zs.c revision 1.19 1 /* $NetBSD: zs.c,v 1.19 2004/09/04 11:28:32 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 */
45
46 /*
47 * news68k/dev/zs.c - based on {newsmips,x68k,mvme68k}/dev/zs.c
48 */
49
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.19 2004/09/04 11:28:32 tsutsui Exp $");
52
53 #include "opt_ddb.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/conf.h>
58 #include <sys/device.h>
59 #include <sys/tty.h>
60
61 #include <machine/cpu.h>
62 #include <machine/z8530var.h>
63
64 #include <dev/cons.h>
65 #include <dev/ic/z8530reg.h>
66
67 #include <news68k/dev/hbvar.h>
68
69 #include "ioconf.h"
70
71 int zs_getc(void *);
72 void zs_putc(void *, int);
73
74 /*
75 * Some warts needed by z8530tty.c -
76 * The default parity REALLY needs to be the same as the PROM uses,
77 * or you can not see messages done with printf during boot-up...
78 */
79 int zs_def_cflag = (CREAD | CS8 | HUPCL);
80
81 /*
82 * The news68k machines use three different clocks for the ZS chips.
83 */
84 #define NPCLK 3
85 #define PCLK0 (9600 * 416) /* news1700: 3.9936MHz */
86 #define PCLK1 (9600 * 512) /* news1200: 4.9152MHz */
87 #define PCLK2 (9600 * 384) /* external: 3.6864MHz */
88
89 static const u_int pclk[NPCLK] = {
90 PCLK0,
91 PCLK1,
92 PCLK2,
93 };
94
95 /*
96 * Define interrupt levels.
97 */
98 #define ZSHARD_PRI 5
99 #define ZS_IVECT 64
100
101 #define ZS_DELAY() /* delay(2) */
102
103 /* The layout of this is hardware-dependent (padding, order). */
104 struct zschan {
105 volatile u_char zc_csr; /* ctrl,status, and indirect access */
106 volatile u_char zc_data; /* data */
107 };
108 struct zsdevice {
109 /* Yes, they are backwards. */
110 struct zschan zs_chan_b;
111 struct zschan zs_chan_a;
112 };
113
114 static u_char zs_sir;
115
116 /* Default speed for all channels */
117 static int zs_defspeed = 9600;
118
119 /* console status from cninit */
120 static struct zs_chanstate zs_conschan_store;
121 static struct zs_chanstate *zs_conschan;
122 static struct zschan *zc_cons;
123
124 static u_char zs_init_reg[16] = {
125 0, /* 0: CMD (reset, etc.) */
126 0, /* 1: No interrupts yet. */
127 ZS_IVECT, /* IVECT */
128 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
129 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
130 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
131 0, /* 6: TXSYNC/SYNCLO */
132 0, /* 7: RXSYNC/SYNCHI */
133 0, /* 8: alias for data port */
134 ZSWR9_MASTER_IE,
135 0, /*10: Misc. TX/RX control bits */
136 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
137 BPS_TO_TCONST((PCLK0/16), 9600), /*12: BAUDLO (default=9600) */
138 0, /*13: BAUDHI (default=9600) */
139 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
140 ZSWR15_BREAK_IE,
141 };
142
143
144 /****************************************************************
145 * Autoconfig
146 ****************************************************************/
147
148 /* Definition of the driver for autoconfig. */
149 static int zs_match(struct device *, struct cfdata *, void *);
150 static void zs_attach(struct device *, struct device *, void *);
151 static int zs_print(void *, const char *name);
152
153 CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
154 zs_match, zs_attach, NULL, NULL);
155
156 static int zshard(void *);
157 void zssoft(void *);
158 #if 0
159 static int zs_get_speed(struct zs_chanstate *);
160 #endif
161
162 /*
163 * Is the zs chip present?
164 */
165 static int
166 zs_match(parent, cf, aux)
167 struct device *parent;
168 struct cfdata *cf;
169 void *aux;
170 {
171 struct hb_attach_args *ha = aux;
172 u_int addr;
173
174 if (strcmp(ha->ha_name, "zsc"))
175 return 0;
176
177 /* XXX no default address */
178 if (ha->ha_address == (u_int)-1)
179 return 0;
180
181 addr = IIOV(ha->ha_address);
182 /* This returns -1 on a fault (bus error). */
183 if (badaddr((void *)addr, 1))
184 return 0;
185
186 return 1;
187 }
188
189 /*
190 * Attach a found zs.
191 */
192 static void
193 zs_attach(parent, self, aux)
194 struct device *parent;
195 struct device *self;
196 void *aux;
197 {
198 struct zsc_softc *zsc = (void *) self;
199 struct cfdata *cf = self->dv_cfdata;
200 struct hb_attach_args *ha = aux;
201 struct zsc_attach_args zsc_args;
202 struct zsdevice *zs;
203 struct zschan *zc;
204 struct zs_chanstate *cs;
205 int s, channel, clk;
206
207 zs = (void *)IIOV(ha->ha_address);
208
209 clk = cf->cf_flags;
210 if (clk < 0 || clk >= NPCLK)
211 clk = 0;
212
213 printf("\n");
214
215 /*
216 * Initialize software state for each channel.
217 */
218 for (channel = 0; channel < 2; channel++) {
219 zsc_args.channel = channel;
220 cs = &zsc->zsc_cs_store[channel];
221 simple_lock_init(&cs->cs_lock);
222
223 zsc->zsc_cs[channel] = cs;
224 zc = (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;
225
226 if (ha->ha_vect != -1)
227 zs_init_reg[2] = ha->ha_vect;
228
229 if (zc == zc_cons) {
230 memcpy(cs, zs_conschan, sizeof(struct zs_chanstate));
231 zs_conschan = cs;
232 zsc_args.hwflags = ZS_HWFLAG_CONSOLE;
233 } else {
234 cs->cs_reg_csr = &zc->zc_csr;
235 cs->cs_reg_data = &zc->zc_data;
236 memcpy(cs->cs_creg, zs_init_reg, 16);
237 memcpy(cs->cs_preg, zs_init_reg, 16);
238 cs->cs_defspeed = zs_defspeed;
239 zsc_args.hwflags = 0;
240 }
241
242 cs->cs_defcflag = zs_def_cflag;
243
244 cs->cs_channel = channel;
245 cs->cs_private = NULL;
246 cs->cs_ops = &zsops_null;
247 cs->cs_brg_clk = pclk[clk] / 16;
248
249 /* Make these correspond to cs_defcflag (-crtscts) */
250 cs->cs_rr0_dcd = ZSRR0_DCD;
251 cs->cs_rr0_cts = 0;
252 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
253 cs->cs_wr5_rts = 0;
254
255 /*
256 * Clear the master interrupt enable.
257 * The INTENA is common to both channels,
258 * so just do it on the A channel.
259 */
260 if (channel == 0) {
261 s = splhigh();
262 zs_write_reg(cs, 9, 0);
263 splx(s);
264 }
265
266 /*
267 * Look for a child driver for this channel.
268 * The child attach will setup the hardware.
269 */
270 if (!config_found(self, (void *)&zsc_args, zs_print)) {
271 /* No sub-driver. Just reset it. */
272 u_char reset = (channel == 0) ?
273 ZSWR9_A_RESET : ZSWR9_B_RESET;
274 s = splhigh();
275 zs_write_reg(cs, 9, reset);
276 splx(s);
277 }
278 }
279
280 /*
281 * Now safe to install interrupt handlers.
282 */
283 hb_intr_establish(zs_init_reg[2], zshard, ZSHARD_PRI, zsc);
284
285 /*
286 * Set the master interrupt enable and interrupt vector.
287 * (common to both channels, do it on A)
288 */
289 cs = zsc->zsc_cs[0];
290 s = splhigh();
291 /* interrupt vector */
292 zs_write_reg(cs, 2, zs_init_reg[2]);
293 /* master interrupt control (enable) */
294 zs_write_reg(cs, 9, zs_init_reg[9]);
295 splx(s);
296
297 if (zs_sir == 0)
298 zs_sir = allocate_sir(zssoft, zsc);
299 }
300
301 static int
302 zs_print(aux, name)
303 void *aux;
304 const char *name;
305 {
306 struct zsc_attach_args *args = aux;
307
308 if (name != NULL)
309 aprint_normal("%s: ", name);
310
311 if (args->channel != -1)
312 aprint_normal(" channel %d", args->channel);
313
314 return UNCONF;
315 }
316
317 /*
318 * For news68k-port, we don't use autovectored interrupt.
319 * We do not need to look at all of the zs chips.
320 */
321 static int
322 zshard(arg)
323 void *arg;
324 {
325 struct zsc_softc *zsc = arg;
326 int rval;
327
328 rval = zsc_intr_hard(zsc);
329
330 /* We are at splzs here, so no need to lock. */
331 if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) {
332 setsoftint(zs_sir);
333 }
334
335 return rval;
336 }
337
338 /*
339 * Shared among the all chips. We have to look at all of them.
340 */
341 void
342 zssoft(arg)
343 void *arg;
344 {
345 struct zsc_softc *zsc;
346 int s, unit;
347
348 /* Make sure we call the tty layer at spltty. */
349 s = spltty();
350 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
351 zsc = zsc_cd.cd_devs[unit];
352 if (zsc == NULL)
353 continue;
354 (void) zsc_intr_soft(zsc);
355 }
356 splx(s);
357 }
358
359 /*
360 * Compute the current baud rate given a ZS channel.
361 */
362 #if 0
363 static int
364 zs_get_speed(cs)
365 struct zs_chanstate *cs;
366 {
367 int tconst;
368
369 tconst = zs_read_reg(cs, 12);
370 tconst |= zs_read_reg(cs, 13) << 8;
371 return TCONST_TO_BPS(cs->cs_brg_clk, tconst);
372 }
373 #endif
374
375 /*
376 * MD functions for setting the baud rate and control modes.
377 */
378 int
379 zs_set_speed(cs, bps)
380 struct zs_chanstate *cs;
381 int bps; /* bits per second */
382 {
383 int tconst, real_bps;
384
385 if (bps == 0)
386 return 0;
387
388 #ifdef DIAGNOSTIC
389 if (cs->cs_brg_clk == 0)
390 panic("zs_set_speed");
391 #endif
392
393 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
394 if (tconst < 0)
395 return EINVAL;
396
397 /* Convert back to make sure we can do it. */
398 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
399
400 /* XXX - Allow some tolerance here? */
401 if (real_bps != bps)
402 return EINVAL;
403
404 cs->cs_preg[12] = tconst;
405 cs->cs_preg[13] = tconst >> 8;
406
407 /* Caller will stuff the pending registers. */
408 return 0;
409 }
410
411 int
412 zs_set_modes(cs, cflag)
413 struct zs_chanstate *cs;
414 int cflag; /* bits per second */
415 {
416 int s;
417
418 /*
419 * Output hardware flow control on the chip is horrendous:
420 * if carrier detect drops, the receiver is disabled, and if
421 * CTS drops, the transmitter is stoped IN MID CHARACTER!
422 * Therefore, NEVER set the HFC bit, and instead use the
423 * status interrupt to detect CTS changes.
424 */
425 s = splzs();
426 cs->cs_rr0_pps = 0;
427 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
428 cs->cs_rr0_dcd = 0;
429 if ((cflag & MDMBUF) == 0)
430 cs->cs_rr0_pps = ZSRR0_DCD;
431 } else
432 cs->cs_rr0_dcd = ZSRR0_DCD;
433 if ((cflag & CRTSCTS) != 0) {
434 cs->cs_wr5_dtr = ZSWR5_DTR;
435 cs->cs_wr5_rts = ZSWR5_RTS;
436 cs->cs_rr0_cts = ZSRR0_CTS;
437 } else if ((cflag & MDMBUF) != 0) {
438 cs->cs_wr5_dtr = 0;
439 cs->cs_wr5_rts = ZSWR5_DTR;
440 cs->cs_rr0_cts = ZSRR0_DCD;
441 } else {
442 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
443 cs->cs_wr5_rts = 0;
444 cs->cs_rr0_cts = 0;
445 }
446 splx(s);
447
448 /* Caller will stuff the pending registers. */
449 return 0;
450 }
451
452
453 /*
454 * Read or write the chip with suitable delays.
455 */
456
457 u_char
458 zs_read_reg(cs, reg)
459 struct zs_chanstate *cs;
460 u_char reg;
461 {
462 u_char val;
463
464 *cs->cs_reg_csr = reg;
465 ZS_DELAY();
466 val = *cs->cs_reg_csr;
467 ZS_DELAY();
468 return val;
469 }
470
471 void
472 zs_write_reg(cs, reg, val)
473 struct zs_chanstate *cs;
474 u_char reg, val;
475 {
476
477 *cs->cs_reg_csr = reg;
478 ZS_DELAY();
479 *cs->cs_reg_csr = val;
480 ZS_DELAY();
481 }
482
483 u_char
484 zs_read_csr(cs)
485 struct zs_chanstate *cs;
486 {
487 u_char val;
488
489 val = *cs->cs_reg_csr;
490 ZS_DELAY();
491 return val;
492 }
493
494 void
495 zs_write_csr(cs, val)
496 struct zs_chanstate *cs;
497 u_char val;
498 {
499
500 *cs->cs_reg_csr = val;
501 ZS_DELAY();
502 }
503
504 u_char
505 zs_read_data(cs)
506 struct zs_chanstate *cs;
507 {
508 u_char val;
509
510 val = *cs->cs_reg_data;
511 ZS_DELAY();
512 return val;
513 }
514
515 void
516 zs_write_data(cs, val)
517 struct zs_chanstate *cs;
518 u_char val;
519 {
520
521 *cs->cs_reg_data = val;
522 ZS_DELAY();
523 }
524
525 void
526 zs_abort(cs)
527 struct zs_chanstate *cs;
528 {
529
530 #ifdef DDB
531 Debugger();
532 #endif
533 }
534
535 /*
536 * Polled input char.
537 */
538 int
539 zs_getc(arg)
540 void *arg;
541 {
542 struct zs_chanstate *cs = arg;
543 int s, c, rr0;
544
545 s = splhigh();
546 /* Wait for a character to arrive. */
547 do {
548 rr0 = *cs->cs_reg_csr;
549 ZS_DELAY();
550 } while ((rr0 & ZSRR0_RX_READY) == 0);
551
552 c = *cs->cs_reg_data;
553 ZS_DELAY();
554 splx(s);
555
556 return c;
557 }
558
559 /*
560 * Polled output char.
561 */
562 void
563 zs_putc(arg, c)
564 void *arg;
565 int c;
566 {
567 struct zs_chanstate *cs = arg;
568 int s, rr0;
569
570 s = splhigh();
571 /* Wait for transmitter to become ready. */
572 do {
573 rr0 = *cs->cs_reg_csr;
574 ZS_DELAY();
575 } while ((rr0 & ZSRR0_TX_READY) == 0);
576
577 *cs->cs_reg_data = c;
578 ZS_DELAY();
579 splx(s);
580 }
581
582 /*****************************************************************/
583
584 static void zscnprobe(struct consdev *);
585 static void zscninit(struct consdev *);
586 static int zscngetc(dev_t);
587 static void zscnputc(dev_t, int);
588
589 struct consdev consdev_zs = {
590 zscnprobe,
591 zscninit,
592 zscngetc,
593 zscnputc,
594 nullcnpollc,
595 NULL,
596 NULL,
597 NULL,
598 NODEV,
599 CN_DEAD
600 };
601
602 static void
603 zscnprobe(cn)
604 struct consdev *cn;
605 {
606 }
607
608 static void
609 zscninit(cn)
610 struct consdev *cn;
611 {
612 struct zs_chanstate *cs;
613
614 extern const struct cdevsw zstty_cdevsw;
615 extern int tty00_is_console;
616 extern volatile u_char *sccport0a;
617
618 cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), 0);
619 if (tty00_is_console)
620 cn->cn_pri = CN_REMOTE;
621 else
622 cn->cn_pri = CN_NORMAL;
623
624 zc_cons = (struct zschan *)sccport0a; /* XXX */
625
626 zs_conschan = cs = &zs_conschan_store;
627
628 /* Setup temporary chanstate. */
629 cs->cs_reg_csr = &zc_cons->zc_csr;
630 cs->cs_reg_data = &zc_cons->zc_data;
631
632 /* Initialize the pending registers. */
633 memcpy(cs->cs_preg, zs_init_reg, 16);
634 cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
635
636 cs->cs_preg[12] = BPS_TO_TCONST(pclk[systype] / 16, 9600); /* XXX */
637 cs->cs_preg[13] = 0;
638 cs->cs_defspeed = 9600;
639
640 /* Clear the master interrupt enable. */
641 zs_write_reg(cs, 9, 0);
642
643 /* Reset the whole SCC chip. */
644 zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
645
646 /* Copy "pending" to "current" and H/W */
647 zs_loadchannelregs(cs);
648 }
649
650 static int
651 zscngetc(dev)
652 dev_t dev;
653 {
654
655 return zs_getc((void *)zs_conschan);
656 }
657
658 static void
659 zscnputc(dev, c)
660 dev_t dev;
661 int c;
662 {
663
664 zs_putc((void *)zs_conschan, c);
665 }
666