esp.c revision 1.30 1 1.30 dbj /* $NetBSD: esp.c,v 1.30 2001/03/31 06:56:54 dbj Exp $ */
2 1.1 dbj
3 1.1 dbj /*-
4 1.5 mycroft * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 1.1 dbj * All rights reserved.
6 1.1 dbj *
7 1.1 dbj * This code is derived from software contributed to The NetBSD Foundation
8 1.6 mycroft * by Charles M. Hannum and by Jason R. Thorpe of the Numerical Aerospace
9 1.6 mycroft * Simulation Facility, NASA Ames Research Center.
10 1.1 dbj *
11 1.1 dbj * Redistribution and use in source and binary forms, with or without
12 1.1 dbj * modification, are permitted provided that the following conditions
13 1.1 dbj * are met:
14 1.1 dbj * 1. Redistributions of source code must retain the above copyright
15 1.1 dbj * notice, this list of conditions and the following disclaimer.
16 1.1 dbj * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 dbj * notice, this list of conditions and the following disclaimer in the
18 1.1 dbj * documentation and/or other materials provided with the distribution.
19 1.1 dbj * 3. All advertising materials mentioning features or use of this software
20 1.1 dbj * must display the following acknowledgement:
21 1.1 dbj * This product includes software developed by the NetBSD
22 1.1 dbj * Foundation, Inc. and its contributors.
23 1.1 dbj * 4. Neither the name of The NetBSD Foundation nor the names of its
24 1.1 dbj * contributors may be used to endorse or promote products derived
25 1.1 dbj * from this software without specific prior written permission.
26 1.1 dbj *
27 1.1 dbj * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 1.1 dbj * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 1.1 dbj * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 1.1 dbj * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 1.1 dbj * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 1.1 dbj * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 1.1 dbj * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 1.1 dbj * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 1.1 dbj * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 1.1 dbj * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 1.1 dbj * POSSIBILITY OF SUCH DAMAGE.
38 1.1 dbj */
39 1.1 dbj
40 1.1 dbj /*
41 1.1 dbj * Copyright (c) 1994 Peter Galbavy
42 1.1 dbj * All rights reserved.
43 1.1 dbj *
44 1.1 dbj * Redistribution and use in source and binary forms, with or without
45 1.1 dbj * modification, are permitted provided that the following conditions
46 1.1 dbj * are met:
47 1.1 dbj * 1. Redistributions of source code must retain the above copyright
48 1.1 dbj * notice, this list of conditions and the following disclaimer.
49 1.1 dbj * 2. Redistributions in binary form must reproduce the above copyright
50 1.1 dbj * notice, this list of conditions and the following disclaimer in the
51 1.1 dbj * documentation and/or other materials provided with the distribution.
52 1.1 dbj * 3. All advertising materials mentioning features or use of this software
53 1.1 dbj * must display the following acknowledgement:
54 1.1 dbj * This product includes software developed by Peter Galbavy
55 1.1 dbj * 4. The name of the author may not be used to endorse or promote products
56 1.1 dbj * derived from this software without specific prior written permission.
57 1.1 dbj *
58 1.1 dbj * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
59 1.1 dbj * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
60 1.1 dbj * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
61 1.1 dbj * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
62 1.1 dbj * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
63 1.1 dbj * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
64 1.1 dbj * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 1.1 dbj * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
66 1.1 dbj * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
67 1.1 dbj * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
68 1.1 dbj * POSSIBILITY OF SUCH DAMAGE.
69 1.1 dbj */
70 1.1 dbj
71 1.1 dbj /*
72 1.1 dbj * Based on aic6360 by Jarle Greipsland
73 1.1 dbj *
74 1.1 dbj * Acknowledgements: Many of the algorithms used in this driver are
75 1.1 dbj * inspired by the work of Julian Elischer (julian (at) tfs.com) and
76 1.1 dbj * Charles Hannum (mycroft (at) duality.gnu.ai.mit.edu). Thanks a million!
77 1.1 dbj */
78 1.1 dbj
79 1.1 dbj /*
80 1.1 dbj * Grabbed from the sparc port at revision 1.73 for the NeXT.
81 1.1 dbj * Darrin B. Jewell <dbj (at) netbsd.org> Sat Jul 4 15:41:32 1998
82 1.1 dbj */
83 1.1 dbj
84 1.1 dbj #include <sys/types.h>
85 1.1 dbj #include <sys/param.h>
86 1.1 dbj #include <sys/systm.h>
87 1.1 dbj #include <sys/kernel.h>
88 1.1 dbj #include <sys/errno.h>
89 1.1 dbj #include <sys/ioctl.h>
90 1.1 dbj #include <sys/device.h>
91 1.1 dbj #include <sys/buf.h>
92 1.1 dbj #include <sys/proc.h>
93 1.1 dbj #include <sys/user.h>
94 1.1 dbj #include <sys/queue.h>
95 1.1 dbj
96 1.1 dbj #include <dev/scsipi/scsi_all.h>
97 1.1 dbj #include <dev/scsipi/scsipi_all.h>
98 1.1 dbj #include <dev/scsipi/scsiconf.h>
99 1.1 dbj #include <dev/scsipi/scsi_message.h>
100 1.1 dbj
101 1.1 dbj #include <machine/bus.h>
102 1.1 dbj #include <machine/autoconf.h>
103 1.1 dbj #include <machine/cpu.h>
104 1.1 dbj
105 1.1 dbj #include <dev/ic/ncr53c9xreg.h>
106 1.1 dbj #include <dev/ic/ncr53c9xvar.h>
107 1.1 dbj
108 1.1 dbj #include <next68k/next68k/isr.h>
109 1.1 dbj
110 1.1 dbj #include <next68k/dev/nextdmareg.h>
111 1.1 dbj #include <next68k/dev/nextdmavar.h>
112 1.1 dbj
113 1.1 dbj #include "espreg.h"
114 1.1 dbj #include "espvar.h"
115 1.1 dbj
116 1.20 dbj #ifdef DEBUG
117 1.4 dbj #define ESP_DEBUG
118 1.4 dbj #endif
119 1.4 dbj
120 1.4 dbj #ifdef ESP_DEBUG
121 1.10 dbj int esp_debug = 0;
122 1.10 dbj #define DPRINTF(x) if (esp_debug) printf x;
123 1.4 dbj #else
124 1.4 dbj #define DPRINTF(x)
125 1.4 dbj #endif
126 1.4 dbj
127 1.4 dbj
128 1.1 dbj void espattach_intio __P((struct device *, struct device *, void *));
129 1.1 dbj int espmatch_intio __P((struct device *, struct cfdata *, void *));
130 1.1 dbj
131 1.2 dbj /* DMA callbacks */
132 1.2 dbj bus_dmamap_t esp_dmacb_continue __P((void *arg));
133 1.2 dbj void esp_dmacb_completed __P((bus_dmamap_t map, void *arg));
134 1.2 dbj void esp_dmacb_shutdown __P((void *arg));
135 1.2 dbj
136 1.20 dbj #ifdef ESP_DEBUG
137 1.20 dbj char esp_dma_dump[5*1024] = "";
138 1.20 dbj struct ncr53c9x_softc *esp_debug_sc = 0;
139 1.20 dbj void esp_dma_store __P((struct ncr53c9x_softc *sc));
140 1.20 dbj void esp_dma_print __P((struct ncr53c9x_softc *sc));
141 1.22 dbj int esp_dma_nest = 0;
142 1.20 dbj #endif
143 1.20 dbj
144 1.20 dbj
145 1.1 dbj /* Linkup to the rest of the kernel */
146 1.1 dbj struct cfattach esp_ca = {
147 1.1 dbj sizeof(struct esp_softc), espmatch_intio, espattach_intio
148 1.1 dbj };
149 1.1 dbj
150 1.1 dbj /*
151 1.1 dbj * Functions and the switch for the MI code.
152 1.1 dbj */
153 1.1 dbj u_char esp_read_reg __P((struct ncr53c9x_softc *, int));
154 1.1 dbj void esp_write_reg __P((struct ncr53c9x_softc *, int, u_char));
155 1.1 dbj int esp_dma_isintr __P((struct ncr53c9x_softc *));
156 1.1 dbj void esp_dma_reset __P((struct ncr53c9x_softc *));
157 1.1 dbj int esp_dma_intr __P((struct ncr53c9x_softc *));
158 1.1 dbj int esp_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
159 1.1 dbj size_t *, int, size_t *));
160 1.1 dbj void esp_dma_go __P((struct ncr53c9x_softc *));
161 1.1 dbj void esp_dma_stop __P((struct ncr53c9x_softc *));
162 1.1 dbj int esp_dma_isactive __P((struct ncr53c9x_softc *));
163 1.1 dbj
164 1.1 dbj struct ncr53c9x_glue esp_glue = {
165 1.1 dbj esp_read_reg,
166 1.1 dbj esp_write_reg,
167 1.1 dbj esp_dma_isintr,
168 1.1 dbj esp_dma_reset,
169 1.1 dbj esp_dma_intr,
170 1.1 dbj esp_dma_setup,
171 1.1 dbj esp_dma_go,
172 1.1 dbj esp_dma_stop,
173 1.1 dbj esp_dma_isactive,
174 1.1 dbj NULL, /* gl_clear_latched_intr */
175 1.1 dbj };
176 1.1 dbj
177 1.11 dbj #ifdef ESP_DEBUG
178 1.11 dbj #define XCHR(x) "0123456789abcdef"[(x) & 0xf]
179 1.11 dbj static void
180 1.11 dbj esp_hex_dump(unsigned char *pkt, size_t len)
181 1.11 dbj {
182 1.11 dbj size_t i, j;
183 1.11 dbj
184 1.24 dbj printf("00000000 ");
185 1.11 dbj for(i=0; i<len; i++) {
186 1.11 dbj printf("%c%c ", XCHR(pkt[i]>>4), XCHR(pkt[i]));
187 1.24 dbj if ((i+1) % 16 == 8) {
188 1.24 dbj printf(" ");
189 1.24 dbj }
190 1.11 dbj if ((i+1) % 16 == 0) {
191 1.24 dbj printf(" %c", '|');
192 1.24 dbj for(j=0; j<16; j++) {
193 1.11 dbj printf("%c", pkt[i-15+j]>=32 && pkt[i-15+j]<127?pkt[i-15+j]:'.');
194 1.24 dbj }
195 1.24 dbj printf("%c\n%c%c%c%c%c%c%c%c ", '|',
196 1.24 dbj XCHR((i+1)>>28),XCHR((i+1)>>24),XCHR((i+1)>>20),XCHR((i+1)>>16),
197 1.24 dbj XCHR((i+1)>>12), XCHR((i+1)>>8), XCHR((i+1)>>4), XCHR(i+1));
198 1.11 dbj }
199 1.11 dbj }
200 1.11 dbj printf("\n");
201 1.11 dbj }
202 1.11 dbj #endif
203 1.11 dbj
204 1.1 dbj int
205 1.1 dbj espmatch_intio(parent, cf, aux)
206 1.1 dbj struct device *parent;
207 1.1 dbj struct cfdata *cf;
208 1.1 dbj void *aux;
209 1.1 dbj {
210 1.1 dbj /* should probably probe here */
211 1.1 dbj /* Should also probably set up data from config */
212 1.1 dbj
213 1.3 dbj return(1);
214 1.1 dbj }
215 1.1 dbj
216 1.1 dbj void
217 1.1 dbj espattach_intio(parent, self, aux)
218 1.1 dbj struct device *parent, *self;
219 1.1 dbj void *aux;
220 1.1 dbj {
221 1.1 dbj struct esp_softc *esc = (void *)self;
222 1.1 dbj struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
223 1.1 dbj
224 1.20 dbj #ifdef ESP_DEBUG
225 1.20 dbj esp_debug_sc = sc;
226 1.20 dbj #endif
227 1.20 dbj
228 1.1 dbj esc->sc_bst = NEXT68K_INTIO_BUS_SPACE;
229 1.1 dbj if (bus_space_map(esc->sc_bst, NEXT_P_SCSI,
230 1.1 dbj ESP_DEVICE_SIZE, 0, &esc->sc_bsh)) {
231 1.3 dbj panic("\n%s: can't map ncr53c90 registers",
232 1.1 dbj sc->sc_dev.dv_xname);
233 1.1 dbj }
234 1.1 dbj
235 1.1 dbj sc->sc_id = 7;
236 1.1 dbj sc->sc_freq = 20; /* Mhz */
237 1.1 dbj
238 1.1 dbj /*
239 1.1 dbj * Set up glue for MI code early; we use some of it here.
240 1.1 dbj */
241 1.1 dbj sc->sc_glue = &esp_glue;
242 1.1 dbj
243 1.1 dbj /*
244 1.1 dbj * XXX More of this should be in ncr53c9x_attach(), but
245 1.1 dbj * XXX should we really poke around the chip that much in
246 1.1 dbj * XXX the MI code? Think about this more...
247 1.1 dbj */
248 1.1 dbj
249 1.1 dbj /*
250 1.1 dbj * It is necessary to try to load the 2nd config register here,
251 1.1 dbj * to find out what rev the esp chip is, else the ncr53c9x_reset
252 1.1 dbj * will not set up the defaults correctly.
253 1.1 dbj */
254 1.1 dbj sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
255 1.1 dbj sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_RPE;
256 1.1 dbj sc->sc_cfg3 = NCRCFG3_CDB;
257 1.1 dbj NCR_WRITE_REG(sc, NCR_CFG2, sc->sc_cfg2);
258 1.1 dbj
259 1.1 dbj if ((NCR_READ_REG(sc, NCR_CFG2) & ~NCRCFG2_RSVD) !=
260 1.1 dbj (NCRCFG2_SCSI2 | NCRCFG2_RPE)) {
261 1.1 dbj sc->sc_rev = NCR_VARIANT_ESP100;
262 1.1 dbj } else {
263 1.1 dbj sc->sc_cfg2 = NCRCFG2_SCSI2;
264 1.1 dbj NCR_WRITE_REG(sc, NCR_CFG2, sc->sc_cfg2);
265 1.1 dbj sc->sc_cfg3 = 0;
266 1.1 dbj NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3);
267 1.1 dbj sc->sc_cfg3 = (NCRCFG3_CDB | NCRCFG3_FCLK);
268 1.1 dbj NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3);
269 1.1 dbj if (NCR_READ_REG(sc, NCR_CFG3) !=
270 1.1 dbj (NCRCFG3_CDB | NCRCFG3_FCLK)) {
271 1.1 dbj sc->sc_rev = NCR_VARIANT_ESP100A;
272 1.1 dbj } else {
273 1.1 dbj /* NCRCFG2_FE enables > 64K transfers */
274 1.1 dbj sc->sc_cfg2 |= NCRCFG2_FE;
275 1.1 dbj sc->sc_cfg3 = 0;
276 1.1 dbj NCR_WRITE_REG(sc, NCR_CFG3, sc->sc_cfg3);
277 1.1 dbj sc->sc_rev = NCR_VARIANT_ESP200;
278 1.1 dbj }
279 1.1 dbj }
280 1.1 dbj
281 1.1 dbj /*
282 1.1 dbj * XXX minsync and maxxfer _should_ be set up in MI code,
283 1.1 dbj * XXX but it appears to have some dependency on what sort
284 1.1 dbj * XXX of DMA we're hooked up to, etc.
285 1.1 dbj */
286 1.1 dbj
287 1.1 dbj /*
288 1.1 dbj * This is the value used to start sync negotiations
289 1.1 dbj * Note that the NCR register "SYNCTP" is programmed
290 1.1 dbj * in "clocks per byte", and has a minimum value of 4.
291 1.1 dbj * The SCSI period used in negotiation is one-fourth
292 1.1 dbj * of the time (in nanoseconds) needed to transfer one byte.
293 1.1 dbj * Since the chip's clock is given in MHz, we have the following
294 1.1 dbj * formula: 4 * period = (1000 / freq) * 4
295 1.1 dbj */
296 1.1 dbj sc->sc_minsync = 1000 / sc->sc_freq;
297 1.1 dbj
298 1.1 dbj /*
299 1.1 dbj * Alas, we must now modify the value a bit, because it's
300 1.1 dbj * only valid when can switch on FASTCLK and FASTSCSI bits
301 1.1 dbj * in config register 3...
302 1.1 dbj */
303 1.1 dbj switch (sc->sc_rev) {
304 1.1 dbj case NCR_VARIANT_ESP100:
305 1.1 dbj sc->sc_maxxfer = 64 * 1024;
306 1.1 dbj sc->sc_minsync = 0; /* No synch on old chip? */
307 1.1 dbj break;
308 1.1 dbj
309 1.1 dbj case NCR_VARIANT_ESP100A:
310 1.1 dbj sc->sc_maxxfer = 64 * 1024;
311 1.1 dbj /* Min clocks/byte is 5 */
312 1.1 dbj sc->sc_minsync = ncr53c9x_cpb2stp(sc, 5);
313 1.1 dbj break;
314 1.1 dbj
315 1.1 dbj case NCR_VARIANT_ESP200:
316 1.1 dbj sc->sc_maxxfer = 16 * 1024 * 1024;
317 1.1 dbj /* XXX - do actually set FAST* bits */
318 1.1 dbj break;
319 1.1 dbj }
320 1.1 dbj
321 1.3 dbj /* @@@ Some ESP_DCTL bits probably need setting */
322 1.3 dbj NCR_WRITE_REG(sc, ESP_DCTL,
323 1.3 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_RESET);
324 1.3 dbj DELAY(10);
325 1.22 dbj DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
326 1.3 dbj NCR_WRITE_REG(sc, ESP_DCTL, ESPDCTL_20MHZ | ESPDCTL_INTENB);
327 1.3 dbj DELAY(10);
328 1.22 dbj DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
329 1.3 dbj
330 1.3 dbj /* Set up SCSI DMA */
331 1.3 dbj {
332 1.3 dbj esc->sc_scsi_dma.nd_bst = NEXT68K_INTIO_BUS_SPACE;
333 1.3 dbj
334 1.3 dbj if (bus_space_map(esc->sc_scsi_dma.nd_bst, NEXT_P_SCSI_CSR,
335 1.30 dbj DD_SIZE,0, &esc->sc_scsi_dma.nd_bsh)) {
336 1.3 dbj panic("\n%s: can't map scsi DMA registers",
337 1.3 dbj sc->sc_dev.dv_xname);
338 1.3 dbj }
339 1.3 dbj
340 1.3 dbj esc->sc_scsi_dma.nd_intr = NEXT_I_SCSI_DMA;
341 1.3 dbj esc->sc_scsi_dma.nd_shutdown_cb = &esp_dmacb_shutdown;
342 1.3 dbj esc->sc_scsi_dma.nd_continue_cb = &esp_dmacb_continue;
343 1.3 dbj esc->sc_scsi_dma.nd_completed_cb = &esp_dmacb_completed;
344 1.3 dbj esc->sc_scsi_dma.nd_cb_arg = sc;
345 1.3 dbj nextdma_config(&esc->sc_scsi_dma);
346 1.3 dbj nextdma_init(&esc->sc_scsi_dma);
347 1.3 dbj
348 1.18 dbj #if 0
349 1.18 dbj /* Turn on target selection using the `dma' method */
350 1.29 petrov sc->sc_features |= NCR_F_DMASELECT;
351 1.18 dbj #endif
352 1.18 dbj
353 1.18 dbj esc->sc_datain = -1;
354 1.18 dbj esc->sc_dmaaddr = 0;
355 1.18 dbj esc->sc_dmalen = 0;
356 1.20 dbj esc->sc_dmasize = 0;
357 1.18 dbj
358 1.18 dbj esc->sc_loaded = 0;
359 1.18 dbj
360 1.18 dbj esc->sc_begin = 0;
361 1.18 dbj esc->sc_begin_size = 0;
362 1.18 dbj
363 1.3 dbj {
364 1.3 dbj int error;
365 1.3 dbj if ((error = bus_dmamap_create(esc->sc_scsi_dma.nd_dmat,
366 1.19 dbj sc->sc_maxxfer, sc->sc_maxxfer/NBPG, sc->sc_maxxfer,
367 1.18 dbj 0, BUS_DMA_ALLOCNOW, &esc->sc_main_dmamap)) != 0) {
368 1.18 dbj panic("%s: can't create main i/o DMA map, error = %d",
369 1.3 dbj sc->sc_dev.dv_xname,error);
370 1.3 dbj }
371 1.3 dbj }
372 1.18 dbj esc->sc_main = 0;
373 1.18 dbj esc->sc_main_size = 0;
374 1.14 dbj
375 1.14 dbj {
376 1.14 dbj int error;
377 1.14 dbj if ((error = bus_dmamap_create(esc->sc_scsi_dma.nd_dmat,
378 1.19 dbj ESP_DMA_TAILBUFSIZE,
379 1.19 dbj 1, ESP_DMA_TAILBUFSIZE,
380 1.14 dbj 0, BUS_DMA_ALLOCNOW, &esc->sc_tail_dmamap)) != 0) {
381 1.14 dbj panic("%s: can't create tail i/o DMA map, error = %d",
382 1.14 dbj sc->sc_dev.dv_xname,error);
383 1.14 dbj }
384 1.14 dbj }
385 1.18 dbj esc->sc_tail = 0;
386 1.18 dbj esc->sc_tail_size = 0;
387 1.18 dbj
388 1.3 dbj }
389 1.1 dbj
390 1.3 dbj /* Establish interrupt channel */
391 1.27 nisimura isrlink_autovec(ncr53c9x_intr, sc, NEXT_I_IPL(NEXT_I_SCSI), 0);
392 1.3 dbj INTR_ENABLE(NEXT_I_SCSI);
393 1.4 dbj
394 1.4 dbj /* register interrupt stats */
395 1.26 cgd evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, NULL,
396 1.26 cgd sc->sc_dev.dv_xname, "intr");
397 1.4 dbj
398 1.4 dbj /* Do the common parts of attachment. */
399 1.27 nisimura ncr53c9x_attach(sc, NULL, NULL);
400 1.1 dbj }
401 1.1 dbj
402 1.1 dbj /*
403 1.1 dbj * Glue functions.
404 1.1 dbj */
405 1.1 dbj
406 1.1 dbj u_char
407 1.1 dbj esp_read_reg(sc, reg)
408 1.1 dbj struct ncr53c9x_softc *sc;
409 1.1 dbj int reg;
410 1.1 dbj {
411 1.1 dbj struct esp_softc *esc = (struct esp_softc *)sc;
412 1.1 dbj
413 1.1 dbj return(bus_space_read_1(esc->sc_bst, esc->sc_bsh, reg));
414 1.1 dbj }
415 1.1 dbj
416 1.1 dbj void
417 1.1 dbj esp_write_reg(sc, reg, val)
418 1.1 dbj struct ncr53c9x_softc *sc;
419 1.1 dbj int reg;
420 1.1 dbj u_char val;
421 1.1 dbj {
422 1.1 dbj struct esp_softc *esc = (struct esp_softc *)sc;
423 1.1 dbj
424 1.1 dbj bus_space_write_1(esc->sc_bst, esc->sc_bsh, reg, val);
425 1.1 dbj }
426 1.1 dbj
427 1.1 dbj int
428 1.1 dbj esp_dma_isintr(sc)
429 1.1 dbj struct ncr53c9x_softc *sc;
430 1.1 dbj {
431 1.4 dbj struct esp_softc *esc = (struct esp_softc *)sc;
432 1.4 dbj
433 1.4 dbj int r = (INTR_OCCURRED(NEXT_I_SCSI));
434 1.4 dbj
435 1.4 dbj if (r) {
436 1.13 dbj
437 1.20 dbj {
438 1.23 dbj int flushcount;
439 1.20 dbj int s;
440 1.20 dbj s = spldma();
441 1.20 dbj
442 1.23 dbj flushcount = 0;
443 1.23 dbj
444 1.22 dbj #ifdef ESP_DEBUG
445 1.22 dbj esp_dma_nest++;
446 1.28 tv
447 1.28 tv if (esp_debug) {
448 1.28 tv char sbuf[256];
449 1.28 tv
450 1.28 tv bitmask_snprintf((*(volatile u_long *)IIOV(NEXT_P_INTRSTAT)),
451 1.28 tv NEXT_INTR_BITS, sbuf, sizeof(sbuf));
452 1.28 tv printf("esp_dma_isintr = 0x%s\n", sbuf);
453 1.28 tv }
454 1.22 dbj #endif
455 1.22 dbj
456 1.20 dbj while (esp_dma_isactive(sc)) {
457 1.23 dbj flushcount++;
458 1.17 dbj
459 1.17 dbj #ifdef DIAGNOSTIC
460 1.20 dbj r = (INTR_OCCURRED(NEXT_I_SCSI));
461 1.20 dbj if (!r) panic("esp intr enabled but dma failed to flush");
462 1.17 dbj #endif
463 1.23 dbj #ifdef DIAGNOSTIC
464 1.23 dbj #if 0
465 1.23 dbj if ((esc->sc_loaded & (ESP_LOADED_TAIL/* |ESP_UNLOADED_MAIN */))
466 1.23 dbj != (ESP_LOADED_TAIL /* |ESP_UNLOADED_MAIN */)) {
467 1.23 dbj if (esc->sc_datain) {
468 1.23 dbj NCR_WRITE_REG(sc, ESP_DCTL,
469 1.23 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMARD);
470 1.23 dbj } else {
471 1.23 dbj NCR_WRITE_REG(sc, ESP_DCTL,
472 1.23 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB);
473 1.23 dbj }
474 1.23 dbj next_dma_print(&esc->sc_scsi_dma);
475 1.23 dbj esp_dma_print(sc);
476 1.23 dbj printf("%s: unexpected flush: tc=0x%06x\n",
477 1.23 dbj sc->sc_dev.dv_xname,
478 1.23 dbj (((sc->sc_cfg2 & NCRCFG2_FE)
479 1.23 dbj ? NCR_READ_REG(sc, NCR_TCH) : 0)<<16)|
480 1.23 dbj (NCR_READ_REG(sc, NCR_TCM)<<8)|
481 1.23 dbj NCR_READ_REG(sc, NCR_TCL));
482 1.23 dbj ncr53c9x_readregs(sc);
483 1.23 dbj printf("%s: readregs[intr=%02x,stat=%02x,step=%02x]\n",
484 1.23 dbj sc->sc_dev.dv_xname,
485 1.23 dbj sc->sc_espintr, sc->sc_espstat, sc->sc_espstep);
486 1.23 dbj panic("%s: flushing flushing non-tail dma\n",
487 1.23 dbj sc->sc_dev.dv_xname);
488 1.23 dbj }
489 1.23 dbj #endif
490 1.23 dbj #endif
491 1.23 dbj DPRINTF(("%s: flushing dma, count = %d\n", sc->sc_dev.dv_xname,flushcount));
492 1.20 dbj if (esc->sc_datain) {
493 1.20 dbj NCR_WRITE_REG(sc, ESP_DCTL,
494 1.20 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD | ESPDCTL_DMARD | ESPDCTL_FLUSH);
495 1.22 dbj DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
496 1.20 dbj NCR_WRITE_REG(sc, ESP_DCTL,
497 1.20 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD | ESPDCTL_DMARD);
498 1.20 dbj } else {
499 1.20 dbj NCR_WRITE_REG(sc, ESP_DCTL,
500 1.20 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD | ESPDCTL_FLUSH);
501 1.22 dbj DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
502 1.20 dbj NCR_WRITE_REG(sc, ESP_DCTL,
503 1.20 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD);
504 1.20 dbj }
505 1.22 dbj DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
506 1.20 dbj
507 1.20 dbj {
508 1.20 dbj int nr;
509 1.20 dbj nr = nextdma_intr(&esc->sc_scsi_dma);
510 1.20 dbj if (nr) {
511 1.20 dbj DPRINTF(("nextma_intr = %d\n",nr));
512 1.23 dbj #ifdef DIAGNOSTIC
513 1.23 dbj #if 0
514 1.23 dbj if (flushcount > 16) {
515 1.23 dbj printf("%s: unexpected flushcount %d\n",sc->sc_dev.dv_xname,flushcount);
516 1.23 dbj }
517 1.23 dbj #endif
518 1.23 dbj #endif
519 1.23 dbj #ifdef DIAGNOSTIC
520 1.23 dbj #if 0
521 1.23 dbj if (esp_dma_isactive(sc)) {
522 1.23 dbj esp_dma_print(sc);
523 1.23 dbj printf("%s: dma still active after a flush with count %d\n",
524 1.23 dbj sc->sc_dev.dv_xname,flushcount);
525 1.23 dbj
526 1.23 dbj }
527 1.23 dbj #endif
528 1.23 dbj #endif
529 1.23 dbj flushcount = 0;
530 1.20 dbj }
531 1.16 dbj }
532 1.16 dbj }
533 1.20 dbj
534 1.22 dbj #ifdef ESP_DEBUG
535 1.22 dbj esp_dma_nest--;
536 1.22 dbj #endif
537 1.22 dbj
538 1.20 dbj splx(s);
539 1.13 dbj }
540 1.13 dbj
541 1.20 dbj #ifdef DIAGNOSTIC
542 1.20 dbj r = (INTR_OCCURRED(NEXT_I_SCSI));
543 1.20 dbj if (!r) panic("esp intr not enabled after dma flush");
544 1.20 dbj #endif
545 1.20 dbj
546 1.13 dbj /* Clear the DMAMOD bit in the DCTL register, since if this
547 1.13 dbj * routine returns true, then the ncr53c9x_intr handler will
548 1.13 dbj * be called and needs access to the scsi registers.
549 1.13 dbj */
550 1.13 dbj if (esc->sc_datain) {
551 1.13 dbj NCR_WRITE_REG(sc, ESP_DCTL,
552 1.13 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMARD);
553 1.13 dbj } else {
554 1.13 dbj NCR_WRITE_REG(sc, ESP_DCTL,
555 1.13 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB);
556 1.13 dbj }
557 1.22 dbj DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
558 1.13 dbj
559 1.4 dbj }
560 1.4 dbj
561 1.4 dbj return (r);
562 1.1 dbj }
563 1.1 dbj
564 1.1 dbj void
565 1.1 dbj esp_dma_reset(sc)
566 1.1 dbj struct ncr53c9x_softc *sc;
567 1.1 dbj {
568 1.1 dbj struct esp_softc *esc = (struct esp_softc *)sc;
569 1.3 dbj
570 1.13 dbj DPRINTF(("esp dma reset\n"));
571 1.13 dbj
572 1.13 dbj #ifdef ESP_DEBUG
573 1.13 dbj if (esp_debug) {
574 1.28 tv char sbuf[256];
575 1.28 tv
576 1.28 tv bitmask_snprintf((*(volatile u_long *)IIOV(NEXT_P_INTRSTAT)),
577 1.28 tv NEXT_INTR_BITS, sbuf, sizeof(sbuf));
578 1.28 tv printf(" *intrstat = 0x%s\n", sbuf);
579 1.28 tv
580 1.28 tv bitmask_snprintf((*(volatile u_long *)IIOV(NEXT_P_INTRMASK)),
581 1.28 tv NEXT_INTR_BITS, sbuf, sizeof(sbuf));
582 1.28 tv printf(" *intrmask = 0x%s\n", sbuf);
583 1.13 dbj }
584 1.13 dbj #endif
585 1.13 dbj
586 1.13 dbj /* Clear the DMAMOD bit in the DCTL register: */
587 1.18 dbj NCR_WRITE_REG(sc, ESP_DCTL,
588 1.18 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB);
589 1.22 dbj DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
590 1.13 dbj
591 1.4 dbj nextdma_reset(&esc->sc_scsi_dma);
592 1.4 dbj
593 1.18 dbj esc->sc_datain = -1;
594 1.18 dbj esc->sc_dmaaddr = 0;
595 1.18 dbj esc->sc_dmalen = 0;
596 1.20 dbj esc->sc_dmasize = 0;
597 1.18 dbj
598 1.18 dbj esc->sc_loaded = 0;
599 1.18 dbj
600 1.18 dbj esc->sc_begin = 0;
601 1.18 dbj esc->sc_begin_size = 0;
602 1.13 dbj
603 1.18 dbj if (esc->sc_main_dmamap->dm_mapsize) {
604 1.18 dbj bus_dmamap_unload(esc->sc_scsi_dma.nd_dmat, esc->sc_main_dmamap);
605 1.13 dbj }
606 1.18 dbj esc->sc_main = 0;
607 1.18 dbj esc->sc_main_size = 0;
608 1.13 dbj
609 1.18 dbj if (esc->sc_tail_dmamap->dm_mapsize) {
610 1.18 dbj bus_dmamap_unload(esc->sc_scsi_dma.nd_dmat, esc->sc_tail_dmamap);
611 1.18 dbj }
612 1.18 dbj esc->sc_tail = 0;
613 1.18 dbj esc->sc_tail_size = 0;
614 1.1 dbj }
615 1.1 dbj
616 1.1 dbj int
617 1.1 dbj esp_dma_intr(sc)
618 1.1 dbj struct ncr53c9x_softc *sc;
619 1.1 dbj {
620 1.18 dbj #ifdef DIAGNOSTIC
621 1.18 dbj panic("%s: esp_dma_intr shouldn't be invoked.\n", sc->sc_dev.dv_xname);
622 1.11 dbj #endif
623 1.11 dbj
624 1.18 dbj return -1;
625 1.1 dbj }
626 1.1 dbj
627 1.19 dbj /* it appears that:
628 1.19 dbj * addr and len arguments to this need to be kept up to date
629 1.19 dbj * with the status of the transfter.
630 1.19 dbj * the dmasize of this is the actual length of the transfer
631 1.19 dbj * request, which is guaranteed to be less than maxxfer.
632 1.19 dbj * (len may be > maxxfer)
633 1.19 dbj */
634 1.19 dbj
635 1.1 dbj int
636 1.1 dbj esp_dma_setup(sc, addr, len, datain, dmasize)
637 1.1 dbj struct ncr53c9x_softc *sc;
638 1.1 dbj caddr_t *addr;
639 1.1 dbj size_t *len;
640 1.1 dbj int datain;
641 1.1 dbj size_t *dmasize;
642 1.1 dbj {
643 1.1 dbj struct esp_softc *esc = (struct esp_softc *)sc;
644 1.2 dbj
645 1.11 dbj #ifdef DIAGNOSTIC
646 1.20 dbj #ifdef ESP_DEBUG
647 1.11 dbj /* if this is a read DMA, pre-fill the buffer with 0xdeadbeef
648 1.11 dbj * to identify bogus reads
649 1.11 dbj */
650 1.11 dbj if (datain) {
651 1.14 dbj int *v = (int *)(*addr);
652 1.11 dbj int i;
653 1.14 dbj for(i=0;i<((*len)/4);i++) v[i] = 0xdeadbeef;
654 1.18 dbj v = (int *)(&(esc->sc_tailbuf[0]));
655 1.18 dbj for(i=0;i<((sizeof(esc->sc_tailbuf)/4));i++) v[i] = 0xdeaffeed;
656 1.23 dbj } else {
657 1.23 dbj int *v;
658 1.23 dbj int i;
659 1.23 dbj v = (int *)(&(esc->sc_tailbuf[0]));
660 1.23 dbj for(i=0;i<((sizeof(esc->sc_tailbuf)/4));i++) v[i] = 0xfeeb1eed;
661 1.11 dbj }
662 1.20 dbj #endif
663 1.11 dbj #endif
664 1.11 dbj
665 1.14 dbj DPRINTF(("esp_dma_setup(0x%08lx,0x%08lx,0x%08lx)\n",*addr,*len,*dmasize));
666 1.11 dbj
667 1.24 dbj #if 0
668 1.12 dbj #ifdef DIAGNOSTIC /* @@@ this is ok sometimes. verify that we handle it ok
669 1.12 dbj * and then remove this check
670 1.12 dbj */
671 1.14 dbj if (*len != *dmasize) {
672 1.23 dbj panic("esp dmalen 0x%lx != size 0x%lx",*len,*dmasize);
673 1.11 dbj }
674 1.11 dbj #endif
675 1.24 dbj #endif
676 1.4 dbj
677 1.2 dbj #ifdef DIAGNOSTIC
678 1.3 dbj if ((esc->sc_datain != -1) ||
679 1.18 dbj (esc->sc_main_dmamap->dm_mapsize != 0) ||
680 1.20 dbj (esc->sc_tail_dmamap->dm_mapsize != 0) ||
681 1.20 dbj (esc->sc_dmasize != 0)) {
682 1.3 dbj panic("%s: map already loaded in esp_dma_setup\n"
683 1.20 dbj "\tdatain = %d\n\tmain_mapsize=%d\n\tail_mapsize=%d\n\tdmasize = %d",
684 1.18 dbj sc->sc_dev.dv_xname, esc->sc_datain,
685 1.20 dbj esc->sc_main_dmamap->dm_mapsize,
686 1.20 dbj esc->sc_tail_dmamap->dm_mapsize,
687 1.20 dbj esc->sc_dmasize);
688 1.2 dbj }
689 1.2 dbj #endif
690 1.2 dbj
691 1.20 dbj /* we are sometimes asked to dma zero bytes, that's easy */
692 1.24 dbj if (*dmasize <= 0) {
693 1.20 dbj return(0);
694 1.20 dbj }
695 1.20 dbj
696 1.14 dbj /* Save these in case we have to abort DMA */
697 1.14 dbj esc->sc_datain = datain;
698 1.14 dbj esc->sc_dmaaddr = addr;
699 1.14 dbj esc->sc_dmalen = len;
700 1.14 dbj esc->sc_dmasize = *dmasize;
701 1.14 dbj
702 1.18 dbj esc->sc_loaded = 0;
703 1.18 dbj
704 1.23 dbj #define DMA_SCSI_ALIGNMENT 16
705 1.23 dbj #define DMA_SCSI_ALIGN(type, addr) \
706 1.23 dbj ((type)(((unsigned)(addr)+DMA_SCSI_ALIGNMENT-1) \
707 1.23 dbj &~(DMA_SCSI_ALIGNMENT-1)))
708 1.23 dbj #define DMA_SCSI_ALIGNED(addr) \
709 1.23 dbj (((unsigned)(addr)&(DMA_SCSI_ALIGNMENT-1))==0)
710 1.23 dbj
711 1.2 dbj {
712 1.18 dbj size_t slop_bgn_size; /* # bytes to be fifo'd at beginning */
713 1.18 dbj size_t slop_end_size; /* # bytes to be transferred in tail buffer */
714 1.18 dbj
715 1.3 dbj {
716 1.13 dbj u_long bgn = (u_long)(*esc->sc_dmaaddr);
717 1.13 dbj u_long end = (u_long)(*esc->sc_dmaaddr+esc->sc_dmasize);
718 1.3 dbj
719 1.23 dbj slop_bgn_size = DMA_SCSI_ALIGNMENT-(bgn % DMA_SCSI_ALIGNMENT);
720 1.23 dbj if (slop_bgn_size == DMA_SCSI_ALIGNMENT) slop_bgn_size = 0;
721 1.19 dbj slop_end_size = (end % DMA_ENDALIGNMENT);
722 1.3 dbj }
723 1.3 dbj
724 1.23 dbj /* Force a minimum slop end size. This ensures that write
725 1.23 dbj * requests will overrun, as required to get completion interrupts.
726 1.23 dbj * In addition, since the tail buffer is guaranteed to be mapped
727 1.23 dbj * in a single dma segment, the overrun won't accidentally
728 1.23 dbj * end up in its own segment.
729 1.23 dbj */
730 1.23 dbj if (!esc->sc_datain) {
731 1.24 dbj #if 0
732 1.23 dbj slop_end_size += ESP_DMA_MAXTAIL;
733 1.24 dbj #else
734 1.24 dbj slop_end_size += 0x10;
735 1.24 dbj #endif
736 1.23 dbj }
737 1.23 dbj
738 1.10 dbj /* Check to make sure we haven't counted extra slop
739 1.14 dbj * as would happen for a very short dma buffer, also
740 1.14 dbj * for short buffers, just stuff the entire thing in the tail
741 1.14 dbj */
742 1.18 dbj if ((slop_bgn_size+slop_end_size >= esc->sc_dmasize)
743 1.20 dbj #if 0
744 1.18 dbj || (esc->sc_dmasize <= ESP_DMA_MAXTAIL)
745 1.18 dbj #endif
746 1.18 dbj )
747 1.18 dbj {
748 1.14 dbj slop_bgn_size = 0;
749 1.14 dbj slop_end_size = esc->sc_dmasize;
750 1.18 dbj }
751 1.14 dbj
752 1.18 dbj /* initialize the fifo buffer */
753 1.18 dbj if (slop_bgn_size) {
754 1.18 dbj esc->sc_begin = *esc->sc_dmaaddr;
755 1.18 dbj esc->sc_begin_size = slop_bgn_size;
756 1.18 dbj } else {
757 1.18 dbj esc->sc_begin = 0;
758 1.18 dbj esc->sc_begin_size = 0;
759 1.18 dbj }
760 1.18 dbj
761 1.18 dbj /* Load the normal DMA map */
762 1.18 dbj {
763 1.18 dbj esc->sc_main = *esc->sc_dmaaddr+slop_bgn_size;
764 1.18 dbj esc->sc_main_size = (esc->sc_dmasize)-(slop_end_size+slop_bgn_size);
765 1.18 dbj
766 1.18 dbj if (esc->sc_main_size) {
767 1.18 dbj int error;
768 1.18 dbj error = bus_dmamap_load(esc->sc_scsi_dma.nd_dmat,
769 1.18 dbj esc->sc_main_dmamap,
770 1.18 dbj esc->sc_main, esc->sc_main_size,
771 1.18 dbj NULL, BUS_DMA_NOWAIT);
772 1.18 dbj if (error) {
773 1.18 dbj panic("%s: can't load main dma map. error = %d, addr=0x%08x, size=0x%08x",
774 1.18 dbj sc->sc_dev.dv_xname, error,esc->sc_main,esc->sc_main_size);
775 1.18 dbj }
776 1.23 dbj #if 0
777 1.19 dbj bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_main_dmamap,
778 1.19 dbj 0, esc->sc_main_dmamap->dm_mapsize,
779 1.19 dbj (esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
780 1.23 dbj #endif
781 1.18 dbj } else {
782 1.18 dbj esc->sc_main = 0;
783 1.18 dbj }
784 1.14 dbj }
785 1.3 dbj
786 1.18 dbj /* Load the tail DMA map */
787 1.18 dbj if (slop_end_size) {
788 1.18 dbj esc->sc_tail = DMA_ENDALIGN(caddr_t,esc->sc_tailbuf+slop_end_size)-slop_end_size;
789 1.18 dbj /* If the beginning of the tail is not correctly aligned,
790 1.18 dbj * we have no choice but to align the start, which might then unalign the end.
791 1.18 dbj */
792 1.23 dbj esc->sc_tail = DMA_SCSI_ALIGN(caddr_t,esc->sc_tail);
793 1.18 dbj /* So therefore, we change the tail size to be end aligned again. */
794 1.18 dbj esc->sc_tail_size = DMA_ENDALIGN(caddr_t,esc->sc_tail+slop_end_size)-esc->sc_tail;
795 1.19 dbj
796 1.19 dbj /* @@@ next dma overrun lossage */
797 1.20 dbj if (!esc->sc_datain) {
798 1.21 dbj esc->sc_tail_size += ESP_DMA_OVERRUN;
799 1.20 dbj }
800 1.20 dbj
801 1.18 dbj {
802 1.18 dbj int error;
803 1.18 dbj error = bus_dmamap_load(esc->sc_scsi_dma.nd_dmat,
804 1.18 dbj esc->sc_tail_dmamap,
805 1.18 dbj esc->sc_tail, esc->sc_tail_size,
806 1.18 dbj NULL, BUS_DMA_NOWAIT);
807 1.18 dbj if (error) {
808 1.18 dbj panic("%s: can't load tail dma map. error = %d, addr=0x%08x, size=0x%08x",
809 1.18 dbj sc->sc_dev.dv_xname, error,esc->sc_tail,esc->sc_tail_size);
810 1.18 dbj }
811 1.23 dbj #if 0
812 1.19 dbj bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_tail_dmamap,
813 1.19 dbj 0, esc->sc_tail_dmamap->dm_mapsize,
814 1.19 dbj (esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
815 1.23 dbj #endif
816 1.3 dbj }
817 1.3 dbj }
818 1.2 dbj }
819 1.2 dbj
820 1.1 dbj return (0);
821 1.1 dbj }
822 1.1 dbj
823 1.20 dbj #ifdef ESP_DEBUG
824 1.20 dbj /* For debugging */
825 1.1 dbj void
826 1.20 dbj esp_dma_store(sc)
827 1.1 dbj struct ncr53c9x_softc *sc;
828 1.1 dbj {
829 1.1 dbj struct esp_softc *esc = (struct esp_softc *)sc;
830 1.20 dbj char *p = &esp_dma_dump[0];
831 1.20 dbj
832 1.20 dbj p += sprintf(p,"%s: sc_datain=%d\n",sc->sc_dev.dv_xname,esc->sc_datain);
833 1.20 dbj p += sprintf(p,"%s: sc_loaded=0x%08x\n",sc->sc_dev.dv_xname,esc->sc_loaded);
834 1.3 dbj
835 1.20 dbj if (esc->sc_dmaaddr) {
836 1.20 dbj p += sprintf(p,"%s: sc_dmaaddr=0x%08lx\n",sc->sc_dev.dv_xname,*esc->sc_dmaaddr);
837 1.20 dbj } else {
838 1.20 dbj p += sprintf(p,"%s: sc_dmaaddr=NULL\n",sc->sc_dev.dv_xname);
839 1.20 dbj }
840 1.20 dbj if (esc->sc_dmalen) {
841 1.20 dbj p += sprintf(p,"%s: sc_dmalen=0x%08lx\n",sc->sc_dev.dv_xname,*esc->sc_dmalen);
842 1.20 dbj } else {
843 1.20 dbj p += sprintf(p,"%s: sc_dmalen=NULL\n",sc->sc_dev.dv_xname);
844 1.20 dbj }
845 1.20 dbj p += sprintf(p,"%s: sc_dmasize=0x%08x\n",sc->sc_dev.dv_xname,esc->sc_dmasize);
846 1.19 dbj
847 1.20 dbj p += sprintf(p,"%s: sc_begin = 0x%08x, sc_begin_size = 0x%08x\n",
848 1.20 dbj sc->sc_dev.dv_xname, esc->sc_begin, esc->sc_begin_size);
849 1.20 dbj p += sprintf(p,"%s: sc_main = 0x%08x, sc_main_size = 0x%08x\n",
850 1.20 dbj sc->sc_dev.dv_xname, esc->sc_main, esc->sc_main_size);
851 1.19 dbj {
852 1.19 dbj int i;
853 1.19 dbj bus_dmamap_t map = esc->sc_main_dmamap;
854 1.20 dbj p += sprintf(p,"%s: sc_main_dmamap. mapsize = 0x%08x, nsegs = %d\n",
855 1.20 dbj sc->sc_dev.dv_xname, map->dm_mapsize, map->dm_nsegs);
856 1.19 dbj for(i=0;i<map->dm_nsegs;i++) {
857 1.20 dbj p += sprintf(p,"%s: map->dm_segs[%d]->ds_addr = 0x%08x, len = 0x%08x\n",
858 1.20 dbj sc->sc_dev.dv_xname, i, map->dm_segs[i].ds_addr, map->dm_segs[i].ds_len);
859 1.19 dbj }
860 1.19 dbj }
861 1.20 dbj p += sprintf(p,"%s: sc_tail = 0x%08x, sc_tail_size = 0x%08x\n",
862 1.20 dbj sc->sc_dev.dv_xname, esc->sc_tail, esc->sc_tail_size);
863 1.19 dbj {
864 1.19 dbj int i;
865 1.19 dbj bus_dmamap_t map = esc->sc_tail_dmamap;
866 1.20 dbj p += sprintf(p,"%s: sc_tail_dmamap. mapsize = 0x%08x, nsegs = %d\n",
867 1.20 dbj sc->sc_dev.dv_xname, map->dm_mapsize, map->dm_nsegs);
868 1.19 dbj for(i=0;i<map->dm_nsegs;i++) {
869 1.20 dbj p += sprintf(p,"%s: map->dm_segs[%d]->ds_addr = 0x%08x, len = 0x%08x\n",
870 1.20 dbj sc->sc_dev.dv_xname, i, map->dm_segs[i].ds_addr, map->dm_segs[i].ds_len);
871 1.19 dbj }
872 1.19 dbj }
873 1.20 dbj }
874 1.20 dbj
875 1.20 dbj void
876 1.20 dbj esp_dma_print(sc)
877 1.20 dbj struct ncr53c9x_softc *sc;
878 1.20 dbj {
879 1.20 dbj esp_dma_store(sc);
880 1.20 dbj printf("%s",esp_dma_dump);
881 1.20 dbj }
882 1.20 dbj #endif
883 1.20 dbj
884 1.20 dbj void
885 1.20 dbj esp_dma_go(sc)
886 1.20 dbj struct ncr53c9x_softc *sc;
887 1.20 dbj {
888 1.20 dbj struct esp_softc *esc = (struct esp_softc *)sc;
889 1.20 dbj
890 1.20 dbj DPRINTF(("%s: esp_dma_go(datain = %d)\n",
891 1.20 dbj sc->sc_dev.dv_xname, esc->sc_datain));
892 1.20 dbj
893 1.20 dbj #ifdef ESP_DEBUG
894 1.20 dbj if (esp_debug) esp_dma_print(sc);
895 1.20 dbj else esp_dma_store(sc);
896 1.19 dbj #endif
897 1.4 dbj
898 1.20 dbj #ifdef ESP_DEBUG
899 1.11 dbj {
900 1.11 dbj int n = NCR_READ_REG(sc, NCR_FFLAG);
901 1.20 dbj DPRINTF(("%s: fifo size = %d, seq = 0x%x\n",
902 1.20 dbj sc->sc_dev.dv_xname,
903 1.20 dbj n & NCRFIFO_FF, (n & NCRFIFO_SS)>>5));
904 1.4 dbj }
905 1.11 dbj #endif
906 1.4 dbj
907 1.23 dbj /* zero length dma transfers are boring */
908 1.20 dbj if (esc->sc_dmasize == 0) {
909 1.20 dbj return;
910 1.20 dbj }
911 1.20 dbj
912 1.18 dbj #if defined(DIAGNOSTIC)
913 1.18 dbj if ((esc->sc_begin_size == 0) &&
914 1.18 dbj (esc->sc_main_dmamap->dm_mapsize == 0) &&
915 1.18 dbj (esc->sc_tail_dmamap->dm_mapsize == 0)) {
916 1.20 dbj esp_dma_print(sc);
917 1.18 dbj panic("%s: No DMA requested!",sc->sc_dev.dv_xname);
918 1.18 dbj }
919 1.18 dbj #endif
920 1.18 dbj
921 1.18 dbj /* Stuff the fifo with the begin buffer */
922 1.18 dbj if (esc->sc_datain) {
923 1.4 dbj int i;
924 1.23 dbj DPRINTF(("%s: FIFO read of %d bytes:",
925 1.23 dbj sc->sc_dev.dv_xname,esc->sc_begin_size));
926 1.18 dbj for(i=0;i<esc->sc_begin_size;i++) {
927 1.24 dbj esc->sc_begin[i]=NCR_READ_REG(sc, NCR_FIFO);
928 1.24 dbj DPRINTF((" %02x",esc->sc_begin[i]&0xff));
929 1.4 dbj }
930 1.23 dbj DPRINTF(("\n"));
931 1.4 dbj } else {
932 1.4 dbj int i;
933 1.23 dbj DPRINTF(("%s: FIFO write of %d bytes:",
934 1.23 dbj sc->sc_dev.dv_xname,esc->sc_begin_size));
935 1.18 dbj for(i=0;i<esc->sc_begin_size;i++) {
936 1.18 dbj NCR_WRITE_REG(sc, NCR_FIFO, esc->sc_begin[i]);
937 1.24 dbj DPRINTF((" %02x",esc->sc_begin[i]&0xff));
938 1.4 dbj }
939 1.23 dbj DPRINTF(("\n"));
940 1.11 dbj }
941 1.4 dbj
942 1.14 dbj /* if we are a dma write cycle, copy the end slop */
943 1.14 dbj if (esc->sc_datain == 0) {
944 1.18 dbj memcpy(esc->sc_tail,
945 1.18 dbj (*esc->sc_dmaaddr+esc->sc_begin_size+esc->sc_main_size),
946 1.18 dbj (esc->sc_dmasize-(esc->sc_begin_size+esc->sc_main_size)));
947 1.14 dbj }
948 1.17 dbj
949 1.23 dbj if (esc->sc_main_dmamap->dm_mapsize) {
950 1.23 dbj bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_main_dmamap,
951 1.23 dbj 0, esc->sc_main_dmamap->dm_mapsize,
952 1.23 dbj (esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
953 1.23 dbj }
954 1.23 dbj
955 1.23 dbj if (esc->sc_tail_dmamap->dm_mapsize) {
956 1.23 dbj bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_tail_dmamap,
957 1.23 dbj 0, esc->sc_tail_dmamap->dm_mapsize,
958 1.23 dbj (esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
959 1.23 dbj }
960 1.23 dbj
961 1.14 dbj nextdma_start(&esc->sc_scsi_dma,
962 1.25 dbj (esc->sc_datain ? DMACSR_SETREAD : DMACSR_SETWRITE));
963 1.12 dbj
964 1.14 dbj if (esc->sc_datain) {
965 1.14 dbj NCR_WRITE_REG(sc, ESP_DCTL,
966 1.14 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD | ESPDCTL_DMARD);
967 1.3 dbj } else {
968 1.14 dbj NCR_WRITE_REG(sc, ESP_DCTL,
969 1.14 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMAMOD);
970 1.3 dbj }
971 1.22 dbj DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
972 1.1 dbj }
973 1.1 dbj
974 1.1 dbj void
975 1.1 dbj esp_dma_stop(sc)
976 1.1 dbj struct ncr53c9x_softc *sc;
977 1.1 dbj {
978 1.1 dbj panic("Not yet implemented");
979 1.1 dbj }
980 1.1 dbj
981 1.1 dbj int
982 1.1 dbj esp_dma_isactive(sc)
983 1.1 dbj struct ncr53c9x_softc *sc;
984 1.1 dbj {
985 1.1 dbj struct esp_softc *esc = (struct esp_softc *)sc;
986 1.11 dbj int r = !nextdma_finished(&esc->sc_scsi_dma);
987 1.11 dbj DPRINTF(("esp_dma_isactive = %d\n",r));
988 1.11 dbj return(r);
989 1.2 dbj }
990 1.2 dbj
991 1.2 dbj /****************************************************************/
992 1.2 dbj
993 1.2 dbj /* Internal dma callback routines */
994 1.2 dbj bus_dmamap_t
995 1.2 dbj esp_dmacb_continue(arg)
996 1.2 dbj void *arg;
997 1.2 dbj {
998 1.2 dbj struct ncr53c9x_softc *sc = (struct ncr53c9x_softc *)arg;
999 1.2 dbj struct esp_softc *esc = (struct esp_softc *)sc;
1000 1.2 dbj
1001 1.18 dbj DPRINTF(("%s: dma continue\n",sc->sc_dev.dv_xname));
1002 1.4 dbj
1003 1.2 dbj #ifdef DIAGNOSTIC
1004 1.2 dbj if ((esc->sc_datain < 0) || (esc->sc_datain > 1)) {
1005 1.2 dbj panic("%s: map not loaded in dma continue callback, datain = %d",
1006 1.2 dbj sc->sc_dev.dv_xname,esc->sc_datain);
1007 1.2 dbj }
1008 1.2 dbj #endif
1009 1.18 dbj
1010 1.18 dbj if ((!(esc->sc_loaded & ESP_LOADED_MAIN)) &&
1011 1.18 dbj (esc->sc_main_dmamap->dm_mapsize)) {
1012 1.18 dbj DPRINTF(("%s: Loading main map\n",sc->sc_dev.dv_xname));
1013 1.19 dbj #if 0
1014 1.18 dbj bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_main_dmamap,
1015 1.18 dbj 0, esc->sc_main_dmamap->dm_mapsize,
1016 1.14 dbj (esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
1017 1.19 dbj #endif
1018 1.18 dbj esc->sc_loaded |= ESP_LOADED_MAIN;
1019 1.18 dbj return(esc->sc_main_dmamap);
1020 1.18 dbj }
1021 1.18 dbj
1022 1.18 dbj if ((!(esc->sc_loaded & ESP_LOADED_TAIL)) &&
1023 1.18 dbj (esc->sc_tail_dmamap->dm_mapsize)) {
1024 1.18 dbj DPRINTF(("%s: Loading tail map\n",sc->sc_dev.dv_xname));
1025 1.19 dbj #if 0
1026 1.14 dbj bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_tail_dmamap,
1027 1.14 dbj 0, esc->sc_tail_dmamap->dm_mapsize,
1028 1.14 dbj (esc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE));
1029 1.19 dbj #endif
1030 1.18 dbj esc->sc_loaded |= ESP_LOADED_TAIL;
1031 1.14 dbj return(esc->sc_tail_dmamap);
1032 1.10 dbj }
1033 1.18 dbj
1034 1.18 dbj DPRINTF(("%s: not loading map\n",sc->sc_dev.dv_xname));
1035 1.18 dbj return(0);
1036 1.2 dbj }
1037 1.2 dbj
1038 1.14 dbj
1039 1.2 dbj void
1040 1.2 dbj esp_dmacb_completed(map, arg)
1041 1.2 dbj bus_dmamap_t map;
1042 1.2 dbj void *arg;
1043 1.2 dbj {
1044 1.2 dbj struct ncr53c9x_softc *sc = (struct ncr53c9x_softc *)arg;
1045 1.2 dbj struct esp_softc *esc = (struct esp_softc *)sc;
1046 1.2 dbj
1047 1.20 dbj DPRINTF(("%s: dma completed\n",sc->sc_dev.dv_xname));
1048 1.4 dbj
1049 1.2 dbj #ifdef DIAGNOSTIC
1050 1.14 dbj if ((esc->sc_datain < 0) || (esc->sc_datain > 1)) {
1051 1.18 dbj panic("%s: invalid dma direction in completed callback, datain = %d",
1052 1.18 dbj sc->sc_dev.dv_xname,esc->sc_datain);
1053 1.2 dbj }
1054 1.23 dbj #endif
1055 1.23 dbj
1056 1.23 dbj if (map == esc->sc_main_dmamap) {
1057 1.23 dbj #ifdef DIAGNOSTIC
1058 1.23 dbj if ((esc->sc_loaded & ESP_UNLOADED_MAIN) ||
1059 1.23 dbj !(esc->sc_loaded & ESP_LOADED_MAIN)) {
1060 1.23 dbj panic("%s: unexpected completed call for main map\n",sc->sc_dev.dv_xname);
1061 1.23 dbj }
1062 1.23 dbj #endif
1063 1.23 dbj esc->sc_loaded |= ESP_UNLOADED_MAIN;
1064 1.23 dbj } else if (map == esc->sc_tail_dmamap) {
1065 1.23 dbj #ifdef DIAGNOSTIC
1066 1.23 dbj if ((esc->sc_loaded & ESP_UNLOADED_TAIL) ||
1067 1.23 dbj !(esc->sc_loaded & ESP_LOADED_TAIL)) {
1068 1.23 dbj panic("%s: unexpected completed call for tail map\n",sc->sc_dev.dv_xname);
1069 1.23 dbj }
1070 1.23 dbj #endif
1071 1.23 dbj esc->sc_loaded |= ESP_UNLOADED_TAIL;
1072 1.23 dbj }
1073 1.23 dbj #ifdef DIAGNOSTIC
1074 1.23 dbj else {
1075 1.14 dbj panic("%s: unexpected completed map", sc->sc_dev.dv_xname);
1076 1.2 dbj }
1077 1.2 dbj #endif
1078 1.2 dbj
1079 1.23 dbj #ifdef ESP_DEBUG
1080 1.23 dbj if (esp_debug) {
1081 1.23 dbj if (map == esc->sc_main_dmamap) {
1082 1.23 dbj printf("%s: completed main map\n",sc->sc_dev.dv_xname);
1083 1.23 dbj } else if (map == esc->sc_tail_dmamap) {
1084 1.23 dbj printf("%s: completed tail map\n",sc->sc_dev.dv_xname);
1085 1.23 dbj }
1086 1.23 dbj }
1087 1.23 dbj #endif
1088 1.22 dbj
1089 1.22 dbj #if 0
1090 1.22 dbj if ((map == esc->sc_tail_dmamap) ||
1091 1.22 dbj ((esc->sc_tail_size == 0) && (map == esc->sc_main_dmamap))) {
1092 1.22 dbj
1093 1.22 dbj /* Clear the DMAMOD bit in the DCTL register to give control
1094 1.22 dbj * back to the scsi chip.
1095 1.22 dbj */
1096 1.22 dbj if (esc->sc_datain) {
1097 1.22 dbj NCR_WRITE_REG(sc, ESP_DCTL,
1098 1.22 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMARD);
1099 1.22 dbj } else {
1100 1.22 dbj NCR_WRITE_REG(sc, ESP_DCTL,
1101 1.22 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB);
1102 1.22 dbj }
1103 1.22 dbj DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
1104 1.22 dbj }
1105 1.22 dbj #endif
1106 1.22 dbj
1107 1.22 dbj
1108 1.19 dbj #if 0
1109 1.14 dbj bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, map,
1110 1.14 dbj 0, map->dm_mapsize,
1111 1.2 dbj (esc->sc_datain ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
1112 1.19 dbj #endif
1113 1.13 dbj
1114 1.2 dbj }
1115 1.2 dbj
1116 1.2 dbj void
1117 1.2 dbj esp_dmacb_shutdown(arg)
1118 1.2 dbj void *arg;
1119 1.2 dbj {
1120 1.2 dbj struct ncr53c9x_softc *sc = (struct ncr53c9x_softc *)arg;
1121 1.2 dbj struct esp_softc *esc = (struct esp_softc *)sc;
1122 1.2 dbj
1123 1.20 dbj DPRINTF(("%s: dma shutdown\n",sc->sc_dev.dv_xname));
1124 1.4 dbj
1125 1.22 dbj #if 0
1126 1.22 dbj {
1127 1.22 dbj /* Clear the DMAMOD bit in the DCTL register to give control
1128 1.22 dbj * back to the scsi chip.
1129 1.22 dbj */
1130 1.22 dbj if (esc->sc_datain) {
1131 1.22 dbj NCR_WRITE_REG(sc, ESP_DCTL,
1132 1.22 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB | ESPDCTL_DMARD);
1133 1.22 dbj } else {
1134 1.22 dbj NCR_WRITE_REG(sc, ESP_DCTL,
1135 1.22 dbj ESPDCTL_20MHZ | ESPDCTL_INTENB);
1136 1.22 dbj }
1137 1.22 dbj DPRINTF(("esp dctl is 0x%02x\n",NCR_READ_REG(sc,ESP_DCTL)));
1138 1.22 dbj }
1139 1.22 dbj #endif
1140 1.22 dbj
1141 1.22 dbj DPRINTF(("%s: esp_dma_nest == %d\n",sc->sc_dev.dv_xname,esp_dma_nest));
1142 1.22 dbj
1143 1.13 dbj /* Stuff the end slop into fifo */
1144 1.3 dbj
1145 1.14 dbj #ifdef ESP_DEBUG
1146 1.14 dbj if (esp_debug) {
1147 1.14 dbj
1148 1.13 dbj int n = NCR_READ_REG(sc, NCR_FFLAG);
1149 1.20 dbj DPRINTF(("%s: fifo size = %d, seq = 0x%x\n",
1150 1.20 dbj sc->sc_dev.dv_xname,n & NCRFIFO_FF, (n & NCRFIFO_SS)>>5));
1151 1.13 dbj }
1152 1.13 dbj #endif
1153 1.12 dbj
1154 1.22 dbj if (esc->sc_main_dmamap->dm_mapsize) {
1155 1.22 dbj bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_main_dmamap,
1156 1.22 dbj 0, esc->sc_main_dmamap->dm_mapsize,
1157 1.22 dbj (esc->sc_datain ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
1158 1.22 dbj bus_dmamap_unload(esc->sc_scsi_dma.nd_dmat, esc->sc_main_dmamap);
1159 1.22 dbj }
1160 1.22 dbj
1161 1.22 dbj if (esc->sc_tail_dmamap->dm_mapsize) {
1162 1.22 dbj bus_dmamap_sync(esc->sc_scsi_dma.nd_dmat, esc->sc_tail_dmamap,
1163 1.22 dbj 0, esc->sc_tail_dmamap->dm_mapsize,
1164 1.22 dbj (esc->sc_datain ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE));
1165 1.22 dbj bus_dmamap_unload(esc->sc_scsi_dma.nd_dmat, esc->sc_tail_dmamap);
1166 1.22 dbj }
1167 1.22 dbj
1168 1.22 dbj /* copy the tail dma buffer data for read transfers */
1169 1.18 dbj if (esc->sc_datain == 1) {
1170 1.18 dbj memcpy((*esc->sc_dmaaddr+esc->sc_begin_size+esc->sc_main_size),
1171 1.18 dbj esc->sc_tail,
1172 1.18 dbj (esc->sc_dmasize-(esc->sc_begin_size+esc->sc_main_size)));
1173 1.4 dbj }
1174 1.13 dbj
1175 1.18 dbj #ifdef ESP_DEBUG
1176 1.18 dbj if (esp_debug) {
1177 1.18 dbj printf("%s: dma_shutdown: addr=0x%08lx,len=0x%08lx,size=0x%08lx\n",
1178 1.18 dbj sc->sc_dev.dv_xname,
1179 1.18 dbj *esc->sc_dmaaddr, *esc->sc_dmalen, esc->sc_dmasize);
1180 1.24 dbj if (esp_debug > 10) {
1181 1.24 dbj esp_hex_dump(*(esc->sc_dmaaddr),esc->sc_dmasize);
1182 1.24 dbj printf("%s: tail=0x%08lx,tailbuf=0x%08lx,tail_size=0x%08lx\n",
1183 1.24 dbj sc->sc_dev.dv_xname,
1184 1.24 dbj esc->sc_tail, &(esc->sc_tailbuf[0]), esc->sc_tail_size);
1185 1.24 dbj esp_hex_dump(&(esc->sc_tailbuf[0]),sizeof(esc->sc_tailbuf));
1186 1.24 dbj }
1187 1.13 dbj }
1188 1.11 dbj #endif
1189 1.3 dbj
1190 1.22 dbj *(esc->sc_dmaaddr) += esc->sc_dmasize;
1191 1.22 dbj *(esc->sc_dmalen) -= esc->sc_dmasize;
1192 1.22 dbj
1193 1.18 dbj esc->sc_main = 0;
1194 1.18 dbj esc->sc_main_size = 0;
1195 1.14 dbj esc->sc_tail = 0;
1196 1.14 dbj esc->sc_tail_size = 0;
1197 1.19 dbj
1198 1.19 dbj esc->sc_datain = -1;
1199 1.19 dbj esc->sc_dmaaddr = 0;
1200 1.19 dbj esc->sc_dmalen = 0;
1201 1.20 dbj esc->sc_dmasize = 0;
1202 1.19 dbj
1203 1.19 dbj esc->sc_loaded = 0;
1204 1.19 dbj
1205 1.19 dbj esc->sc_begin = 0;
1206 1.19 dbj esc->sc_begin_size = 0;
1207 1.20 dbj
1208 1.20 dbj #ifdef ESP_DEBUG
1209 1.20 dbj if (esp_debug) {
1210 1.28 tv char sbuf[256];
1211 1.28 tv
1212 1.28 tv bitmask_snprintf((*(volatile u_long *)IIOV(NEXT_P_INTRSTAT)),
1213 1.28 tv NEXT_INTR_BITS, sbuf, sizeof(sbuf));
1214 1.28 tv printf(" *intrstat = 0x%s\n", sbuf);
1215 1.28 tv
1216 1.28 tv bitmask_snprintf((*(volatile u_long *)IIOV(NEXT_P_INTRMASK)),
1217 1.28 tv NEXT_INTR_BITS, sbuf, sizeof(sbuf));
1218 1.28 tv printf(" *intrmask = 0x%s\n", sbuf);
1219 1.20 dbj }
1220 1.20 dbj #endif
1221 1.1 dbj }
1222