zs.c revision 1.21 1 /* $NetBSD: zs.c,v 1.21 2005/06/02 15:26:35 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 */
45
46 /*
47 * news68k/dev/zs.c - based on {newsmips,x68k,mvme68k}/dev/zs.c
48 */
49
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.21 2005/06/02 15:26:35 tsutsui Exp $");
52
53 #include "opt_ddb.h"
54
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/conf.h>
58 #include <sys/device.h>
59 #include <sys/tty.h>
60
61 #include <machine/cpu.h>
62 #include <machine/z8530var.h>
63
64 #include <dev/cons.h>
65 #include <dev/ic/z8530reg.h>
66
67 #include <news68k/dev/hbvar.h>
68
69 #include "ioconf.h"
70
71 int zs_getc(void *);
72 void zs_putc(void *, int);
73
74 /*
75 * Some warts needed by z8530tty.c -
76 * The default parity REALLY needs to be the same as the PROM uses,
77 * or you can not see messages done with printf during boot-up...
78 */
79 int zs_def_cflag = (CREAD | CS8 | HUPCL);
80
81 /*
82 * The news68k machines use three different clocks for the ZS chips.
83 */
84 #define NPCLK 3
85 #define PCLK0 (9600 * 416) /* news1700: 3.9936MHz */
86 #define PCLK1 (9600 * 512) /* news1200: 4.9152MHz */
87 #define PCLK2 (9600 * 384) /* external: 3.6864MHz */
88
89 static const u_int pclk[NPCLK] = {
90 PCLK0,
91 PCLK1,
92 PCLK2,
93 };
94
95 /*
96 * Define interrupt levels.
97 */
98 #define ZSHARD_PRI 5
99 #define ZS_IVECT 64
100
101 #define ZS_DELAY() /* delay(2) */
102
103 /* The layout of this is hardware-dependent (padding, order). */
104 struct zschan {
105 volatile u_char zc_csr; /* ctrl,status, and indirect access */
106 volatile u_char zc_data; /* data */
107 };
108 struct zsdevice {
109 /* Yes, they are backwards. */
110 struct zschan zs_chan_b;
111 struct zschan zs_chan_a;
112 };
113
114 static u_char zs_sir;
115
116 /* Default speed for all channels */
117 static int zs_defspeed = 9600;
118
119 /* console status from cninit */
120 static struct zs_chanstate zs_conschan_store;
121 static struct zs_chanstate *zs_conschan;
122 static struct zschan *zc_cons;
123
124 static u_char zs_init_reg[16] = {
125 0, /* 0: CMD (reset, etc.) */
126 0, /* 1: No interrupts yet. */
127 ZS_IVECT, /* IVECT */
128 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
129 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
130 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
131 0, /* 6: TXSYNC/SYNCLO */
132 0, /* 7: RXSYNC/SYNCHI */
133 0, /* 8: alias for data port */
134 ZSWR9_MASTER_IE,
135 0, /*10: Misc. TX/RX control bits */
136 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
137 BPS_TO_TCONST((PCLK0/16), 9600), /*12: BAUDLO (default=9600) */
138 0, /*13: BAUDHI (default=9600) */
139 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
140 ZSWR15_BREAK_IE,
141 };
142
143
144 /****************************************************************
145 * Autoconfig
146 ****************************************************************/
147
148 /* Definition of the driver for autoconfig. */
149 static int zs_match(struct device *, struct cfdata *, void *);
150 static void zs_attach(struct device *, struct device *, void *);
151 static int zs_print(void *, const char *name);
152
153 CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
154 zs_match, zs_attach, NULL, NULL);
155
156 static int zshard(void *);
157 void zssoft(void *);
158 #if 0
159 static int zs_get_speed(struct zs_chanstate *);
160 #endif
161
162 /*
163 * Is the zs chip present?
164 */
165 static int
166 zs_match(struct device *parent, struct cfdata *cf, void *aux)
167 {
168 struct hb_attach_args *ha = aux;
169 u_int addr;
170
171 if (strcmp(ha->ha_name, "zsc"))
172 return 0;
173
174 /* XXX no default address */
175 if (ha->ha_address == (u_int)-1)
176 return 0;
177
178 addr = IIOV(ha->ha_address);
179 /* This returns -1 on a fault (bus error). */
180 if (badaddr((void *)addr, 1))
181 return 0;
182
183 return 1;
184 }
185
186 /*
187 * Attach a found zs.
188 */
189 static void
190 zs_attach(struct device *parent, struct device *self, void *aux)
191 {
192 struct zsc_softc *zsc = (void *) self;
193 struct cfdata *cf = self->dv_cfdata;
194 struct hb_attach_args *ha = aux;
195 struct zsc_attach_args zsc_args;
196 struct zsdevice *zs;
197 struct zschan *zc;
198 struct zs_chanstate *cs;
199 int s, channel, clk;
200
201 zs = (void *)IIOV(ha->ha_address);
202
203 clk = cf->cf_flags;
204 if (clk < 0 || clk >= NPCLK)
205 clk = 0;
206
207 printf("\n");
208
209 /*
210 * Initialize software state for each channel.
211 */
212 for (channel = 0; channel < 2; channel++) {
213 zsc_args.channel = channel;
214 cs = &zsc->zsc_cs_store[channel];
215 simple_lock_init(&cs->cs_lock);
216
217 zsc->zsc_cs[channel] = cs;
218 zc = (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;
219
220 if (ha->ha_vect != -1)
221 zs_init_reg[2] = ha->ha_vect;
222
223 if (zc == zc_cons) {
224 memcpy(cs, zs_conschan, sizeof(struct zs_chanstate));
225 zs_conschan = cs;
226 zsc_args.hwflags = ZS_HWFLAG_CONSOLE;
227 } else {
228 cs->cs_reg_csr = &zc->zc_csr;
229 cs->cs_reg_data = &zc->zc_data;
230 memcpy(cs->cs_creg, zs_init_reg, 16);
231 memcpy(cs->cs_preg, zs_init_reg, 16);
232 cs->cs_defspeed = zs_defspeed;
233 zsc_args.hwflags = 0;
234 }
235
236 cs->cs_defcflag = zs_def_cflag;
237
238 cs->cs_channel = channel;
239 cs->cs_private = NULL;
240 cs->cs_ops = &zsops_null;
241 cs->cs_brg_clk = pclk[clk] / 16;
242
243 /* Make these correspond to cs_defcflag (-crtscts) */
244 cs->cs_rr0_dcd = ZSRR0_DCD;
245 cs->cs_rr0_cts = 0;
246 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
247 cs->cs_wr5_rts = 0;
248
249 /*
250 * Clear the master interrupt enable.
251 * The INTENA is common to both channels,
252 * so just do it on the A channel.
253 */
254 if (channel == 0) {
255 s = splhigh();
256 zs_write_reg(cs, 9, 0);
257 splx(s);
258 }
259
260 /*
261 * Look for a child driver for this channel.
262 * The child attach will setup the hardware.
263 */
264 if (!config_found(self, (void *)&zsc_args, zs_print)) {
265 /* No sub-driver. Just reset it. */
266 u_char reset = (channel == 0) ?
267 ZSWR9_A_RESET : ZSWR9_B_RESET;
268 s = splhigh();
269 zs_write_reg(cs, 9, reset);
270 splx(s);
271 }
272 }
273
274 /*
275 * Now safe to install interrupt handlers.
276 */
277 hb_intr_establish(zs_init_reg[2], zshard, ZSHARD_PRI, zsc);
278
279 /*
280 * Set the master interrupt enable and interrupt vector.
281 * (common to both channels, do it on A)
282 */
283 cs = zsc->zsc_cs[0];
284 s = splhigh();
285 /* interrupt vector */
286 zs_write_reg(cs, 2, zs_init_reg[2]);
287 /* master interrupt control (enable) */
288 zs_write_reg(cs, 9, zs_init_reg[9]);
289 splx(s);
290
291 if (zs_sir == 0)
292 zs_sir = allocate_sir(zssoft, zsc);
293 }
294
295 static int
296 zs_print(void *aux, const char *name)
297 {
298 struct zsc_attach_args *args = aux;
299
300 if (name != NULL)
301 aprint_normal("%s: ", name);
302
303 if (args->channel != -1)
304 aprint_normal(" channel %d", args->channel);
305
306 return UNCONF;
307 }
308
309 /*
310 * For news68k-port, we don't use autovectored interrupt.
311 * We do not need to look at all of the zs chips.
312 */
313 static int
314 zshard(void *arg)
315 {
316 struct zsc_softc *zsc = arg;
317 int rval;
318
319 rval = zsc_intr_hard(zsc);
320
321 /* We are at splzs here, so no need to lock. */
322 if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) {
323 setsoftint(zs_sir);
324 }
325
326 return rval;
327 }
328
329 /*
330 * Shared among the all chips. We have to look at all of them.
331 */
332 void
333 zssoft(void *arg)
334 {
335 struct zsc_softc *zsc;
336 int s, unit;
337
338 /* Make sure we call the tty layer at spltty. */
339 s = spltty();
340 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
341 zsc = zsc_cd.cd_devs[unit];
342 if (zsc == NULL)
343 continue;
344 (void) zsc_intr_soft(zsc);
345 }
346 splx(s);
347 }
348
349 /*
350 * Compute the current baud rate given a ZS channel.
351 */
352 #if 0
353 static int
354 zs_get_speed(struct zs_chanstate *cs)
355 {
356 int tconst;
357
358 tconst = zs_read_reg(cs, 12);
359 tconst |= zs_read_reg(cs, 13) << 8;
360 return TCONST_TO_BPS(cs->cs_brg_clk, tconst);
361 }
362 #endif
363
364 /*
365 * MD functions for setting the baud rate and control modes.
366 */
367 int
368 zs_set_speed(struct zs_chanstate *cs, int bps)
369 {
370 int tconst, real_bps;
371
372 if (bps == 0)
373 return 0;
374
375 #ifdef DIAGNOSTIC
376 if (cs->cs_brg_clk == 0)
377 panic("zs_set_speed");
378 #endif
379
380 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
381 if (tconst < 0)
382 return EINVAL;
383
384 /* Convert back to make sure we can do it. */
385 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
386
387 /* XXX - Allow some tolerance here? */
388 if (real_bps != bps)
389 return EINVAL;
390
391 cs->cs_preg[12] = tconst;
392 cs->cs_preg[13] = tconst >> 8;
393
394 /* Caller will stuff the pending registers. */
395 return 0;
396 }
397
398 int
399 zs_set_modes(struct zs_chanstate *cs, int cflag)
400 {
401 int s;
402
403 /*
404 * Output hardware flow control on the chip is horrendous:
405 * if carrier detect drops, the receiver is disabled, and if
406 * CTS drops, the transmitter is stoped IN MID CHARACTER!
407 * Therefore, NEVER set the HFC bit, and instead use the
408 * status interrupt to detect CTS changes.
409 */
410 s = splzs();
411 cs->cs_rr0_pps = 0;
412 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
413 cs->cs_rr0_dcd = 0;
414 if ((cflag & MDMBUF) == 0)
415 cs->cs_rr0_pps = ZSRR0_DCD;
416 } else
417 cs->cs_rr0_dcd = ZSRR0_DCD;
418 if ((cflag & CRTSCTS) != 0) {
419 cs->cs_wr5_dtr = ZSWR5_DTR;
420 cs->cs_wr5_rts = ZSWR5_RTS;
421 cs->cs_rr0_cts = ZSRR0_CTS;
422 } else if ((cflag & MDMBUF) != 0) {
423 cs->cs_wr5_dtr = 0;
424 cs->cs_wr5_rts = ZSWR5_DTR;
425 cs->cs_rr0_cts = ZSRR0_DCD;
426 } else {
427 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
428 cs->cs_wr5_rts = 0;
429 cs->cs_rr0_cts = 0;
430 }
431 splx(s);
432
433 /* Caller will stuff the pending registers. */
434 return 0;
435 }
436
437
438 /*
439 * Read or write the chip with suitable delays.
440 */
441
442 u_char
443 zs_read_reg(struct zs_chanstate *cs, u_char reg)
444 {
445 u_char val;
446
447 *cs->cs_reg_csr = reg;
448 ZS_DELAY();
449 val = *cs->cs_reg_csr;
450 ZS_DELAY();
451 return val;
452 }
453
454 void
455 zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val)
456 {
457
458 *cs->cs_reg_csr = reg;
459 ZS_DELAY();
460 *cs->cs_reg_csr = val;
461 ZS_DELAY();
462 }
463
464 u_char
465 zs_read_csr(struct zs_chanstate *cs)
466 {
467 u_char val;
468
469 val = *cs->cs_reg_csr;
470 ZS_DELAY();
471 return val;
472 }
473
474 void
475 zs_write_csr(struct zs_chanstate *cs, u_char val)
476 {
477
478 *cs->cs_reg_csr = val;
479 ZS_DELAY();
480 }
481
482 u_char
483 zs_read_data(struct zs_chanstate *cs)
484 {
485 u_char val;
486
487 val = *cs->cs_reg_data;
488 ZS_DELAY();
489 return val;
490 }
491
492 void
493 zs_write_data(struct zs_chanstate *cs, u_char val)
494 {
495
496 *cs->cs_reg_data = val;
497 ZS_DELAY();
498 }
499
500 void
501 zs_abort(struct zs_chanstate *cs)
502 {
503
504 #ifdef DDB
505 Debugger();
506 #endif
507 }
508
509 /*
510 * Polled input char.
511 */
512 int
513 zs_getc(void *arg)
514 {
515 struct zs_chanstate *cs = arg;
516 int s, c, rr0;
517
518 s = splhigh();
519 /* Wait for a character to arrive. */
520 do {
521 rr0 = *cs->cs_reg_csr;
522 ZS_DELAY();
523 } while ((rr0 & ZSRR0_RX_READY) == 0);
524
525 c = *cs->cs_reg_data;
526 ZS_DELAY();
527 splx(s);
528
529 return c;
530 }
531
532 /*
533 * Polled output char.
534 */
535 void
536 zs_putc(void *arg, int c)
537 {
538 struct zs_chanstate *cs = arg;
539 int s, rr0;
540
541 s = splhigh();
542 /* Wait for transmitter to become ready. */
543 do {
544 rr0 = *cs->cs_reg_csr;
545 ZS_DELAY();
546 } while ((rr0 & ZSRR0_TX_READY) == 0);
547
548 *cs->cs_reg_data = c;
549 ZS_DELAY();
550 splx(s);
551 }
552
553 /*****************************************************************/
554
555 static void zscnprobe(struct consdev *);
556 static void zscninit(struct consdev *);
557 static int zscngetc(dev_t);
558 static void zscnputc(dev_t, int);
559
560 struct consdev consdev_zs = {
561 zscnprobe,
562 zscninit,
563 zscngetc,
564 zscnputc,
565 nullcnpollc,
566 NULL,
567 NULL,
568 NULL,
569 NODEV,
570 CN_DEAD
571 };
572
573 static void
574 zscnprobe(struct consdev *cn)
575 {
576 }
577
578 static void
579 zscninit(struct consdev *cn)
580 {
581 struct zs_chanstate *cs;
582
583 extern const struct cdevsw zstty_cdevsw;
584 extern int tty00_is_console;
585 extern uint32_t sccport0a;
586
587 cn->cn_dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), 0);
588 if (tty00_is_console)
589 cn->cn_pri = CN_REMOTE;
590 else
591 cn->cn_pri = CN_NORMAL;
592
593 zc_cons = (struct zschan *)sccport0a; /* XXX */
594
595 zs_conschan = cs = &zs_conschan_store;
596
597 /* Setup temporary chanstate. */
598 cs->cs_reg_csr = &zc_cons->zc_csr;
599 cs->cs_reg_data = &zc_cons->zc_data;
600
601 /* Initialize the pending registers. */
602 memcpy(cs->cs_preg, zs_init_reg, 16);
603 cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
604
605 cs->cs_preg[12] = BPS_TO_TCONST(pclk[systype] / 16, 9600); /* XXX */
606 cs->cs_preg[13] = 0;
607 cs->cs_defspeed = 9600;
608
609 /* Clear the master interrupt enable. */
610 zs_write_reg(cs, 9, 0);
611
612 /* Reset the whole SCC chip. */
613 zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
614
615 /* Copy "pending" to "current" and H/W */
616 zs_loadchannelregs(cs);
617 }
618
619 static int
620 zscngetc(dev_t dev)
621 {
622
623 return zs_getc((void *)zs_conschan);
624 }
625
626 static void
627 zscnputc(dev_t dev, int c)
628 {
629
630 zs_putc((void *)zs_conschan, c);
631 }
632