zs.c revision 1.5 1 /* $NetBSD: zs.c,v 1.5 2000/10/14 16:45:49 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Gordon W. Ross.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Zilog Z8530 Dual UART driver (machine-dependent part)
41 *
42 * Runs two serial lines per chip using slave drivers.
43 * Plain tty/async lines use the zs_async slave.
44 */
45
46 /*
47 * news68k/dev/zs.c - based on {newsmips,x68k,mvme68k}/dev/zs.c
48 */
49
50 #include "opt_ddb.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/conf.h>
55 #include <sys/device.h>
56 #include <sys/tty.h>
57
58 #include <machine/cpu.h>
59 #include <machine/z8530var.h>
60
61 #include <dev/cons.h>
62 #include <dev/ic/z8530reg.h>
63
64 #include <news68k/dev/hbvar.h>
65
66 int zs_getc __P((void *));
67 void zs_putc __P((void *, int));
68
69 extern void Debugger __P((void));
70
71 /*
72 * Some warts needed by z8530tty.c -
73 * The default parity REALLY needs to be the same as the PROM uses,
74 * or you can not see messages done with printf during boot-up...
75 */
76 int zs_def_cflag = (CREAD | CS8 | HUPCL);
77 int zs_major = 1;
78
79 /*
80 * The news68k machines use three different clocks for the ZS chips.
81 */
82 #define NPCLK 3
83 #define PCLK0 (9600 * 416) /* news1700: 3.9936MHz */
84 #define PCLK1 (9600 * 512) /* news1200: 4.9152MHz */
85 #define PCLK2 (9600 * 384) /* external: 3.6864MHz */
86
87 static const u_int pclk[NPCLK] = {
88 PCLK0,
89 PCLK1,
90 PCLK2,
91 };
92
93 /*
94 * Define interrupt levels.
95 */
96 #define ZSHARD_PRI 5
97 #define ZS_IVECT 64
98
99 #define ZS_DELAY() /* delay(2) */
100
101 /* The layout of this is hardware-dependent (padding, order). */
102 struct zschan {
103 volatile u_char zc_csr; /* ctrl,status, and indirect access */
104 volatile u_char zc_data; /* data */
105 };
106 struct zsdevice {
107 /* Yes, they are backwards. */
108 struct zschan zs_chan_b;
109 struct zschan zs_chan_a;
110 };
111
112 static u_char zs_sir;
113
114 /* Default speed for all channels */
115 static int zs_defspeed = 9600;
116
117 /* console status from cninit */
118 static struct zs_chanstate zs_conschan_store;
119 static struct zs_chanstate *zs_conschan;
120 static struct zschan *zc_cons;
121
122 static u_char zs_init_reg[16] = {
123 0, /* 0: CMD (reset, etc.) */
124 0, /* 1: No interrupts yet. */
125 ZS_IVECT, /* IVECT */
126 ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
127 ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
128 ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
129 0, /* 6: TXSYNC/SYNCLO */
130 0, /* 7: RXSYNC/SYNCHI */
131 0, /* 8: alias for data port */
132 ZSWR9_MASTER_IE,
133 0, /*10: Misc. TX/RX control bits */
134 ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
135 BPS_TO_TCONST((PCLK0/16), 9600), /*12: BAUDLO (default=9600) */
136 0, /*13: BAUDHI (default=9600) */
137 ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
138 ZSWR15_BREAK_IE,
139 };
140
141
142 /****************************************************************
143 * Autoconfig
144 ****************************************************************/
145
146 /* Definition of the driver for autoconfig. */
147 static int zs_match __P((struct device *, struct cfdata *, void *));
148 static void zs_attach __P((struct device *, struct device *, void *));
149 static int zs_print __P((void *, const char *name));
150
151 struct cfattach zsc_ca = {
152 sizeof(struct zsc_softc), zs_match, zs_attach
153 };
154
155 extern struct cfdriver zsc_cd;
156
157 static int zshard __P((void *));
158 void zssoft __P((void *));
159 #if 0
160 static int zs_get_speed __P((struct zs_chanstate *));
161 #endif
162
163 /*
164 * Is the zs chip present?
165 */
166 static int
167 zs_match(parent, cf, aux)
168 struct device *parent;
169 struct cfdata *cf;
170 void *aux;
171 {
172 struct hb_attach_args *ha = aux;
173 u_int addr;
174
175 if (strcmp(ha->ha_name, "zsc"))
176 return 0;
177
178 /* XXX no default address */
179 if (ha->ha_address == -1)
180 return 0;
181
182 addr = IIOV(ha->ha_address);
183 /* This returns -1 on a fault (bus error). */
184 if (badaddr((void *)addr, 1))
185 return 0;
186
187 return 1;
188 }
189
190 /*
191 * Attach a found zs.
192 */
193 static void
194 zs_attach(parent, self, aux)
195 struct device *parent;
196 struct device *self;
197 void *aux;
198 {
199 struct zsc_softc *zsc = (void *) self;
200 struct cfdata *cf = self->dv_cfdata;
201 struct hb_attach_args *ha = aux;
202 struct zsc_attach_args zsc_args;
203 struct zsdevice *zs;
204 struct zschan *zc;
205 struct zs_chanstate *cs;
206 int s, channel, clk;
207
208 zs = (void *)IIOV(ha->ha_address);
209
210 clk = cf->cf_flags;
211 if (clk < 0 || clk >= NPCLK)
212 clk = 0;
213
214 printf("\n");
215
216 /*
217 * Initialize software state for each channel.
218 */
219 for (channel = 0; channel < 2; channel++) {
220 zsc_args.channel = channel;
221 cs = &zsc->zsc_cs_store[channel];
222 zsc->zsc_cs[channel] = cs;
223 zc = (channel == 0) ? &zs->zs_chan_a : &zs->zs_chan_b;
224
225 if (ha->ha_vect != -1)
226 zs_init_reg[2] = ha->ha_vect;
227
228 if (zc == zc_cons) {
229 bcopy(zs_conschan, cs, sizeof(struct zs_chanstate));
230 zs_conschan = cs;
231 zsc_args.hwflags = ZS_HWFLAG_CONSOLE;
232 } else {
233 cs->cs_reg_csr = &zc->zc_csr;
234 cs->cs_reg_data = &zc->zc_data;
235 bcopy(zs_init_reg, cs->cs_creg, 16);
236 bcopy(zs_init_reg, cs->cs_preg, 16);
237 cs->cs_defspeed = zs_defspeed;
238 zsc_args.hwflags = 0;
239 }
240
241 cs->cs_defcflag = zs_def_cflag;
242
243 cs->cs_channel = channel;
244 cs->cs_private = NULL;
245 cs->cs_ops = &zsops_null;
246 cs->cs_brg_clk = pclk[clk] / 16;
247
248 /* Make these correspond to cs_defcflag (-crtscts) */
249 cs->cs_rr0_dcd = ZSRR0_DCD;
250 cs->cs_rr0_cts = 0;
251 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
252 cs->cs_wr5_rts = 0;
253
254 /*
255 * Clear the master interrupt enable.
256 * The INTENA is common to both channels,
257 * so just do it on the A channel.
258 */
259 if (channel == 0) {
260 s = splhigh();
261 zs_write_reg(cs, 9, 0);
262 splx(s);
263 }
264
265 /*
266 * Look for a child driver for this channel.
267 * The child attach will setup the hardware.
268 */
269 if (!config_found(self, (void *)&zsc_args, zs_print)) {
270 /* No sub-driver. Just reset it. */
271 u_char reset = (channel == 0) ?
272 ZSWR9_A_RESET : ZSWR9_B_RESET;
273 s = splhigh();
274 zs_write_reg(cs, 9, reset);
275 splx(s);
276 }
277 }
278
279 /*
280 * Now safe to install interrupt handlers.
281 */
282 hb_intr_establish(zs_init_reg[2], zshard, ZSHARD_PRI, zsc);
283
284 /*
285 * Set the master interrupt enable and interrupt vector.
286 * (common to both channels, do it on A)
287 */
288 cs = zsc->zsc_cs[0];
289 s = splhigh();
290 /* interrupt vector */
291 zs_write_reg(cs, 2, zs_init_reg[2]);
292 /* master interrupt control (enable) */
293 zs_write_reg(cs, 9, zs_init_reg[9]);
294 splx(s);
295
296 if (zs_sir == 0)
297 zs_sir = allocate_sir(zssoft, zsc);
298 }
299
300 static int
301 zs_print(aux, name)
302 void *aux;
303 const char *name;
304 {
305 struct zsc_attach_args *args = aux;
306
307 if (name != NULL)
308 printf("%s: ", name);
309
310 if (args->channel != -1)
311 printf(" channel %d", args->channel);
312
313 return UNCONF;
314 }
315
316 /*
317 * For news68k-port, we don't use autovectored interrupt.
318 * We do not need to look at all of the zs chips.
319 */
320 static int
321 zshard(arg)
322 void *arg;
323 {
324 struct zsc_softc *zsc = arg;
325 int rval;
326
327 rval = zsc_intr_hard(zsc);
328
329 /* We are at splzs here, so no need to lock. */
330 if (zsc->zsc_cs[0]->cs_softreq || zsc->zsc_cs[1]->cs_softreq) {
331 setsoftint(zs_sir);
332 }
333
334 return (rval);
335 }
336
337 /*
338 * Shared among the all chips. We have to look at all of them.
339 */
340 void
341 zssoft(arg)
342 void *arg;
343 {
344 struct zsc_softc *zsc;
345 int s, unit;
346
347 /* Make sure we call the tty layer at spltty. */
348 s = spltty();
349 for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
350 zsc = zsc_cd.cd_devs[unit];
351 if (zsc == NULL)
352 continue;
353 (void) zsc_intr_soft(zsc);
354 }
355 splx(s);
356 }
357
358 /*
359 * Compute the current baud rate given a ZS channel.
360 */
361 #if 0
362 static int
363 zs_get_speed(cs)
364 struct zs_chanstate *cs;
365 {
366 int tconst;
367
368 tconst = zs_read_reg(cs, 12);
369 tconst |= zs_read_reg(cs, 13) << 8;
370 return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
371 }
372 #endif
373
374 /*
375 * MD functions for setting the baud rate and control modes.
376 */
377 int
378 zs_set_speed(cs, bps)
379 struct zs_chanstate *cs;
380 int bps; /* bits per second */
381 {
382 int tconst, real_bps;
383
384 if (bps == 0)
385 return (0);
386
387 #ifdef DIAGNOSTIC
388 if (cs->cs_brg_clk == 0)
389 panic("zs_set_speed");
390 #endif
391
392 tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
393 if (tconst < 0)
394 return (EINVAL);
395
396 /* Convert back to make sure we can do it. */
397 real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
398
399 /* XXX - Allow some tolerance here? */
400 if (real_bps != bps)
401 return (EINVAL);
402
403 cs->cs_preg[12] = tconst;
404 cs->cs_preg[13] = tconst >> 8;
405
406 /* Caller will stuff the pending registers. */
407 return (0);
408 }
409
410 int
411 zs_set_modes(cs, cflag)
412 struct zs_chanstate *cs;
413 int cflag; /* bits per second */
414 {
415 int s;
416
417 /*
418 * Output hardware flow control on the chip is horrendous:
419 * if carrier detect drops, the receiver is disabled, and if
420 * CTS drops, the transmitter is stoped IN MID CHARACTER!
421 * Therefore, NEVER set the HFC bit, and instead use the
422 * status interrupt to detect CTS changes.
423 */
424 s = splzs();
425 cs->cs_rr0_pps = 0;
426 if ((cflag & (CLOCAL | MDMBUF)) != 0) {
427 cs->cs_rr0_dcd = 0;
428 if ((cflag & MDMBUF) == 0)
429 cs->cs_rr0_pps = ZSRR0_DCD;
430 } else
431 cs->cs_rr0_dcd = ZSRR0_DCD;
432 if ((cflag & CRTSCTS) != 0) {
433 cs->cs_wr5_dtr = ZSWR5_DTR;
434 cs->cs_wr5_rts = ZSWR5_RTS;
435 cs->cs_rr0_cts = ZSRR0_CTS;
436 } else if ((cflag & MDMBUF) != 0) {
437 cs->cs_wr5_dtr = 0;
438 cs->cs_wr5_rts = ZSWR5_DTR;
439 cs->cs_rr0_cts = ZSRR0_DCD;
440 } else {
441 cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
442 cs->cs_wr5_rts = 0;
443 cs->cs_rr0_cts = 0;
444 }
445 splx(s);
446
447 /* Caller will stuff the pending registers. */
448 return (0);
449 }
450
451
452 /*
453 * Read or write the chip with suitable delays.
454 */
455
456 u_char
457 zs_read_reg(cs, reg)
458 struct zs_chanstate *cs;
459 u_char reg;
460 {
461 u_char val;
462
463 *cs->cs_reg_csr = reg;
464 ZS_DELAY();
465 val = *cs->cs_reg_csr;
466 ZS_DELAY();
467 return val;
468 }
469
470 void
471 zs_write_reg(cs, reg, val)
472 struct zs_chanstate *cs;
473 u_char reg, val;
474 {
475 *cs->cs_reg_csr = reg;
476 ZS_DELAY();
477 *cs->cs_reg_csr = val;
478 ZS_DELAY();
479 }
480
481 u_char
482 zs_read_csr(cs)
483 struct zs_chanstate *cs;
484 {
485 u_char val;
486
487 val = *cs->cs_reg_csr;
488 ZS_DELAY();
489 return val;
490 }
491
492 void
493 zs_write_csr(cs, val)
494 struct zs_chanstate *cs;
495 u_char val;
496 {
497 *cs->cs_reg_csr = val;
498 ZS_DELAY();
499 }
500
501 u_char
502 zs_read_data(cs)
503 struct zs_chanstate *cs;
504 {
505 u_char val;
506
507 val = *cs->cs_reg_data;
508 ZS_DELAY();
509 return val;
510 }
511
512 void
513 zs_write_data(cs, val)
514 struct zs_chanstate *cs;
515 u_char val;
516 {
517 *cs->cs_reg_data = val;
518 ZS_DELAY();
519 }
520
521 void
522 zs_abort(cs)
523 struct zs_chanstate *cs;
524 {
525 #ifdef DDB
526 Debugger();
527 #endif
528 }
529
530 /*
531 * Polled input char.
532 */
533 int
534 zs_getc(arg)
535 void *arg;
536 {
537 struct zs_chanstate *cs = arg;
538 int s, c, rr0;
539
540 s = splhigh();
541 /* Wait for a character to arrive. */
542 do {
543 rr0 = *cs->cs_reg_csr;
544 ZS_DELAY();
545 } while ((rr0 & ZSRR0_RX_READY) == 0);
546
547 c = *cs->cs_reg_data;
548 ZS_DELAY();
549 splx(s);
550
551 return c;
552 }
553
554 /*
555 * Polled output char.
556 */
557 void
558 zs_putc(arg, c)
559 void *arg;
560 int c;
561 {
562 struct zs_chanstate *cs = arg;
563 int s, rr0;
564
565 s = splhigh();
566 /* Wait for transmitter to become ready. */
567 do {
568 rr0 = *cs->cs_reg_csr;
569 ZS_DELAY();
570 } while ((rr0 & ZSRR0_TX_READY) == 0);
571
572 *cs->cs_reg_data = c;
573 ZS_DELAY();
574 splx(s);
575 }
576
577 /*****************************************************************/
578
579 static void zscnprobe __P((struct consdev *));
580 static void zscninit __P((struct consdev *));
581 static int zscngetc __P((dev_t));
582 static void zscnputc __P((dev_t, int));
583
584 struct consdev consdev_zs = {
585 zscnprobe,
586 zscninit,
587 zscngetc,
588 zscnputc,
589 nullcnpollc,
590 NULL,
591 };
592
593 static void
594 zscnprobe(cn)
595 struct consdev *cn;
596 {
597 extern int tty00_is_console;
598
599 cn->cn_dev = makedev(zs_major, 0);
600 if (tty00_is_console)
601 cn->cn_pri = CN_REMOTE;
602 else
603 cn->cn_pri = CN_NORMAL;
604 }
605
606 static void
607 zscninit(cn)
608 struct consdev *cn;
609 {
610 struct zs_chanstate *cs;
611
612 extern volatile u_char *sccport0a;
613
614 zc_cons = (struct zschan *)sccport0a; /* XXX */
615
616 zs_conschan = cs = &zs_conschan_store;
617
618 /* Setup temporary chanstate. */
619 cs->cs_reg_csr = &zc_cons->zc_csr;
620 cs->cs_reg_data = &zc_cons->zc_data;
621
622 /* Initialize the pending registers. */
623 bcopy(zs_init_reg, cs->cs_preg, 16);
624 cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
625
626 cs->cs_preg[12] = BPS_TO_TCONST(pclk[systype] / 16, 9600); /* XXX */
627 cs->cs_preg[13] = 0;
628 cs->cs_defspeed = 9600;
629
630 /* Clear the master interrupt enable. */
631 zs_write_reg(cs, 9, 0);
632
633 /* Reset the whole SCC chip. */
634 zs_write_reg(cs, 9, ZSWR9_HARD_RESET);
635
636 /* Copy "pending" to "current" and H/W */
637 zs_loadchannelregs(cs);
638 }
639
640 static int
641 zscngetc(dev)
642 dev_t dev;
643 {
644 return zs_getc((void *)zs_conschan);
645 }
646
647 static void
648 zscnputc(dev, c)
649 dev_t dev;
650 int c;
651 {
652 zs_putc((void *)zs_conschan, c);
653 }
654