeed);
175 cs->cs_creg[12] = cs->cs_preg[12];
176 cs->cs_creg[13] = cs->cs_preg[13];
177 cs->cs_defcflag = zs_def_cflag;
178
179 /* Make these correspond to cs_defcflag (-crtscts) */
180 cs->cs_rr0_dcd = ZSRR0_DCD;
181 cs->cs_rr0_cts = 0;
182 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
183 cs->cs_wr5_rts = 0;
184
185 cs->cs_channel = channel;
186 cs->cs_private = NULL;
187 cs->cs_ops = &zsops_null;
188
189 /*
190 * Clear the master interrupt enable.
191 * The INTENA is common to both channels,
192 * so just do it on the A channel.
193 * Write the interrupt vector while we're at it.
194 */
195 if (channel == 0) {
196 zs_write_reg(cs, 9, 0);
197 zs_write_reg(cs, 2, vector);
198 }
199
200 /*
201 * Look for a child driver for this channel.
202 * The child attach will setup the hardware.
203 */
204 if (!config_found(&zsc->zsc_dev, (void *)&zsc_args, zsc_print)) {
205 /* No sub-driver. Just reset it. */
206 u_char reset = (channel == 0) ?
207 ZSWR9_A_RESET : ZSWR9_B_RESET;
208 s = splzs();
209 zs_write_reg(cs, 9, reset);
210 splx(s);
211 }
212 }
213
214 /*
215 * Allocate a software interrupt cookie.
216 */
217 zsc->zsc_softintr_cookie = softintr_establish(IPL_SOFTSERIAL,
218 (void (*)(void *)) zsc_intr_soft, zsc);
219 #ifdef DEBUG
220 assert(zsc->zsc_softintr_cookie);
221 #endif
222 }
223
224 static int
225 zsc_print(aux, name)
226 void *aux;
227 const char *name;
228 {
229 struct zsc_attach_args *args = aux;
230
231 if (name != NULL)
232 aprint_normal("%s: ", name);
233
234 if (args->channel != -1)
235 aprint_normal(" channel %d", args->channel);
236
237 return UNCONF;
238 }
239
240 #if defined(MVME162) || defined(MVME172)
241 /*
242 * Our ZS chips each have their own interrupt vector.
243 */
244 int
245 zshard_unshared(arg)
246 void *arg;
247 {
248 struct zsc_softc *zsc = arg;
249 int rval;
250
251 rval = zsc_intr_hard(zsc);
252
253 if (rval) {
254 if ((zsc->zsc_cs[0]->cs_softreq) ||
255 (zsc->zsc_cs[1]->cs_softreq))
256 softintr_schedule(zsc->zsc_softintr_cookie);
257 zsc->zsc_evcnt.ev_count++;
258 }
259
260 return (rval);
261 }
262 #endif
263
264 #ifdef MVME147
265 /*
266 * Our ZS chips all share a common, PCC-vectored interrupt,
267 * so we have to look at all of them on each interrupt.
268 */
269 int
270 zshard_shared(arg)
271 void *arg;
272 {
273 struct zsc_softc *zsc;
274 int unit, rval;
275
276 rval = 0;
277 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
278 zsc = zsc_cd.cd_devs[unit];
279 if (zsc != NULL && zsc_intr_hard(zsc)) {
280 if ((zsc->zsc_cs[0]->cs_softreq) ||
281 (zsc->zsc_cs[1]->cs_softreq))
282 softintr_schedule(zsc->zsc_softintr_cookie);
283 zsc->zsc_evcnt.ev_count++;
284 rval++;
285 }
286 }
287 return (rval);
288 }
289 #endif
290
291
292 #if 0
293 /*
294 * Compute the current baud rate given a ZSCC channel.
295 */
296 static int
297 zs_get_speed(cs)
298 struct zs_chanstate *cs;
299 {
300 int tconst;
301
302 tconst = zs_read_reg(cs, 12);
303 tconst |= zs_read_reg(cs, 13) << 8;
304 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
305 }
306 #endif
307
308 /*
309 * MD functions for setting the baud rate and control modes.
310 */
311 int
312 zs_set_speed(cs, bps)
313 struct zs_chanstate *cs;
314 int bps; /* bits per second */
315 {
316 int tconst, real_bps;
317
318 if (bps == 0)
319 return (0);
320
321 #ifdef DIAGNOSTIC
322 if (cs->cs_brg_clk == 0)
323 panic("zs_set_speed");
324 #endif
325
326 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
327 if (tconst < 0)
328 return (EINVAL);
329
330 /* Convert back to make sure we can do it. */
331 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
332
333 /* Allow 2% tolerance WRT the required bps */
334 if (((abs(real_bps - bps) * 1000) / bps) > 20)
335 return (EINVAL);
336
337 cs->cs_preg[12] = tconst;
338 cs->cs_preg[13] = tconst >> 8;
339
340 /* Caller will stuff the pending registers. */
341 return (0);
342 }
343
344 int
345 zs_set_modes(cs, cflag)
346 struct zs_chanstate *cs;
347 int cflag; /* bits per second */
348 {
349 int s;
350
351 /*
352 * Output hardware flow control on the chip is horrendous:
353 * if carrier detect drops, the receiver is disabled, and if
354 * CTS drops, the transmitter is stoped IN MID CHARACTER!
355 * Therefore, NEVER set the HFC bit, and instead use the
356 * status interrupt to detect CTS changes.
357 */
358 s = splzs();
359 cs->cs_rr0_pps = 0;
360 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
361 cs->cs_rr0_dcd = 0;
362 if ((cflag & MDMBUF) == 0)
363 cs->cs_rr0_pps = ZSRR0_DCD;
364 } else
365 cs->cs_rr0_dcd = ZSRR0_DCD;
366 if ((cflag & CRTSCTS) != 0) {
367 cs->cs_wr5_dtr = ZSWR5_DTR;
368 cs->cs_wr5_rts = ZSWR5_RTS;
369 cs->cs_rr0_cts = ZSRR0_CTS;
370 } else if ((cflag & MDMBUF) != 0) {
371 cs->cs_wr5_dtr = 0;
372 cs->cs_wr5_rts = ZSWR5_DTR;
373 cs->cs_rr0_cts = ZSRR0_DCD;
374 } else {
375 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
376 cs->cs_wr5_rts = 0;
377 cs->cs_rr0_cts = 0;
378 }
379 splx(s);
380
381 /* Caller will stuff the pending registers. */
382 return (0);
383 }
384
385
386 /*
387 * Read or write the chip with suitable delays.
388 */
389
390 u_char
391 zs_read_reg(cs, reg)
392 struct zs_chanstate *cs;
393 u_char reg;
394 {
395 u_char val;
396
397 *cs->cs_reg_csr = reg;
398 ZS_DELAY();
399 val = *cs->cs_reg_csr;
400 ZS_DELAY();
401 return val;
402 }
403
404 void
405 zs_write_reg(cs, reg, val)
406 struct zs_chanstate *cs;
407 u_char reg, val;
408 {
409 *cs->cs_reg_csr = reg;
410 ZS_DELAY();
411 *cs->cs_reg_csr = val;
412 ZS_DELAY();
413 }
414
415 u_char zs_read_csr(cs)
416 struct zs_chanstate *cs;
417 {
418 u_char val;
419
420 val = *cs->cs_reg_csr;
421 ZS_DELAY();
422 return val;
423 }
424
425 void zs_write_csr(cs, val)
426 struct zs_chanstate *cs;
427 u_char val;
428 {
429 *cs->cs_reg_csr = val;
430 ZS_DELAY();
431 }
432
433 u_char zs_read_data(cs)
434 struct zs_chanstate *cs;
435 {
436 u_char val;
437
438 val = *cs->cs_reg_data;
439 ZS_DELAY();
440 return val;
441 }
442
443 void zs_write_data(cs, val)
444 struct zs_chanstate *cs;
445 u_char val;
446 {
447 *cs->cs_reg_data = val;
448 ZS_DELAY();
449 }
450
451 /****************************************************************
452 * Console support functions (MVME specific!)
453 ****************************************************************/
454
455 /*
456 * Polled input char.
457 */
458 int
459 zs_getc(arg)
460 void *arg;
461 {
462 struct zs_chanstate *cs = arg;
463 int s, c, rr0, stat;
464
465 s = splhigh();
466 top:
467 /* Wait for a character to arrive. */
468 do {
469 rr0 = *cs->cs_reg_csr;
470 ZS_DELAY();
471 } while ((rr0 & ZSRR0_RX_READY) == 0);
472
473 /* Read error register. */
474 stat = zs_read_reg(cs, 1) & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE);
475 if (stat) {
476 zs_write_csr(cs, ZSM_RESET_ERR);
477 goto top;
478 }
479
480 /* Read character. */
481 c = *cs->cs_reg_data;
482 ZS_DELAY();
483 splx(s);
484
485 return (c);
486 }
487
488 /*
489 * Polled output char.
490 */
491 void
492 zs_putc(arg, c)
493 void *arg;
494 int c;
495 {
496 struct zs_chanstate *cs = arg;
497 int s, rr0;
498
499 s = splhigh();
500 /* Wait for transmitter to become ready. */
501 do {
502 rr0 = *cs->cs_reg_csr;
503 ZS_DELAY();
504 } while ((rr0 & ZSRR0_TX_READY) == 0);
505
506 *cs->cs_reg_data = c;
507 ZS_DELAY();
508 splx(s);
509 }
510
511 /*
512 * Common parts of console init.
513 */
514 void
515 zs_cnconfig(zsc_unit, channel, zs, pclk)
516 int zsc_unit, channel;
517 struct zsdevice *zs;
518 int pclk;
519 {
520 struct zs_chanstate *cs;
521 struct zschan *zc;
522
523 zc = (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;
524
525 /*
526 * Pointer to channel state. Later, the console channel
527 * state is copied into the softc, and the console channel
528 * pointer adjusted to point to the new copy.
529 */
530 zs_conschan = cs = &zs_conschan_store;
531 zs_hwflags[zsc_unit][channel] = ZS_HWFLAG_CONSOLE;
532
533 /* Setup temporary chanstate. */
534 cs->cs_brg_clk = pclk / 16;
535 cs->cs_reg_csr = zc->zc_csr;
536 cs->cs_reg_data = zc->zc_data;
537
538 /* Initialize the pending registers. */
539 memcpy(cs->cs_preg, zs_init_reg, 16);
540 cs->cs_preg[5] |= (ZSWR5_DTR | ZSWR5_RTS);
541
542 #if 0
543 /* XXX: Preserve BAUD rate from boot loader. */
544 /* XXX: Also, why reset the chip here? -gwr */
545 cs->cs_defspeed = zs_get_speed(cs);
546 #else
547 cs->cs_defspeed = 9600; /* XXX */
548 #endif
549 zs_set_speed(cs, cs->cs_defspeed);
550 cs->cs_creg[12] = cs->cs_preg[12];
551 cs->cs_creg[13] = cs->cs_preg[13];
552
553 /* Clear the master interrupt enable. */
554 zs_write_reg(cs, 9, 0);
555
556 /* Reset the whole SCC chip. */
557 zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
558
559 /* Copy "pending" to "current" and H/W. */
560 zs_loadchannelregs(cs);
561 }
562
563 /*
564 * Polled console input putchar.
565 */
566 int
567 zsc_pcccngetc(dev)
568 dev_t dev;
569 {
570 struct zs_chanstate *cs = zs_conschan;
571 int c;
572
573 c = zs_getc(cs);
574 return (c);
575 }
576
577 /*
578 * Polled console output putchar.
579 */
580 void
581 zsc_pcccnputc(dev, c)
582 dev_t dev;
583 int c;
584 {
585 struct zs_chanstate *cs = zs_conschan;
586
587 zs_putc(cs, c);
588 }
589
590 /*
591 * Handle user request to enter kernel debugger.
592 */
593 void
594 zs_abort(cs)
595 struct zs_chanstate *cs;
596 {
597 int rr0;
598
599 /* Wait for end of break to avoid PROM abort. */
600 /* XXX - Limit the wait? */
601 do {
602 rr0 = *cs->cs_reg_csr;
603 ZS_DELAY();
604 } while (rr0 & ZSRR0_BREAK);
605
606 mvme68k_abort("SERIAL LINE ABORT");
607 }
608