zs.c revision 1.1 1 1.1 dbj /* $NetBSD: zs.c,v 1.1 1998/06/09 07:53:05 dbj Exp $ */
2 1.1 dbj
3 1.1 dbj /*-
4 1.1 dbj * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 1.1 dbj * All rights reserved.
6 1.1 dbj *
7 1.1 dbj * This code is derived from software contributed to The NetBSD Foundation
8 1.1 dbj * by Gordon W. Ross.
9 1.1 dbj *
10 1.1 dbj * Redistribution and use in source and binary forms, with or without
11 1.1 dbj * modification, are permitted provided that the following conditions
12 1.1 dbj * are met:
13 1.1 dbj * 1. Redistributions of source code must retain the above copyright
14 1.1 dbj * notice, this list of conditions and the following disclaimer.
15 1.1 dbj * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 dbj * notice, this list of conditions and the following disclaimer in the
17 1.1 dbj * documentation and/or other materials provided with the distribution.
18 1.1 dbj * 3. All advertising materials mentioning features or use of this software
19 1.1 dbj * must display the following acknowledgement:
20 1.1 dbj * This product includes software developed by the NetBSD
21 1.1 dbj * Foundation, Inc. and its contributors.
22 1.1 dbj * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 dbj * contributors may be used to endorse or promote products derived
24 1.1 dbj * from this software without specific prior written permission.
25 1.1 dbj *
26 1.1 dbj * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 dbj * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 dbj * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 dbj * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 dbj * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 dbj * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 dbj * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 dbj * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 dbj * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 dbj * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 dbj * POSSIBILITY OF SUCH DAMAGE.
37 1.1 dbj */
38 1.1 dbj
39 1.1 dbj /*
40 1.1 dbj * Zilog Z8530 Dual UART driver (machine-dependent part)
41 1.1 dbj *
42 1.1 dbj * Runs two serial lines per chip using slave drivers.
43 1.1 dbj * Plain tty/async lines use the zs_async slave.
44 1.1 dbj * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 1.1 dbj */
46 1.1 dbj
47 1.1 dbj /* This was snarfed from the netbsd sparc/dev/zs.c at version 1.56
48 1.1 dbj * and then updated to reflect changes in 1.59
49 1.1 dbj * by Darrin B Jewell <jewell (at) mit.edu> Mon Mar 30 20:24:46 1998
50 1.1 dbj */
51 1.1 dbj
52 1.1 dbj #include <sys/param.h>
53 1.1 dbj #include <sys/systm.h>
54 1.1 dbj #include <sys/conf.h>
55 1.1 dbj #include <sys/device.h>
56 1.1 dbj #include <sys/file.h>
57 1.1 dbj #include <sys/ioctl.h>
58 1.1 dbj #include <sys/kernel.h>
59 1.1 dbj #include <sys/proc.h>
60 1.1 dbj #include <sys/tty.h>
61 1.1 dbj #include <sys/time.h>
62 1.1 dbj #include <sys/syslog.h>
63 1.1 dbj
64 1.1 dbj #include <machine/autoconf.h>
65 1.1 dbj #include <machine/cpu.h>
66 1.1 dbj #include <machine/psl.h>
67 1.1 dbj
68 1.1 dbj #include <dev/cons.h>
69 1.1 dbj
70 1.1 dbj #include <dev/ic/z8530reg.h>
71 1.1 dbj #include <machine/z8530var.h>
72 1.1 dbj
73 1.1 dbj #include <next68k/next68k/isr.h>
74 1.1 dbj
75 1.1 dbj #include "zsc.h" /* NZSC */
76 1.1 dbj
77 1.1 dbj #if (NZSC < 0)
78 1.1 dbj #error "No serial controllers?"
79 1.1 dbj #endif
80 1.1 dbj
81 1.1 dbj /*
82 1.1 dbj * Some warts needed by z8530tty.c -
83 1.1 dbj * The default parity REALLY needs to be the same as the PROM uses,
84 1.1 dbj * or you can not see messages done with printf during boot-up...
85 1.1 dbj */
86 1.1 dbj int zs_def_cflag = (CREAD | CS8 | HUPCL);
87 1.1 dbj int zs_major = 12;
88 1.1 dbj
89 1.1 dbj /*
90 1.1 dbj * The NeXT provides a 3.686400 MHz clock to the ZS chips.
91 1.1 dbj */
92 1.1 dbj #define PCLK (57600*4*16) /* PCLK pin input clock rate */
93 1.1 dbj
94 1.1 dbj #define ZS_DELAY() delay(2)
95 1.1 dbj
96 1.1 dbj /* The layout of this is hardware-dependent (padding, order). */
97 1.1 dbj struct zschan {
98 1.1 dbj volatile u_char zc_csr; /* ctrl,status, and indirect access */
99 1.1 dbj u_char zc_xxx0;
100 1.1 dbj volatile u_char zc_data; /* data */
101 1.1 dbj u_char zc_xxx1;
102 1.1 dbj };
103 1.1 dbj
104 1.1 dbj static char *zsaddr[NZSC];
105 1.1 dbj
106 1.1 dbj /* Flags from cninit() */
107 1.1 dbj static int zs_hwflags[NZSC][2];
108 1.1 dbj
109 1.1 dbj /* Default speed for each channel */
110 1.1 dbj static int zs_defspeed[NZSC][2] = {
111 1.1 dbj { 9600, /* ttya */
112 1.1 dbj 9600 }, /* ttyb */
113 1.1 dbj };
114 1.1 dbj
115 1.1 dbj static u_char zs_init_reg[16] = {
116 1.1 dbj 0, /* 0: CMD (reset, etc.) */
117 1.1 dbj 0, /* 1: No interrupts yet. */
118 1.1 dbj 0x18 + NEXT_I_IPL(NEXT_I_SCC), /* 2: IVECT */
119 1.1 dbj ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
120 1.1 dbj ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
121 1.1 dbj ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
122 1.1 dbj 0, /* 6: TXSYNC/SYNCLO */
123 1.1 dbj 0, /* 7: RXSYNC/SYNCHI */
124 1.1 dbj 0, /* 8: alias for data port */
125 1.1 dbj ZSWR9_MASTER_IE,
126 1.1 dbj 0, /*10: Misc. TX/RX control bits */
127 1.1 dbj ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
128 1.1 dbj 14, /*12: BAUDLO (default=9600) */
129 1.1 dbj 0, /*13: BAUDHI (default=9600) */
130 1.1 dbj ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
131 1.1 dbj ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
132 1.1 dbj };
133 1.1 dbj
134 1.1 dbj static struct zschan *
135 1.1 dbj zs_get_chan_addr __P((int zsc_unit, int channel));
136 1.1 dbj
137 1.1 dbj static struct zschan *
138 1.1 dbj zs_get_chan_addr(zs_unit, channel)
139 1.1 dbj int zs_unit, channel;
140 1.1 dbj {
141 1.1 dbj char *addr;
142 1.1 dbj struct zschan *zc;
143 1.1 dbj
144 1.1 dbj if (zs_unit >= NZSC)
145 1.1 dbj return (NULL);
146 1.1 dbj addr = zsaddr[zs_unit];
147 1.1 dbj if (addr == NULL)
148 1.1 dbj return (NULL);
149 1.1 dbj if (channel == 0) {
150 1.1 dbj /* handle the fact the ports are intertwined. */
151 1.1 dbj zc = (struct zschan *)(addr+1);
152 1.1 dbj } else {
153 1.1 dbj zc = (struct zschan *)(addr);
154 1.1 dbj }
155 1.1 dbj return (zc);
156 1.1 dbj }
157 1.1 dbj
158 1.1 dbj
159 1.1 dbj /****************************************************************
160 1.1 dbj * Autoconfig
161 1.1 dbj ****************************************************************/
162 1.1 dbj
163 1.1 dbj /* Definition of the driver for autoconfig. */
164 1.1 dbj static int zs_match __P((struct device *, struct cfdata *, void *));
165 1.1 dbj static void zs_attach __P((struct device *, struct device *, void *));
166 1.1 dbj static int zs_print __P((void *, const char *name));
167 1.1 dbj
168 1.1 dbj extern int zs_getc __P((void *arg));
169 1.1 dbj extern void zs_putc __P((void *arg, int c));
170 1.1 dbj
171 1.1 dbj struct cfattach zsc_ca = {
172 1.1 dbj sizeof(struct zsc_softc), zs_match, zs_attach
173 1.1 dbj };
174 1.1 dbj
175 1.1 dbj extern struct cfdriver zsc_cd;
176 1.1 dbj
177 1.1 dbj /* Interrupt handlers. */
178 1.1 dbj static int zshard __P((void *));
179 1.1 dbj static int zssoft __P((void *));
180 1.1 dbj
181 1.1 dbj static int zs_get_speed __P((struct zs_chanstate *));
182 1.1 dbj
183 1.1 dbj
184 1.1 dbj /*
185 1.1 dbj * Is the zs chip present?
186 1.1 dbj */
187 1.1 dbj static int
188 1.1 dbj zs_match(parent, cf, aux)
189 1.1 dbj struct device *parent;
190 1.1 dbj struct cfdata *cf;
191 1.1 dbj void *aux;
192 1.1 dbj {
193 1.1 dbj return(1);
194 1.1 dbj }
195 1.1 dbj
196 1.1 dbj /*
197 1.1 dbj * Attach a found zs.
198 1.1 dbj *
199 1.1 dbj * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
200 1.1 dbj * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
201 1.1 dbj */
202 1.1 dbj static void
203 1.1 dbj zs_attach(parent, self, aux)
204 1.1 dbj struct device *parent;
205 1.1 dbj struct device *self;
206 1.1 dbj void *aux;
207 1.1 dbj {
208 1.1 dbj
209 1.1 dbj struct zsc_softc *zsc = (void *) self;
210 1.1 dbj struct zsc_attach_args zsc_args;
211 1.1 dbj volatile struct zschan *zc;
212 1.1 dbj struct zs_chanstate *cs;
213 1.1 dbj int s, zs_unit, channel;
214 1.1 dbj
215 1.1 dbj zs_unit = zsc->zsc_dev.dv_unit;
216 1.1 dbj
217 1.1 dbj if (zsaddr[zs_unit] == NULL)
218 1.1 dbj panic("zs_attach: zs%d not mapped\n", zs_unit);
219 1.1 dbj
220 1.1 dbj /*
221 1.1 dbj * Initialize software state for each channel.
222 1.1 dbj */
223 1.1 dbj for (channel = 0; channel < 2; channel++) {
224 1.1 dbj zsc_args.channel = channel;
225 1.1 dbj zsc_args.hwflags = zs_hwflags[zs_unit][channel];
226 1.1 dbj cs = &zsc->zsc_cs_store[channel];
227 1.1 dbj zsc->zsc_cs[channel] = cs;
228 1.1 dbj
229 1.1 dbj cs->cs_channel = channel;
230 1.1 dbj cs->cs_private = NULL;
231 1.1 dbj cs->cs_ops = &zsops_null;
232 1.1 dbj cs->cs_brg_clk = PCLK / 16;
233 1.1 dbj
234 1.1 dbj zc = zs_get_chan_addr(zs_unit, channel);
235 1.1 dbj cs->cs_reg_csr = &zc->zc_csr;
236 1.1 dbj cs->cs_reg_data = &zc->zc_data;
237 1.1 dbj
238 1.1 dbj bcopy(zs_init_reg, cs->cs_creg, 16);
239 1.1 dbj bcopy(zs_init_reg, cs->cs_preg, 16);
240 1.1 dbj
241 1.1 dbj /* XXX: Get these from the PROM properties! */
242 1.1 dbj /* XXX: See the mvme167 code. Better. */
243 1.1 dbj if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
244 1.1 dbj cs->cs_defspeed = zs_get_speed(cs);
245 1.1 dbj else
246 1.1 dbj cs->cs_defspeed = zs_defspeed[zs_unit][channel];
247 1.1 dbj cs->cs_defcflag = zs_def_cflag;
248 1.1 dbj
249 1.1 dbj /* Make these correspond to cs_defcflag (-crtscts) */
250 1.1 dbj cs->cs_rr0_dcd = ZSRR0_DCD;
251 1.1 dbj cs->cs_rr0_cts = 0;
252 1.1 dbj cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
253 1.1 dbj cs->cs_wr5_rts = 0;
254 1.1 dbj
255 1.1 dbj /*
256 1.1 dbj * Clear the master interrupt enable.
257 1.1 dbj * The INTENA is common to both channels,
258 1.1 dbj * so just do it on the A channel.
259 1.1 dbj */
260 1.1 dbj if (channel == 0) {
261 1.1 dbj zs_write_reg(cs, 9, 0);
262 1.1 dbj }
263 1.1 dbj
264 1.1 dbj /*
265 1.1 dbj * Look for a child driver for this channel.
266 1.1 dbj * The child attach will setup the hardware.
267 1.1 dbj */
268 1.1 dbj if (!config_found(self, (void *)&zsc_args, zs_print)) {
269 1.1 dbj /* No sub-driver. Just reset it. */
270 1.1 dbj u_char reset = (channel == 0) ?
271 1.1 dbj ZSWR9_A_RESET : ZSWR9_B_RESET;
272 1.1 dbj s = splzs();
273 1.1 dbj zs_write_reg(cs, 9, reset);
274 1.1 dbj splx(s);
275 1.1 dbj }
276 1.1 dbj }
277 1.1 dbj
278 1.1 dbj isrlink_autovec(zshard, NULL, NEXT_I_IPL(NEXT_I_SCC), 0);
279 1.1 dbj INTR_ENABLE(NEXT_I_SCC);
280 1.1 dbj
281 1.1 dbj {
282 1.1 dbj int sir;
283 1.1 dbj sir = allocate_sir(zssoft, zsc);
284 1.1 dbj if (sir != SIR_SERIAL) {
285 1.1 dbj panic("Unexpected zssoft sir");
286 1.1 dbj }
287 1.1 dbj }
288 1.1 dbj
289 1.1 dbj /*
290 1.1 dbj * Set the master interrupt enable and interrupt vector.
291 1.1 dbj * (common to both channels, do it on A)
292 1.1 dbj */
293 1.1 dbj cs = zsc->zsc_cs[0];
294 1.1 dbj s = splhigh();
295 1.1 dbj /* interrupt vector */
296 1.1 dbj zs_write_reg(cs, 2, zs_init_reg[2]);
297 1.1 dbj /* master interrupt control (enable) */
298 1.1 dbj zs_write_reg(cs, 9, zs_init_reg[9]);
299 1.1 dbj splx(s);
300 1.1 dbj
301 1.1 dbj }
302 1.1 dbj
303 1.1 dbj static int
304 1.1 dbj zs_print(aux, name)
305 1.1 dbj void *aux;
306 1.1 dbj const char *name;
307 1.1 dbj {
308 1.1 dbj struct zsc_attach_args *args = aux;
309 1.1 dbj
310 1.1 dbj if (name != NULL)
311 1.1 dbj printf("%s: ", name);
312 1.1 dbj
313 1.1 dbj if (args->channel != -1)
314 1.1 dbj printf(" channel %d", args->channel);
315 1.1 dbj
316 1.1 dbj return (UNCONF);
317 1.1 dbj }
318 1.1 dbj
319 1.1 dbj static volatile int zssoftpending;
320 1.1 dbj
321 1.1 dbj /*
322 1.1 dbj * Our ZS chips all share a common, autovectored interrupt,
323 1.1 dbj * so we have to look at all of them on each interrupt.
324 1.1 dbj */
325 1.1 dbj static int
326 1.1 dbj zshard(arg)
327 1.1 dbj void *arg;
328 1.1 dbj {
329 1.1 dbj register struct zsc_softc *zsc;
330 1.1 dbj register int unit, rr3, rval, softreq;
331 1.1 dbj if (!INTR_OCCURRED(NEXT_I_SCC)) return 0;
332 1.1 dbj
333 1.1 dbj rval = softreq = 0;
334 1.1 dbj for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
335 1.1 dbj zsc = zsc_cd.cd_devs[unit];
336 1.1 dbj if (zsc == NULL)
337 1.1 dbj continue;
338 1.1 dbj rr3 = zsc_intr_hard(zsc);
339 1.1 dbj /* Count up the interrupts. */
340 1.1 dbj if (rr3) {
341 1.1 dbj rval |= rr3;
342 1.1 dbj zsc->zsc_intrcnt.ev_count++;
343 1.1 dbj }
344 1.1 dbj softreq |= zsc->zsc_cs[0]->cs_softreq;
345 1.1 dbj softreq |= zsc->zsc_cs[1]->cs_softreq;
346 1.1 dbj }
347 1.1 dbj
348 1.1 dbj /* We are at splzs here, so no need to lock. */
349 1.1 dbj if (softreq && (zssoftpending == 0)) {
350 1.1 dbj zssoftpending = 1;
351 1.1 dbj setsoftserial();
352 1.1 dbj }
353 1.1 dbj return(1);
354 1.1 dbj }
355 1.1 dbj
356 1.1 dbj /*
357 1.1 dbj * Similar scheme as for zshard (look at all of them)
358 1.1 dbj */
359 1.1 dbj static int
360 1.1 dbj zssoft(arg)
361 1.1 dbj void *arg;
362 1.1 dbj {
363 1.1 dbj register struct zsc_softc *zsc;
364 1.1 dbj register int s, unit;
365 1.1 dbj
366 1.1 dbj /* This is not the only ISR on this IPL. */
367 1.1 dbj if (zssoftpending == 0)
368 1.1 dbj return (0);
369 1.1 dbj
370 1.1 dbj /*
371 1.1 dbj * The soft intr. bit will be set by zshard only if
372 1.1 dbj * the variable zssoftpending is zero. The order of
373 1.1 dbj * these next two statements prevents our clearing
374 1.1 dbj * the soft intr bit just after zshard has set it.
375 1.1 dbj */
376 1.1 dbj /* ienab_bic(IE_ZSSOFT); */
377 1.1 dbj zssoftpending = 0;
378 1.1 dbj
379 1.1 dbj /* Make sure we call the tty layer at spltty. */
380 1.1 dbj s = spltty();
381 1.1 dbj for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
382 1.1 dbj zsc = zsc_cd.cd_devs[unit];
383 1.1 dbj if (zsc == NULL)
384 1.1 dbj continue;
385 1.1 dbj (void)zsc_intr_soft(zsc);
386 1.1 dbj }
387 1.1 dbj splx(s);
388 1.1 dbj return (1);
389 1.1 dbj }
390 1.1 dbj
391 1.1 dbj
392 1.1 dbj /*
393 1.1 dbj * Compute the current baud rate given a ZS channel.
394 1.1 dbj */
395 1.1 dbj static int
396 1.1 dbj zs_get_speed(cs)
397 1.1 dbj struct zs_chanstate *cs;
398 1.1 dbj {
399 1.1 dbj int tconst;
400 1.1 dbj
401 1.1 dbj tconst = zs_read_reg(cs, 12);
402 1.1 dbj tconst |= zs_read_reg(cs, 13) << 8;
403 1.1 dbj return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
404 1.1 dbj }
405 1.1 dbj
406 1.1 dbj /*
407 1.1 dbj * MD functions for setting the baud rate and control modes.
408 1.1 dbj */
409 1.1 dbj int
410 1.1 dbj zs_set_speed(cs, bps)
411 1.1 dbj struct zs_chanstate *cs;
412 1.1 dbj int bps; /* bits per second */
413 1.1 dbj {
414 1.1 dbj int tconst, real_bps;
415 1.1 dbj
416 1.1 dbj if (bps == 0)
417 1.1 dbj return (0);
418 1.1 dbj
419 1.1 dbj #ifdef DIAGNOSTIC
420 1.1 dbj if (cs->cs_brg_clk == 0)
421 1.1 dbj panic("zs_set_speed");
422 1.1 dbj #endif
423 1.1 dbj
424 1.1 dbj tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
425 1.1 dbj if (tconst < 0)
426 1.1 dbj return (EINVAL);
427 1.1 dbj
428 1.1 dbj /* Convert back to make sure we can do it. */
429 1.1 dbj real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
430 1.1 dbj
431 1.1 dbj /* XXX - Allow some tolerance here? */
432 1.1 dbj if (real_bps != bps)
433 1.1 dbj return (EINVAL);
434 1.1 dbj
435 1.1 dbj cs->cs_preg[12] = tconst;
436 1.1 dbj cs->cs_preg[13] = tconst >> 8;
437 1.1 dbj
438 1.1 dbj /* Caller will stuff the pending registers. */
439 1.1 dbj return (0);
440 1.1 dbj }
441 1.1 dbj
442 1.1 dbj int
443 1.1 dbj zs_set_modes(cs, cflag)
444 1.1 dbj struct zs_chanstate *cs;
445 1.1 dbj int cflag; /* bits per second */
446 1.1 dbj {
447 1.1 dbj int s;
448 1.1 dbj
449 1.1 dbj /*
450 1.1 dbj * Output hardware flow control on the chip is horrendous:
451 1.1 dbj * if carrier detect drops, the receiver is disabled, and if
452 1.1 dbj * CTS drops, the transmitter is stoped IN MID CHARACTER!
453 1.1 dbj * Therefore, NEVER set the HFC bit, and instead use the
454 1.1 dbj * status interrupt to detect CTS changes.
455 1.1 dbj */
456 1.1 dbj s = splzs();
457 1.1 dbj if ((cflag & (CLOCAL | MDMBUF)) != 0)
458 1.1 dbj cs->cs_rr0_dcd = 0;
459 1.1 dbj else
460 1.1 dbj cs->cs_rr0_dcd = ZSRR0_DCD;
461 1.1 dbj if ((cflag & CRTSCTS) != 0) {
462 1.1 dbj cs->cs_wr5_dtr = ZSWR5_DTR;
463 1.1 dbj cs->cs_wr5_rts = ZSWR5_RTS;
464 1.1 dbj cs->cs_rr0_cts = ZSRR0_CTS;
465 1.1 dbj } else if ((cflag & CDTRCTS) != 0) {
466 1.1 dbj cs->cs_wr5_dtr = 0;
467 1.1 dbj cs->cs_wr5_rts = ZSWR5_DTR;
468 1.1 dbj cs->cs_rr0_cts = ZSRR0_CTS;
469 1.1 dbj } else if ((cflag & MDMBUF) != 0) {
470 1.1 dbj cs->cs_wr5_dtr = 0;
471 1.1 dbj cs->cs_wr5_rts = ZSWR5_DTR;
472 1.1 dbj cs->cs_rr0_cts = ZSRR0_DCD;
473 1.1 dbj } else {
474 1.1 dbj cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
475 1.1 dbj cs->cs_wr5_rts = 0;
476 1.1 dbj cs->cs_rr0_cts = 0;
477 1.1 dbj }
478 1.1 dbj splx(s);
479 1.1 dbj
480 1.1 dbj /* Caller will stuff the pending registers. */
481 1.1 dbj return (0);
482 1.1 dbj }
483 1.1 dbj
484 1.1 dbj /*
485 1.1 dbj * Read or write the chip with suitable delays.
486 1.1 dbj */
487 1.1 dbj
488 1.1 dbj u_char
489 1.1 dbj zs_read_reg(cs, reg)
490 1.1 dbj struct zs_chanstate *cs;
491 1.1 dbj u_char reg;
492 1.1 dbj {
493 1.1 dbj u_char val;
494 1.1 dbj
495 1.1 dbj *cs->cs_reg_csr = reg;
496 1.1 dbj ZS_DELAY();
497 1.1 dbj val = *cs->cs_reg_csr;
498 1.1 dbj ZS_DELAY();
499 1.1 dbj return (val);
500 1.1 dbj }
501 1.1 dbj
502 1.1 dbj void
503 1.1 dbj zs_write_reg(cs, reg, val)
504 1.1 dbj struct zs_chanstate *cs;
505 1.1 dbj u_char reg, val;
506 1.1 dbj {
507 1.1 dbj *cs->cs_reg_csr = reg;
508 1.1 dbj ZS_DELAY();
509 1.1 dbj *cs->cs_reg_csr = val;
510 1.1 dbj ZS_DELAY();
511 1.1 dbj }
512 1.1 dbj
513 1.1 dbj u_char
514 1.1 dbj zs_read_csr(cs)
515 1.1 dbj struct zs_chanstate *cs;
516 1.1 dbj {
517 1.1 dbj register u_char val;
518 1.1 dbj
519 1.1 dbj val = *cs->cs_reg_csr;
520 1.1 dbj ZS_DELAY();
521 1.1 dbj return (val);
522 1.1 dbj }
523 1.1 dbj
524 1.1 dbj void zs_write_csr(cs, val)
525 1.1 dbj struct zs_chanstate *cs;
526 1.1 dbj u_char val;
527 1.1 dbj {
528 1.1 dbj *cs->cs_reg_csr = val;
529 1.1 dbj ZS_DELAY();
530 1.1 dbj }
531 1.1 dbj
532 1.1 dbj u_char zs_read_data(cs)
533 1.1 dbj struct zs_chanstate *cs;
534 1.1 dbj {
535 1.1 dbj register u_char val;
536 1.1 dbj
537 1.1 dbj val = *cs->cs_reg_data;
538 1.1 dbj ZS_DELAY();
539 1.1 dbj return (val);
540 1.1 dbj }
541 1.1 dbj
542 1.1 dbj void zs_write_data(cs, val)
543 1.1 dbj struct zs_chanstate *cs;
544 1.1 dbj u_char val;
545 1.1 dbj {
546 1.1 dbj *cs->cs_reg_data = val;
547 1.1 dbj ZS_DELAY();
548 1.1 dbj }
549 1.1 dbj
550 1.1 dbj /****************************************************************
551 1.1 dbj * Console support functions (Sun specific!)
552 1.1 dbj * Note: this code is allowed to know about the layout of
553 1.1 dbj * the chip registers, and uses that to keep things simple.
554 1.1 dbj * XXX - I think I like the mvme167 code better. -gwr
555 1.1 dbj ****************************************************************/
556 1.1 dbj
557 1.1 dbj extern void Debugger __P((void));
558 1.1 dbj void *zs_conschan;
559 1.1 dbj int zs_consunit = 0;
560 1.1 dbj
561 1.1 dbj /*
562 1.1 dbj * Handle user request to enter kernel debugger.
563 1.1 dbj */
564 1.1 dbj void
565 1.1 dbj zs_abort(cs)
566 1.1 dbj struct zs_chanstate *cs;
567 1.1 dbj {
568 1.1 dbj register volatile struct zschan *zc = zs_conschan;
569 1.1 dbj int rr0;
570 1.1 dbj
571 1.1 dbj /* Wait for end of break to avoid PROM abort. */
572 1.1 dbj /* XXX - Limit the wait? */
573 1.1 dbj do {
574 1.1 dbj rr0 = zc->zc_csr;
575 1.1 dbj ZS_DELAY();
576 1.1 dbj } while (rr0 & ZSRR0_BREAK);
577 1.1 dbj
578 1.1 dbj #if defined(KGDB)
579 1.1 dbj zskgdb(cs);
580 1.1 dbj #elif defined(DDB)
581 1.1 dbj next68k_isr_printcounts();
582 1.1 dbj Debugger();
583 1.1 dbj #else
584 1.1 dbj printf("stopping on keyboard abort\n");
585 1.1 dbj callrom();
586 1.1 dbj #endif
587 1.1 dbj }
588 1.1 dbj
589 1.1 dbj /*
590 1.1 dbj * Polled input char.
591 1.1 dbj */
592 1.1 dbj int
593 1.1 dbj zs_getc(arg)
594 1.1 dbj void *arg;
595 1.1 dbj {
596 1.1 dbj register volatile struct zschan *zc = arg;
597 1.1 dbj register int s, c, rr0;
598 1.1 dbj
599 1.1 dbj s = splhigh();
600 1.1 dbj /* Wait for a character to arrive. */
601 1.1 dbj do {
602 1.1 dbj rr0 = zc->zc_csr;
603 1.1 dbj ZS_DELAY();
604 1.1 dbj } while ((rr0 & ZSRR0_RX_READY) == 0);
605 1.1 dbj
606 1.1 dbj c = zc->zc_data;
607 1.1 dbj ZS_DELAY();
608 1.1 dbj splx(s);
609 1.1 dbj
610 1.1 dbj /*
611 1.1 dbj * This is used by the kd driver to read scan codes,
612 1.1 dbj * so don't translate '\r' ==> '\n' here...
613 1.1 dbj */
614 1.1 dbj return (c);
615 1.1 dbj }
616 1.1 dbj
617 1.1 dbj /*
618 1.1 dbj * Polled output char.
619 1.1 dbj */
620 1.1 dbj void
621 1.1 dbj zs_putc(arg, c)
622 1.1 dbj void *arg;
623 1.1 dbj int c;
624 1.1 dbj {
625 1.1 dbj register volatile struct zschan *zc = arg;
626 1.1 dbj register int s, rr0;
627 1.1 dbj
628 1.1 dbj s = splhigh();
629 1.1 dbj /* Wait for transmitter to become ready. */
630 1.1 dbj do {
631 1.1 dbj rr0 = zc->zc_csr;
632 1.1 dbj ZS_DELAY();
633 1.1 dbj } while ((rr0 & ZSRR0_TX_READY) == 0);
634 1.1 dbj
635 1.1 dbj
636 1.1 dbj zc->zc_data = c;
637 1.1 dbj ZS_DELAY();
638 1.1 dbj
639 1.1 dbj splx(s);
640 1.1 dbj }
641 1.1 dbj
642 1.1 dbj /*****************************************************************/
643 1.1 dbj
644 1.1 dbj void zscninit __P((struct consdev *));
645 1.1 dbj int zscngetc __P((dev_t));
646 1.1 dbj void zscnputc __P((dev_t, int));
647 1.1 dbj void zscnprobe __P((struct consdev *));
648 1.1 dbj extern int zsopen __P(( dev_t dev, int flags, int mode, struct proc *p));
649 1.1 dbj
650 1.1 dbj void
651 1.1 dbj zscnprobe(cp)
652 1.1 dbj struct consdev * cp;
653 1.1 dbj {
654 1.1 dbj int maj;
655 1.1 dbj for (maj = 0; maj < nchrdev; maj++) {
656 1.1 dbj if (cdevsw[maj].d_open == zsopen) {
657 1.1 dbj break;
658 1.1 dbj }
659 1.1 dbj }
660 1.1 dbj if (maj != nchrdev) {
661 1.1 dbj cp->cn_pri = CN_NORMAL; /* Lower than CN_INTERNAL */
662 1.1 dbj zs_major = maj;
663 1.1 dbj zs_consunit = 0;
664 1.1 dbj zsaddr[0] = (void *)IIOV(NEXT_P_SCC);
665 1.1 dbj cp->cn_dev = makedev(maj, zs_consunit);
666 1.1 dbj zs_conschan = zs_get_chan_addr(0, zs_consunit);
667 1.1 dbj } else {
668 1.1 dbj cp->cn_pri = CN_DEAD;
669 1.1 dbj }
670 1.1 dbj }
671 1.1 dbj
672 1.1 dbj
673 1.1 dbj void
674 1.1 dbj zscninit(cn)
675 1.1 dbj struct consdev *cn;
676 1.1 dbj {
677 1.1 dbj zs_hwflags[0][zs_consunit] = ZS_HWFLAG_CONSOLE;
678 1.1 dbj
679 1.1 dbj {
680 1.1 dbj struct zs_chanstate xcs;
681 1.1 dbj struct zs_chanstate *cs;
682 1.1 dbj volatile struct zschan *zc;
683 1.1 dbj int tconst, s;
684 1.1 dbj
685 1.1 dbj /* Setup temporary chanstate. */
686 1.1 dbj bzero((caddr_t)&xcs, sizeof(xcs));
687 1.1 dbj cs = &xcs;
688 1.1 dbj zc = zs_conschan;
689 1.1 dbj cs->cs_reg_csr = &zc->zc_csr;
690 1.1 dbj cs->cs_reg_data = &zc->zc_data;
691 1.1 dbj cs->cs_channel = zs_consunit;
692 1.1 dbj cs->cs_brg_clk = PCLK/16;
693 1.1 dbj
694 1.1 dbj bcopy(zs_init_reg, cs->cs_preg, 16);
695 1.1 dbj cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
696 1.1 dbj cs->cs_preg[15] = ZSWR15_BREAK_IE;
697 1.1 dbj
698 1.1 dbj tconst = BPS_TO_TCONST(cs->cs_brg_clk,
699 1.1 dbj zs_defspeed[0][zs_consunit]);
700 1.1 dbj cs->cs_preg[12] = tconst;
701 1.1 dbj cs->cs_preg[13] = tconst >> 8;
702 1.1 dbj /* can't use zs_set_speed as we haven't set up the
703 1.1 dbj * signal sources, and it's not worth it for now
704 1.1 dbj */
705 1.1 dbj
706 1.1 dbj cs->cs_preg[9] &= ~ZSWR9_MASTER_IE;
707 1.1 dbj /* no interrupts until later, after attach. */
708 1.1 dbj
709 1.1 dbj s = splhigh();
710 1.1 dbj zs_loadchannelregs(cs);
711 1.1 dbj splx(s);
712 1.1 dbj }
713 1.1 dbj
714 1.1 dbj printf("\nNetBSD/next68k console\n");
715 1.1 dbj }
716 1.1 dbj
717 1.1 dbj /*
718 1.1 dbj * Polled console input putchar.
719 1.1 dbj */
720 1.1 dbj int
721 1.1 dbj zscngetc(dev)
722 1.1 dbj dev_t dev;
723 1.1 dbj {
724 1.1 dbj return (zs_getc(zs_conschan));
725 1.1 dbj }
726 1.1 dbj
727 1.1 dbj /*
728 1.1 dbj * Polled console output putchar.
729 1.1 dbj */
730 1.1 dbj void
731 1.1 dbj zscnputc(dev, c)
732 1.1 dbj dev_t dev;
733 1.1 dbj int c;
734 1.1 dbj {
735 1.1 dbj zs_putc(zs_conschan, c);
736 1.1 dbj }
737 1.1 dbj
738 1.1 dbj /*****************************************************************/
739