zs.c revision 1.13 1 /* $NetBSD: zs.c,v 1.13 2003/01/28 12:35:33 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 */
45
46 /*
47 * news68k/dev/zs.c - based on {newsmips,x68k,mvme68k}/dev/zs.c
48 */
49
50 #include "opt_ddb.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/conf.h>
55 #include <sys/device.h>
56 #include <sys/tty.h>
57
58 #include <machine/cpu.h>
59 #include <machine/z8530var.h>
60
61 #include <dev/cons.h>
62 #include <dev/ic/z8530reg.h>
63
64 #include <news68k/dev/hbvar.h>
65
66 int zs_getc(void *);
67 void zs_putc(void *, int);
68
69 /*
70 * Some warts needed by z8530tty.c -
71 * The default parity REALLY needs to be the same as the PROM uses,
72 * or you can not see messages done with printf during boot-up...
73 */
74 int zs_def_cflag = (CREAD | CS8 | HUPCL);
75
76 /*
77 * The news68k machines use three different clocks for the ZS chips.
78 */
79 #define NPCLK 3
80 #define PCLK0 (9600 * 416) /* news1700: 3.9936MHz */
81 #define PCLK1 (9600 * 512) /* news1200: 4.9152MHz */
82 #define PCLK2 (9600 * 384) /* external: 3.6864MHz */
83
84 static const u_int pclk[NPCLK] = {
85 PCLK0,
86 PCLK1,
87 PCLK2,
88 };
89
90 /*
91 * Define interrupt levels.
92 */
93 #define ZSHARD_PRI 5
94 #define ZS_IVECT 64
95
96 #define ZS_DELAY() /* delay(2) */
97
98 /* The layout of this is hardware-dependent (padding, order). */
99 struct zschan {
100 volatile u_char zc_csr; /* ctrl,status, and indirect access */
101 volatile u_char zc_data; /* data */
102 };
103 struct zsdevice {
104 /* Yes, they are backwards. */
105 struct zschan zs_chan_b;
106 struct zschan zs_chan_a;
107 };
108
109 static u_char zs_sir;
110
111 /* Default speed for all channels */
112 static int zs_defspeed = 9600;
113
114 /* console status from cninit */
115 static struct zs_chanstate zs_conschan_store;
116 static struct zs_chanstate *zs_conschan;
117 static struct zschan *zc_cons;
118
119 static u_char zs_init_reg[16] = {
120 0, /* 0: CMD (reset, etc.) */
121 0, /* 1: No interrupts yet. */
122 ZS_IVECT, /* IVECT */
123 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
124 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
125 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
126 0, /* 6: TXSYNC/SYNCLO */
127 0, /* 7: RXSYNC/SYNCHI */
128 0, /* 8: alias for data port */
129 ZSWR9_MASTER_IE,
130 0, /*10: Misc. TX/RX control bits */
131 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
132 BPS_TO_TCONST((PCLK0/16), 9600), /*12: BAUDLO (default=9600) */
133 0, /*13: BAUDHI (default=9600) */
134 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
135 ZSWR15_BREAK_IE,
136 };
137
138
139 /****************************************************************
140 * Autoconfig
141 ****************************************************************/
142
143 /* Definition of the driver for autoconfig. */
144 static int zs_match(struct device *, struct cfdata *, void *);
145 static void zs_attach(struct device *, struct device *, void *);
146 static int zs_print(void *, const char *name);
147
148 CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
149 zs_match, zs_attach, NULL, NULL);
150
151 extern struct cfdriver zsc_cd;
152
153 static int zshard(void *);
154 void zssoft(void *);
155 #if 0
156 static int zs_get_speed(struct zs_chanstate *);
157 #endif
158
159 /*
160 * Is the zs chip present?
161 */
162 static int
163 zs_match(parent, cf, aux)
164 struct device *parent;
165 struct cfdata *cf;
166 void *aux;
167 {
168 struct hb_attach_args *ha = aux;
169 u_int addr;
170
171 if (strcmp(ha->ha_name, "zsc"))
172 return 0;
173
174 /* XXX no default address */
175 if (ha->ha_address == (u_int)-1)
176 return 0;
177
178 addr = IIOV(ha->ha_address);
179 /* This returns -1 on a fault (bus error). */
180 if (badaddr((void *)addr, 1))
181 return 0;
182
183 return 1;
184 }
185
186 /*
187 * Attach a found zs.
188 */
189 static void
190 zs_attach(parent, self, aux)
191 struct device *parent;
192 struct device *self;
193 void *aux;
194 {
195 struct zsc_softc *zsc = (void *) self;
196 struct cfdata *cf = self->dv_cfdata;
197 struct hb_attach_args *ha = aux;
198 struct zsc_attach_args zsc_args;
199 struct zsdevice *zs;
200 struct zschan *zc;
201 struct zs_chanstate *cs;
202 int s, channel, clk;
203
204 zs = (void *)IIOV(ha->ha_address);
205
206 clk = cf->cf_flags;
207 if (clk < 0 || clk >= NPCLK)
208 clk = 0;
209
210 printf("\n");
211
212 /*
213 * Initialize software state for each channel.
214 */
215 for (channel = 0; channel < 2; channel++) {
216 zsc_args.channel = channel;
217 cs = &zsc->zsc_cs_store[channel];
218 simple_lock_init(&cs->cs_lock);
219
220 zsc->zsc_cs[channel] = cs;
221 zc = (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;
222
223 if (ha->ha_vect != -1)
224 zs_init_reg[2] = ha->ha_vect;
225
226 if (zc == zc_cons) {
227 memcpy(cs, zs_conschan, sizeof(struct zs_chanstate));
228 zs_conschan = cs;
229 zsc_args.hwflags = ZS_HWFLAG_CONSOLE;
230 } else {
231 cs->cs_reg_csr = &zc->zc_csr;
232 cs->cs_reg_data = &zc->zc_data;
233 memcpy(cs->cs_creg, zs_init_reg, 16);
234 memcpy(cs->cs_preg, zs_init_reg, 16);
235 cs->cs_defspeed = zs_defspeed;
236 zsc_args.hwflags = 0;
237 }
238
239 cs->cs_defcflag = zs_def_cflag;
240
241 cs->cs_channel = channel;
242 cs->cs_private = NULL;
243 cs->cs_ops = &zsops_null;
244 cs->cs_brg_clk = pclk[clk] / 16;
245
246 /* Make these correspond to cs_defcflag (-crtscts) */
247 cs->cs_rr0_dcd = ZSRR0_DCD;
248 cs->cs_rr0_cts = 0;
249 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
250 cs->cs_wr5_rts = 0;
251
252 /*
253 * Clear the master interrupt enable.
254 * The INTENA is common to both channels,
255 * so just do it on the A channel.
256 */
257 if (channel == 0) {
258 s = splhigh();
259 zs_write_reg(cs, 9, 0);
260 splx(s);
261 }
262
263 /*
264 * Look for a child driver for this channel.
265 * The child attach will setup the hardware.
266 */
267 if (!config_found(self, (void *)&zsc_args, zs_print)) {
268 /* No sub-driver. Just reset it. */
269 u_char reset = (channel == 0) ?
270 ZSWR9_A_RESET : ZSWR9_B_RESET;
271 s = splhigh();
272 zs_write_reg(cs, 9, reset);
273 splx(s);
274 }
275 }
276
277 /*
278 * Now safe to install interrupt handlers.
279 */
280 hb_intr_establish(zs_init_reg[2], zshard, ZSHARD_PRI, zsc);
281
282 /*
283 * Set the master interrupt enable and interrupt vector.
284 * (common to both channels, do it on A)
285 */
286 cs = zsc->zsc_cs[0];
287 s = splhigh();
288 /* interrupt vector */
289 zs_write_reg(cs, 2, zs_init_reg[2]);
290 /* master interrupt control (enable) */
291 zs_write_reg(cs, 9, zs_init_reg[9]);
292 splx(s);
293
294 if (zs_sir == 0)
295 zs_sir = allocate_sir(zssoft, zsc);
296 }
297
298 static int
299 zs_print(aux, name)
300 void *aux;
301 const char *name;
302 {
303 struct zsc_attach_args *args = aux;
304
305 if (name != NULL)
306 aprint_normal("%s: ", name);
307
308 if (args->channel != -1)
309 aprint_normal(" channel %d", args->channel);
310
311 return UNCONF;
312 }
313
314 /*
315 * For news68k-port, we don't use autovectored interrupt.
316 * We do not need to look at all of the zs chips.
317 */
318 static int
319 zshard(arg)
320 void *arg;
321 {
322 struct zsc_softc *zsc = arg;
323 int rval;
324
325 rval = zsc_intr_hard(zsc);
326
327 /* We are at splzs here, so no need to lock. */
328 if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) {
329 setsoftint(zs_sir);
330 }
331
332 return (rval);
333 }
334
335 /*
336 * Shared among the all chips. We have to look at all of them.
337 */
338 void
339 zssoft(arg)
340 void *arg;
341 {
342 struct zsc_softc *zsc;
343 int s, unit;
344
345 /* Make sure we call the tty layer at spltty. */
346 s = spltty();
347 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
348 zsc = zsc_cd.cd_devs[unit];
349 if (zsc == NULL)
350 continue;
351 (void) zsc_intr_soft(zsc);
352 }
353 splx(s);
354 }
355
356 /*
357 * Compute the current baud rate given a ZS channel.
358 */
359 #if 0
360 static int
361 zs_get_speed(cs)
362 struct zs_chanstate *cs;
363 {
364 int tconst;
365
366 tconst = zs_read_reg(cs, 12);
367 tconst |= zs_read_reg(cs, 13) << 8;
368 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
369 }
370 #endif
371
372 /*
373 * MD functions for setting the baud rate and control modes.
374 */
375 int
376 zs_set_speed(cs, bps)
377 struct zs_chanstate *cs;
378 int bps; /* bits per second */
379 {
380 int tconst, real_bps;
381
382 if (bps == 0)
383 return (0);
384
385 #ifdef DIAGNOSTIC
386 if (cs->cs_brg_clk == 0)
387 panic("zs_set_speed");
388 #endif
389
390 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
391 if (tconst < 0)
392 return (EINVAL);
393
394 /* Convert back to make sure we can do it. */
395 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
396
397 /* XXX - Allow some tolerance here? */
398 if (real_bps != bps)
399 return (EINVAL);
400
401 cs->cs_preg[12] = tconst;
402 cs->cs_preg[13] = tconst >> 8;
403
404 /* Caller will stuff the pending registers. */
405 return (0);
406 }
407
408 int
409 zs_set_modes(cs, cflag)
410 struct zs_chanstate *cs;
411 int cflag; /* bits per second */
412 {
413 int s;
414
415 /*
416 * Output hardware flow control on the chip is horrendous:
417 * if carrier detect drops, the receiver is disabled, and if
418 * CTS drops, the transmitter is stoped IN MID CHARACTER!
419 * Therefore, NEVER set the HFC bit, and instead use the
420 * status interrupt to detect CTS changes.
421 */
422 s = splzs();
423 cs->cs_rr0_pps = 0;
424 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
425 cs->cs_rr0_dcd = 0;
426 if ((cflag & MDMBUF) == 0)
427 cs->cs_rr0_pps = ZSRR0_DCD;
428 } else
429 cs->cs_rr0_dcd = ZSRR0_DCD;
430 if ((cflag & CRTSCTS) != 0) {
431 cs->cs_wr5_dtr = ZSWR5_DTR;
432 cs->cs_wr5_rts = ZSWR5_RTS;
433 cs->cs_rr0_cts = ZSRR0_CTS;
434 } else if ((cflag & MDMBUF) != 0) {
435 cs->cs_wr5_dtr = 0;
436 cs->cs_wr5_rts = ZSWR5_DTR;
437 cs->cs_rr0_cts = ZSRR0_DCD;
438 } else {
439 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
440 cs->cs_wr5_rts = 0;
441 cs->cs_rr0_cts = 0;
442 }
443 splx(s);
444
445 /* Caller will stuff the pending registers. */
446 return (0);
447 }
448
449
450 /*
451 * Read or write the chip with suitable delays.
452 */
453
454 u_char
455 zs_read_reg(cs, reg)
456 struct zs_chanstate *cs;
457 u_char reg;
458 {
459 u_char val;
460
461 *cs->cs_reg_csr = reg;
462 ZS_DELAY();
463 val = *cs->cs_reg_csr;
464 ZS_DELAY();
465 return val;
466 }
467
468 void
469 zs_write_reg(cs, reg, val)
470 struct zs_chanstate *cs;
471 u_char reg, val;
472 {
473 *cs->cs_reg_csr = reg;
474 ZS_DELAY();
475 *cs->cs_reg_csr = val;
476 ZS_DELAY();
477 }
478
479 u_char
480 zs_read_csr(cs)
481 struct zs_chanstate *cs;
482 {
483 u_char val;
484
485 val = *cs->cs_reg_csr;
486 ZS_DELAY();
487 return val;
488 }
489
490 void
491 zs_write_csr(cs, val)
492 struct zs_chanstate *cs;
493 u_char val;
494 {
495 *cs->cs_reg_csr = val;
496 ZS_DELAY();
497 }
498
499 u_char
500 zs_read_data(cs)
501 struct zs_chanstate *cs;
502 {
503 u_char val;
504
505 val = *cs->cs_reg_data;
506 ZS_DELAY();
507 return val;
508 }
509
510 void
511 zs_write_data(cs, val)
512 struct zs_chanstate *cs;
513 u_char val;
514 {
515 *cs->cs_reg_data = val;
516 ZS_DELAY();
517 }
518
519 void
520 zs_abort(cs)
521 struct zs_chanstate *cs;
522 {
523 #ifdef DDB
524 Debugger();
525 #endif
526 }
527
528 /*
529 * Polled input char.
530 */
531 int
532 zs_getc(arg)
533 void *arg;
534 {
535 struct zs_chanstate *cs = arg;
536 int s, c, rr0;
537
538 s = splhigh();
539 /* Wait for a character to arrive. */
540 do {
541 rr0 = *cs->cs_reg_csr;
542 ZS_DELAY();
543 } while ((rr0 & ZSRR0_RX_READY) == 0);
544
545 c = *cs->cs_reg_data;
546 ZS_DELAY();
547 splx(s);
548
549 return c;
550 }
551
552 /*
553 * Polled output char.
554 */
555 void
556 zs_putc(arg, c)
557 void *arg;
558 int c;
559 {
560 struct zs_chanstate *cs = arg;
561 int s, rr0;
562
563 s = splhigh();
564 /* Wait for transmitter to become ready. */
565 do {
566 rr0 = *cs->cs_reg_csr;
567 ZS_DELAY();
568 } while ((rr0 & ZSRR0_TX_READY) == 0);
569
570 *cs->cs_reg_data = c;
571 ZS_DELAY();
572 splx(s);
573 }
574
575 /*****************************************************************/
576
577 static void zscnprobe(struct consdev *);
578 static void zscninit(struct consdev *);
579 static int zscngetc(dev_t);
580 static void zscnputc(dev_t, int);
581
582 struct consdev consdev_zs = {
583 zscnprobe,
584 zscninit,
585 zscngetc,
586 zscnputc,
587 nullcnpollc,
588 NULL,
589 };
590
591 static void
592 zscnprobe(cn)
593 struct consdev *cn;
594 {
595 extern const struct cdevsw zstty_cdevsw;
596 extern int tty00_is_console;
597
598 cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), 0);
599 if (tty00_is_console)
600 cn->cn_pri = CN_REMOTE;
601 else
602 cn->cn_pri = CN_NORMAL;
603 }
604
605 static void
606 zscninit(cn)
607 struct consdev *cn;
608 {
609 struct zs_chanstate *cs;
610
611 extern volatile u_char *sccport0a;
612
613 zc_cons = (struct zschan *)sccport0a; /* XXX */
614
615 zs_conschan = cs = &zs_conschan_store;
616
617 /* Setup temporary chanstate. */
618 cs->cs_reg_csr = &zc_cons->zc_csr;
619 cs->cs_reg_data = &zc_cons->zc_data;
620
621 /* Initialize the pending registers. */
622 memcpy(cs->cs_preg, zs_init_reg, 16);
623 cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
624
625 cs->cs_preg[12] = BPS_TO_TCONST(pclk[systype] / 16, 9600); /* XXX */
626 cs->cs_preg[13] = 0;
627 cs->cs_defspeed = 9600;
628
629 /* Clear the master interrupt enable. */
630 zs_write_reg(cs, 9, 0);
631
632 /* Reset the whole SCC chip. */
633 zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
634
635 /* Copy "pending" to "current" and H/W */
636 zs_loadchannelregs(cs);
637 }
638
639 static int
640 zscngetc(dev)
641 dev_t dev;
642 {
643 return zs_getc((void *)zs_conschan);
644 }
645
646 static void
647 zscnputc(dev, c)
648 dev_t dev;
649 int c;
650 {
651 zs_putc((void *)zs_conschan, c);
652 }
653