zs.c revision 1.2 1 1.2 jonathan /* $NetBSD: zs.c,v 1.2 1998/07/04 22:18:33 jonathan Exp $ */
2 1.1 dbj
3 1.1 dbj /*-
4 1.1 dbj * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 1.1 dbj * All rights reserved.
6 1.1 dbj *
7 1.1 dbj * This code is derived from software contributed to The NetBSD Foundation
8 1.1 dbj * by Gordon W. Ross.
9 1.1 dbj *
10 1.1 dbj * Redistribution and use in source and binary forms, with or without
11 1.1 dbj * modification, are permitted provided that the following conditions
12 1.1 dbj * are met:
13 1.1 dbj * 1. Redistributions of source code must retain the above copyright
14 1.1 dbj * notice, this list of conditions and the following disclaimer.
15 1.1 dbj * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 dbj * notice, this list of conditions and the following disclaimer in the
17 1.1 dbj * documentation and/or other materials provided with the distribution.
18 1.1 dbj * 3. All advertising materials mentioning features or use of this software
19 1.1 dbj * must display the following acknowledgement:
20 1.1 dbj * This product includes software developed by the NetBSD
21 1.1 dbj * Foundation, Inc. and its contributors.
22 1.1 dbj * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 dbj * contributors may be used to endorse or promote products derived
24 1.1 dbj * from this software without specific prior written permission.
25 1.1 dbj *
26 1.1 dbj * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 dbj * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 dbj * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 dbj * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 dbj * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 dbj * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 dbj * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 dbj * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 dbj * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 dbj * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 dbj * POSSIBILITY OF SUCH DAMAGE.
37 1.1 dbj */
38 1.1 dbj
39 1.1 dbj /*
40 1.1 dbj * Zilog Z8530 Dual UART driver (machine-dependent part)
41 1.1 dbj *
42 1.1 dbj * Runs two serial lines per chip using slave drivers.
43 1.1 dbj * Plain tty/async lines use the zs_async slave.
44 1.1 dbj * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 1.1 dbj */
46 1.1 dbj
47 1.1 dbj /* This was snarfed from the netbsd sparc/dev/zs.c at version 1.56
48 1.1 dbj * and then updated to reflect changes in 1.59
49 1.1 dbj * by Darrin B Jewell <jewell (at) mit.edu> Mon Mar 30 20:24:46 1998
50 1.1 dbj */
51 1.2 jonathan
52 1.2 jonathan #include "opt_ddb.h"
53 1.1 dbj
54 1.1 dbj #include <sys/param.h>
55 1.1 dbj #include <sys/systm.h>
56 1.1 dbj #include <sys/conf.h>
57 1.1 dbj #include <sys/device.h>
58 1.1 dbj #include <sys/file.h>
59 1.1 dbj #include <sys/ioctl.h>
60 1.1 dbj #include <sys/kernel.h>
61 1.1 dbj #include <sys/proc.h>
62 1.1 dbj #include <sys/tty.h>
63 1.1 dbj #include <sys/time.h>
64 1.1 dbj #include <sys/syslog.h>
65 1.1 dbj
66 1.1 dbj #include <machine/autoconf.h>
67 1.1 dbj #include <machine/cpu.h>
68 1.1 dbj #include <machine/psl.h>
69 1.1 dbj
70 1.1 dbj #include <dev/cons.h>
71 1.1 dbj
72 1.1 dbj #include <dev/ic/z8530reg.h>
73 1.1 dbj #include <machine/z8530var.h>
74 1.1 dbj
75 1.1 dbj #include <next68k/next68k/isr.h>
76 1.1 dbj
77 1.1 dbj #include "zsc.h" /* NZSC */
78 1.1 dbj
79 1.1 dbj #if (NZSC < 0)
80 1.1 dbj #error "No serial controllers?"
81 1.1 dbj #endif
82 1.1 dbj
83 1.1 dbj /*
84 1.1 dbj * Some warts needed by z8530tty.c -
85 1.1 dbj * The default parity REALLY needs to be the same as the PROM uses,
86 1.1 dbj * or you can not see messages done with printf during boot-up...
87 1.1 dbj */
88 1.1 dbj int zs_def_cflag = (CREAD | CS8 | HUPCL);
89 1.1 dbj int zs_major = 12;
90 1.1 dbj
91 1.1 dbj /*
92 1.1 dbj * The NeXT provides a 3.686400 MHz clock to the ZS chips.
93 1.1 dbj */
94 1.1 dbj #define PCLK (57600*4*16) /* PCLK pin input clock rate */
95 1.1 dbj
96 1.1 dbj #define ZS_DELAY() delay(2)
97 1.1 dbj
98 1.1 dbj /* The layout of this is hardware-dependent (padding, order). */
99 1.1 dbj struct zschan {
100 1.1 dbj volatile u_char zc_csr; /* ctrl,status, and indirect access */
101 1.1 dbj u_char zc_xxx0;
102 1.1 dbj volatile u_char zc_data; /* data */
103 1.1 dbj u_char zc_xxx1;
104 1.1 dbj };
105 1.1 dbj
106 1.1 dbj static char *zsaddr[NZSC];
107 1.1 dbj
108 1.1 dbj /* Flags from cninit() */
109 1.1 dbj static int zs_hwflags[NZSC][2];
110 1.1 dbj
111 1.1 dbj /* Default speed for each channel */
112 1.1 dbj static int zs_defspeed[NZSC][2] = {
113 1.1 dbj { 9600, /* ttya */
114 1.1 dbj 9600 }, /* ttyb */
115 1.1 dbj };
116 1.1 dbj
117 1.1 dbj static u_char zs_init_reg[16] = {
118 1.1 dbj 0, /* 0: CMD (reset, etc.) */
119 1.1 dbj 0, /* 1: No interrupts yet. */
120 1.1 dbj 0x18 + NEXT_I_IPL(NEXT_I_SCC), /* 2: IVECT */
121 1.1 dbj ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
122 1.1 dbj ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
123 1.1 dbj ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
124 1.1 dbj 0, /* 6: TXSYNC/SYNCLO */
125 1.1 dbj 0, /* 7: RXSYNC/SYNCHI */
126 1.1 dbj 0, /* 8: alias for data port */
127 1.1 dbj ZSWR9_MASTER_IE,
128 1.1 dbj 0, /*10: Misc. TX/RX control bits */
129 1.1 dbj ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
130 1.1 dbj 14, /*12: BAUDLO (default=9600) */
131 1.1 dbj 0, /*13: BAUDHI (default=9600) */
132 1.1 dbj ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
133 1.1 dbj ZSWR15_BREAK_IE | ZSWR15_DCD_IE,
134 1.1 dbj };
135 1.1 dbj
136 1.1 dbj static struct zschan *
137 1.1 dbj zs_get_chan_addr __P((int zsc_unit, int channel));
138 1.1 dbj
139 1.1 dbj static struct zschan *
140 1.1 dbj zs_get_chan_addr(zs_unit, channel)
141 1.1 dbj int zs_unit, channel;
142 1.1 dbj {
143 1.1 dbj char *addr;
144 1.1 dbj struct zschan *zc;
145 1.1 dbj
146 1.1 dbj if (zs_unit >= NZSC)
147 1.1 dbj return (NULL);
148 1.1 dbj addr = zsaddr[zs_unit];
149 1.1 dbj if (addr == NULL)
150 1.1 dbj return (NULL);
151 1.1 dbj if (channel == 0) {
152 1.1 dbj /* handle the fact the ports are intertwined. */
153 1.1 dbj zc = (struct zschan *)(addr+1);
154 1.1 dbj } else {
155 1.1 dbj zc = (struct zschan *)(addr);
156 1.1 dbj }
157 1.1 dbj return (zc);
158 1.1 dbj }
159 1.1 dbj
160 1.1 dbj
161 1.1 dbj /****************************************************************
162 1.1 dbj * Autoconfig
163 1.1 dbj ****************************************************************/
164 1.1 dbj
165 1.1 dbj /* Definition of the driver for autoconfig. */
166 1.1 dbj static int zs_match __P((struct device *, struct cfdata *, void *));
167 1.1 dbj static void zs_attach __P((struct device *, struct device *, void *));
168 1.1 dbj static int zs_print __P((void *, const char *name));
169 1.1 dbj
170 1.1 dbj extern int zs_getc __P((void *arg));
171 1.1 dbj extern void zs_putc __P((void *arg, int c));
172 1.1 dbj
173 1.1 dbj struct cfattach zsc_ca = {
174 1.1 dbj sizeof(struct zsc_softc), zs_match, zs_attach
175 1.1 dbj };
176 1.1 dbj
177 1.1 dbj extern struct cfdriver zsc_cd;
178 1.1 dbj
179 1.1 dbj /* Interrupt handlers. */
180 1.1 dbj static int zshard __P((void *));
181 1.1 dbj static int zssoft __P((void *));
182 1.1 dbj
183 1.1 dbj static int zs_get_speed __P((struct zs_chanstate *));
184 1.1 dbj
185 1.1 dbj
186 1.1 dbj /*
187 1.1 dbj * Is the zs chip present?
188 1.1 dbj */
189 1.1 dbj static int
190 1.1 dbj zs_match(parent, cf, aux)
191 1.1 dbj struct device *parent;
192 1.1 dbj struct cfdata *cf;
193 1.1 dbj void *aux;
194 1.1 dbj {
195 1.1 dbj return(1);
196 1.1 dbj }
197 1.1 dbj
198 1.1 dbj /*
199 1.1 dbj * Attach a found zs.
200 1.1 dbj *
201 1.1 dbj * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
202 1.1 dbj * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
203 1.1 dbj */
204 1.1 dbj static void
205 1.1 dbj zs_attach(parent, self, aux)
206 1.1 dbj struct device *parent;
207 1.1 dbj struct device *self;
208 1.1 dbj void *aux;
209 1.1 dbj {
210 1.1 dbj
211 1.1 dbj struct zsc_softc *zsc = (void *) self;
212 1.1 dbj struct zsc_attach_args zsc_args;
213 1.1 dbj volatile struct zschan *zc;
214 1.1 dbj struct zs_chanstate *cs;
215 1.1 dbj int s, zs_unit, channel;
216 1.1 dbj
217 1.1 dbj zs_unit = zsc->zsc_dev.dv_unit;
218 1.1 dbj
219 1.1 dbj if (zsaddr[zs_unit] == NULL)
220 1.1 dbj panic("zs_attach: zs%d not mapped\n", zs_unit);
221 1.1 dbj
222 1.1 dbj /*
223 1.1 dbj * Initialize software state for each channel.
224 1.1 dbj */
225 1.1 dbj for (channel = 0; channel < 2; channel++) {
226 1.1 dbj zsc_args.channel = channel;
227 1.1 dbj zsc_args.hwflags = zs_hwflags[zs_unit][channel];
228 1.1 dbj cs = &zsc->zsc_cs_store[channel];
229 1.1 dbj zsc->zsc_cs[channel] = cs;
230 1.1 dbj
231 1.1 dbj cs->cs_channel = channel;
232 1.1 dbj cs->cs_private = NULL;
233 1.1 dbj cs->cs_ops = &zsops_null;
234 1.1 dbj cs->cs_brg_clk = PCLK / 16;
235 1.1 dbj
236 1.1 dbj zc = zs_get_chan_addr(zs_unit, channel);
237 1.1 dbj cs->cs_reg_csr = &zc->zc_csr;
238 1.1 dbj cs->cs_reg_data = &zc->zc_data;
239 1.1 dbj
240 1.1 dbj bcopy(zs_init_reg, cs->cs_creg, 16);
241 1.1 dbj bcopy(zs_init_reg, cs->cs_preg, 16);
242 1.1 dbj
243 1.1 dbj /* XXX: Get these from the PROM properties! */
244 1.1 dbj /* XXX: See the mvme167 code. Better. */
245 1.1 dbj if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
246 1.1 dbj cs->cs_defspeed = zs_get_speed(cs);
247 1.1 dbj else
248 1.1 dbj cs->cs_defspeed = zs_defspeed[zs_unit][channel];
249 1.1 dbj cs->cs_defcflag = zs_def_cflag;
250 1.1 dbj
251 1.1 dbj /* Make these correspond to cs_defcflag (-crtscts) */
252 1.1 dbj cs->cs_rr0_dcd = ZSRR0_DCD;
253 1.1 dbj cs->cs_rr0_cts = 0;
254 1.1 dbj cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
255 1.1 dbj cs->cs_wr5_rts = 0;
256 1.1 dbj
257 1.1 dbj /*
258 1.1 dbj * Clear the master interrupt enable.
259 1.1 dbj * The INTENA is common to both channels,
260 1.1 dbj * so just do it on the A channel.
261 1.1 dbj */
262 1.1 dbj if (channel == 0) {
263 1.1 dbj zs_write_reg(cs, 9, 0);
264 1.1 dbj }
265 1.1 dbj
266 1.1 dbj /*
267 1.1 dbj * Look for a child driver for this channel.
268 1.1 dbj * The child attach will setup the hardware.
269 1.1 dbj */
270 1.1 dbj if (!config_found(self, (void *)&zsc_args, zs_print)) {
271 1.1 dbj /* No sub-driver. Just reset it. */
272 1.1 dbj u_char reset = (channel == 0) ?
273 1.1 dbj ZSWR9_A_RESET : ZSWR9_B_RESET;
274 1.1 dbj s = splzs();
275 1.1 dbj zs_write_reg(cs, 9, reset);
276 1.1 dbj splx(s);
277 1.1 dbj }
278 1.1 dbj }
279 1.1 dbj
280 1.1 dbj isrlink_autovec(zshard, NULL, NEXT_I_IPL(NEXT_I_SCC), 0);
281 1.1 dbj INTR_ENABLE(NEXT_I_SCC);
282 1.1 dbj
283 1.1 dbj {
284 1.1 dbj int sir;
285 1.1 dbj sir = allocate_sir(zssoft, zsc);
286 1.1 dbj if (sir != SIR_SERIAL) {
287 1.1 dbj panic("Unexpected zssoft sir");
288 1.1 dbj }
289 1.1 dbj }
290 1.1 dbj
291 1.1 dbj /*
292 1.1 dbj * Set the master interrupt enable and interrupt vector.
293 1.1 dbj * (common to both channels, do it on A)
294 1.1 dbj */
295 1.1 dbj cs = zsc->zsc_cs[0];
296 1.1 dbj s = splhigh();
297 1.1 dbj /* interrupt vector */
298 1.1 dbj zs_write_reg(cs, 2, zs_init_reg[2]);
299 1.1 dbj /* master interrupt control (enable) */
300 1.1 dbj zs_write_reg(cs, 9, zs_init_reg[9]);
301 1.1 dbj splx(s);
302 1.1 dbj
303 1.1 dbj }
304 1.1 dbj
305 1.1 dbj static int
306 1.1 dbj zs_print(aux, name)
307 1.1 dbj void *aux;
308 1.1 dbj const char *name;
309 1.1 dbj {
310 1.1 dbj struct zsc_attach_args *args = aux;
311 1.1 dbj
312 1.1 dbj if (name != NULL)
313 1.1 dbj printf("%s: ", name);
314 1.1 dbj
315 1.1 dbj if (args->channel != -1)
316 1.1 dbj printf(" channel %d", args->channel);
317 1.1 dbj
318 1.1 dbj return (UNCONF);
319 1.1 dbj }
320 1.1 dbj
321 1.1 dbj static volatile int zssoftpending;
322 1.1 dbj
323 1.1 dbj /*
324 1.1 dbj * Our ZS chips all share a common, autovectored interrupt,
325 1.1 dbj * so we have to look at all of them on each interrupt.
326 1.1 dbj */
327 1.1 dbj static int
328 1.1 dbj zshard(arg)
329 1.1 dbj void *arg;
330 1.1 dbj {
331 1.1 dbj register struct zsc_softc *zsc;
332 1.1 dbj register int unit, rr3, rval, softreq;
333 1.1 dbj if (!INTR_OCCURRED(NEXT_I_SCC)) return 0;
334 1.1 dbj
335 1.1 dbj rval = softreq = 0;
336 1.1 dbj for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
337 1.1 dbj zsc = zsc_cd.cd_devs[unit];
338 1.1 dbj if (zsc == NULL)
339 1.1 dbj continue;
340 1.1 dbj rr3 = zsc_intr_hard(zsc);
341 1.1 dbj /* Count up the interrupts. */
342 1.1 dbj if (rr3) {
343 1.1 dbj rval |= rr3;
344 1.1 dbj zsc->zsc_intrcnt.ev_count++;
345 1.1 dbj }
346 1.1 dbj softreq |= zsc->zsc_cs[0]->cs_softreq;
347 1.1 dbj softreq |= zsc->zsc_cs[1]->cs_softreq;
348 1.1 dbj }
349 1.1 dbj
350 1.1 dbj /* We are at splzs here, so no need to lock. */
351 1.1 dbj if (softreq && (zssoftpending == 0)) {
352 1.1 dbj zssoftpending = 1;
353 1.1 dbj setsoftserial();
354 1.1 dbj }
355 1.1 dbj return(1);
356 1.1 dbj }
357 1.1 dbj
358 1.1 dbj /*
359 1.1 dbj * Similar scheme as for zshard (look at all of them)
360 1.1 dbj */
361 1.1 dbj static int
362 1.1 dbj zssoft(arg)
363 1.1 dbj void *arg;
364 1.1 dbj {
365 1.1 dbj register struct zsc_softc *zsc;
366 1.1 dbj register int s, unit;
367 1.1 dbj
368 1.1 dbj /* This is not the only ISR on this IPL. */
369 1.1 dbj if (zssoftpending == 0)
370 1.1 dbj return (0);
371 1.1 dbj
372 1.1 dbj /*
373 1.1 dbj * The soft intr. bit will be set by zshard only if
374 1.1 dbj * the variable zssoftpending is zero. The order of
375 1.1 dbj * these next two statements prevents our clearing
376 1.1 dbj * the soft intr bit just after zshard has set it.
377 1.1 dbj */
378 1.1 dbj /* ienab_bic(IE_ZSSOFT); */
379 1.1 dbj zssoftpending = 0;
380 1.1 dbj
381 1.1 dbj /* Make sure we call the tty layer at spltty. */
382 1.1 dbj s = spltty();
383 1.1 dbj for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
384 1.1 dbj zsc = zsc_cd.cd_devs[unit];
385 1.1 dbj if (zsc == NULL)
386 1.1 dbj continue;
387 1.1 dbj (void)zsc_intr_soft(zsc);
388 1.1 dbj }
389 1.1 dbj splx(s);
390 1.1 dbj return (1);
391 1.1 dbj }
392 1.1 dbj
393 1.1 dbj
394 1.1 dbj /*
395 1.1 dbj * Compute the current baud rate given a ZS channel.
396 1.1 dbj */
397 1.1 dbj static int
398 1.1 dbj zs_get_speed(cs)
399 1.1 dbj struct zs_chanstate *cs;
400 1.1 dbj {
401 1.1 dbj int tconst;
402 1.1 dbj
403 1.1 dbj tconst = zs_read_reg(cs, 12);
404 1.1 dbj tconst |= zs_read_reg(cs, 13) << 8;
405 1.1 dbj return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
406 1.1 dbj }
407 1.1 dbj
408 1.1 dbj /*
409 1.1 dbj * MD functions for setting the baud rate and control modes.
410 1.1 dbj */
411 1.1 dbj int
412 1.1 dbj zs_set_speed(cs, bps)
413 1.1 dbj struct zs_chanstate *cs;
414 1.1 dbj int bps; /* bits per second */
415 1.1 dbj {
416 1.1 dbj int tconst, real_bps;
417 1.1 dbj
418 1.1 dbj if (bps == 0)
419 1.1 dbj return (0);
420 1.1 dbj
421 1.1 dbj #ifdef DIAGNOSTIC
422 1.1 dbj if (cs->cs_brg_clk == 0)
423 1.1 dbj panic("zs_set_speed");
424 1.1 dbj #endif
425 1.1 dbj
426 1.1 dbj tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
427 1.1 dbj if (tconst < 0)
428 1.1 dbj return (EINVAL);
429 1.1 dbj
430 1.1 dbj /* Convert back to make sure we can do it. */
431 1.1 dbj real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
432 1.1 dbj
433 1.1 dbj /* XXX - Allow some tolerance here? */
434 1.1 dbj if (real_bps != bps)
435 1.1 dbj return (EINVAL);
436 1.1 dbj
437 1.1 dbj cs->cs_preg[12] = tconst;
438 1.1 dbj cs->cs_preg[13] = tconst >> 8;
439 1.1 dbj
440 1.1 dbj /* Caller will stuff the pending registers. */
441 1.1 dbj return (0);
442 1.1 dbj }
443 1.1 dbj
444 1.1 dbj int
445 1.1 dbj zs_set_modes(cs, cflag)
446 1.1 dbj struct zs_chanstate *cs;
447 1.1 dbj int cflag; /* bits per second */
448 1.1 dbj {
449 1.1 dbj int s;
450 1.1 dbj
451 1.1 dbj /*
452 1.1 dbj * Output hardware flow control on the chip is horrendous:
453 1.1 dbj * if carrier detect drops, the receiver is disabled, and if
454 1.1 dbj * CTS drops, the transmitter is stoped IN MID CHARACTER!
455 1.1 dbj * Therefore, NEVER set the HFC bit, and instead use the
456 1.1 dbj * status interrupt to detect CTS changes.
457 1.1 dbj */
458 1.1 dbj s = splzs();
459 1.1 dbj if ((cflag & (CLOCAL | MDMBUF)) != 0)
460 1.1 dbj cs->cs_rr0_dcd = 0;
461 1.1 dbj else
462 1.1 dbj cs->cs_rr0_dcd = ZSRR0_DCD;
463 1.1 dbj if ((cflag & CRTSCTS) != 0) {
464 1.1 dbj cs->cs_wr5_dtr = ZSWR5_DTR;
465 1.1 dbj cs->cs_wr5_rts = ZSWR5_RTS;
466 1.1 dbj cs->cs_rr0_cts = ZSRR0_CTS;
467 1.1 dbj } else if ((cflag & CDTRCTS) != 0) {
468 1.1 dbj cs->cs_wr5_dtr = 0;
469 1.1 dbj cs->cs_wr5_rts = ZSWR5_DTR;
470 1.1 dbj cs->cs_rr0_cts = ZSRR0_CTS;
471 1.1 dbj } else if ((cflag & MDMBUF) != 0) {
472 1.1 dbj cs->cs_wr5_dtr = 0;
473 1.1 dbj cs->cs_wr5_rts = ZSWR5_DTR;
474 1.1 dbj cs->cs_rr0_cts = ZSRR0_DCD;
475 1.1 dbj } else {
476 1.1 dbj cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
477 1.1 dbj cs->cs_wr5_rts = 0;
478 1.1 dbj cs->cs_rr0_cts = 0;
479 1.1 dbj }
480 1.1 dbj splx(s);
481 1.1 dbj
482 1.1 dbj /* Caller will stuff the pending registers. */
483 1.1 dbj return (0);
484 1.1 dbj }
485 1.1 dbj
486 1.1 dbj /*
487 1.1 dbj * Read or write the chip with suitable delays.
488 1.1 dbj */
489 1.1 dbj
490 1.1 dbj u_char
491 1.1 dbj zs_read_reg(cs, reg)
492 1.1 dbj struct zs_chanstate *cs;
493 1.1 dbj u_char reg;
494 1.1 dbj {
495 1.1 dbj u_char val;
496 1.1 dbj
497 1.1 dbj *cs->cs_reg_csr = reg;
498 1.1 dbj ZS_DELAY();
499 1.1 dbj val = *cs->cs_reg_csr;
500 1.1 dbj ZS_DELAY();
501 1.1 dbj return (val);
502 1.1 dbj }
503 1.1 dbj
504 1.1 dbj void
505 1.1 dbj zs_write_reg(cs, reg, val)
506 1.1 dbj struct zs_chanstate *cs;
507 1.1 dbj u_char reg, val;
508 1.1 dbj {
509 1.1 dbj *cs->cs_reg_csr = reg;
510 1.1 dbj ZS_DELAY();
511 1.1 dbj *cs->cs_reg_csr = val;
512 1.1 dbj ZS_DELAY();
513 1.1 dbj }
514 1.1 dbj
515 1.1 dbj u_char
516 1.1 dbj zs_read_csr(cs)
517 1.1 dbj struct zs_chanstate *cs;
518 1.1 dbj {
519 1.1 dbj register u_char val;
520 1.1 dbj
521 1.1 dbj val = *cs->cs_reg_csr;
522 1.1 dbj ZS_DELAY();
523 1.1 dbj return (val);
524 1.1 dbj }
525 1.1 dbj
526 1.1 dbj void zs_write_csr(cs, val)
527 1.1 dbj struct zs_chanstate *cs;
528 1.1 dbj u_char val;
529 1.1 dbj {
530 1.1 dbj *cs->cs_reg_csr = val;
531 1.1 dbj ZS_DELAY();
532 1.1 dbj }
533 1.1 dbj
534 1.1 dbj u_char zs_read_data(cs)
535 1.1 dbj struct zs_chanstate *cs;
536 1.1 dbj {
537 1.1 dbj register u_char val;
538 1.1 dbj
539 1.1 dbj val = *cs->cs_reg_data;
540 1.1 dbj ZS_DELAY();
541 1.1 dbj return (val);
542 1.1 dbj }
543 1.1 dbj
544 1.1 dbj void zs_write_data(cs, val)
545 1.1 dbj struct zs_chanstate *cs;
546 1.1 dbj u_char val;
547 1.1 dbj {
548 1.1 dbj *cs->cs_reg_data = val;
549 1.1 dbj ZS_DELAY();
550 1.1 dbj }
551 1.1 dbj
552 1.1 dbj /****************************************************************
553 1.1 dbj * Console support functions (Sun specific!)
554 1.1 dbj * Note: this code is allowed to know about the layout of
555 1.1 dbj * the chip registers, and uses that to keep things simple.
556 1.1 dbj * XXX - I think I like the mvme167 code better. -gwr
557 1.1 dbj ****************************************************************/
558 1.1 dbj
559 1.1 dbj extern void Debugger __P((void));
560 1.1 dbj void *zs_conschan;
561 1.1 dbj int zs_consunit = 0;
562 1.1 dbj
563 1.1 dbj /*
564 1.1 dbj * Handle user request to enter kernel debugger.
565 1.1 dbj */
566 1.1 dbj void
567 1.1 dbj zs_abort(cs)
568 1.1 dbj struct zs_chanstate *cs;
569 1.1 dbj {
570 1.1 dbj register volatile struct zschan *zc = zs_conschan;
571 1.1 dbj int rr0;
572 1.1 dbj
573 1.1 dbj /* Wait for end of break to avoid PROM abort. */
574 1.1 dbj /* XXX - Limit the wait? */
575 1.1 dbj do {
576 1.1 dbj rr0 = zc->zc_csr;
577 1.1 dbj ZS_DELAY();
578 1.1 dbj } while (rr0 & ZSRR0_BREAK);
579 1.1 dbj
580 1.1 dbj #if defined(KGDB)
581 1.1 dbj zskgdb(cs);
582 1.1 dbj #elif defined(DDB)
583 1.1 dbj next68k_isr_printcounts();
584 1.1 dbj Debugger();
585 1.1 dbj #else
586 1.1 dbj printf("stopping on keyboard abort\n");
587 1.1 dbj callrom();
588 1.1 dbj #endif
589 1.1 dbj }
590 1.1 dbj
591 1.1 dbj /*
592 1.1 dbj * Polled input char.
593 1.1 dbj */
594 1.1 dbj int
595 1.1 dbj zs_getc(arg)
596 1.1 dbj void *arg;
597 1.1 dbj {
598 1.1 dbj register volatile struct zschan *zc = arg;
599 1.1 dbj register int s, c, rr0;
600 1.1 dbj
601 1.1 dbj s = splhigh();
602 1.1 dbj /* Wait for a character to arrive. */
603 1.1 dbj do {
604 1.1 dbj rr0 = zc->zc_csr;
605 1.1 dbj ZS_DELAY();
606 1.1 dbj } while ((rr0 & ZSRR0_RX_READY) == 0);
607 1.1 dbj
608 1.1 dbj c = zc->zc_data;
609 1.1 dbj ZS_DELAY();
610 1.1 dbj splx(s);
611 1.1 dbj
612 1.1 dbj /*
613 1.1 dbj * This is used by the kd driver to read scan codes,
614 1.1 dbj * so don't translate '\r' ==> '\n' here...
615 1.1 dbj */
616 1.1 dbj return (c);
617 1.1 dbj }
618 1.1 dbj
619 1.1 dbj /*
620 1.1 dbj * Polled output char.
621 1.1 dbj */
622 1.1 dbj void
623 1.1 dbj zs_putc(arg, c)
624 1.1 dbj void *arg;
625 1.1 dbj int c;
626 1.1 dbj {
627 1.1 dbj register volatile struct zschan *zc = arg;
628 1.1 dbj register int s, rr0;
629 1.1 dbj
630 1.1 dbj s = splhigh();
631 1.1 dbj /* Wait for transmitter to become ready. */
632 1.1 dbj do {
633 1.1 dbj rr0 = zc->zc_csr;
634 1.1 dbj ZS_DELAY();
635 1.1 dbj } while ((rr0 & ZSRR0_TX_READY) == 0);
636 1.1 dbj
637 1.1 dbj
638 1.1 dbj zc->zc_data = c;
639 1.1 dbj ZS_DELAY();
640 1.1 dbj
641 1.1 dbj splx(s);
642 1.1 dbj }
643 1.1 dbj
644 1.1 dbj /*****************************************************************/
645 1.1 dbj
646 1.1 dbj void zscninit __P((struct consdev *));
647 1.1 dbj int zscngetc __P((dev_t));
648 1.1 dbj void zscnputc __P((dev_t, int));
649 1.1 dbj void zscnprobe __P((struct consdev *));
650 1.1 dbj extern int zsopen __P(( dev_t dev, int flags, int mode, struct proc *p));
651 1.1 dbj
652 1.1 dbj void
653 1.1 dbj zscnprobe(cp)
654 1.1 dbj struct consdev * cp;
655 1.1 dbj {
656 1.1 dbj int maj;
657 1.1 dbj for (maj = 0; maj < nchrdev; maj++) {
658 1.1 dbj if (cdevsw[maj].d_open == zsopen) {
659 1.1 dbj break;
660 1.1 dbj }
661 1.1 dbj }
662 1.1 dbj if (maj != nchrdev) {
663 1.1 dbj cp->cn_pri = CN_NORMAL; /* Lower than CN_INTERNAL */
664 1.1 dbj zs_major = maj;
665 1.1 dbj zs_consunit = 0;
666 1.1 dbj zsaddr[0] = (void *)IIOV(NEXT_P_SCC);
667 1.1 dbj cp->cn_dev = makedev(maj, zs_consunit);
668 1.1 dbj zs_conschan = zs_get_chan_addr(0, zs_consunit);
669 1.1 dbj } else {
670 1.1 dbj cp->cn_pri = CN_DEAD;
671 1.1 dbj }
672 1.1 dbj }
673 1.1 dbj
674 1.1 dbj
675 1.1 dbj void
676 1.1 dbj zscninit(cn)
677 1.1 dbj struct consdev *cn;
678 1.1 dbj {
679 1.1 dbj zs_hwflags[0][zs_consunit] = ZS_HWFLAG_CONSOLE;
680 1.1 dbj
681 1.1 dbj {
682 1.1 dbj struct zs_chanstate xcs;
683 1.1 dbj struct zs_chanstate *cs;
684 1.1 dbj volatile struct zschan *zc;
685 1.1 dbj int tconst, s;
686 1.1 dbj
687 1.1 dbj /* Setup temporary chanstate. */
688 1.1 dbj bzero((caddr_t)&xcs, sizeof(xcs));
689 1.1 dbj cs = &xcs;
690 1.1 dbj zc = zs_conschan;
691 1.1 dbj cs->cs_reg_csr = &zc->zc_csr;
692 1.1 dbj cs->cs_reg_data = &zc->zc_data;
693 1.1 dbj cs->cs_channel = zs_consunit;
694 1.1 dbj cs->cs_brg_clk = PCLK/16;
695 1.1 dbj
696 1.1 dbj bcopy(zs_init_reg, cs->cs_preg, 16);
697 1.1 dbj cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
698 1.1 dbj cs->cs_preg[15] = ZSWR15_BREAK_IE;
699 1.1 dbj
700 1.1 dbj tconst = BPS_TO_TCONST(cs->cs_brg_clk,
701 1.1 dbj zs_defspeed[0][zs_consunit]);
702 1.1 dbj cs->cs_preg[12] = tconst;
703 1.1 dbj cs->cs_preg[13] = tconst >> 8;
704 1.1 dbj /* can't use zs_set_speed as we haven't set up the
705 1.1 dbj * signal sources, and it's not worth it for now
706 1.1 dbj */
707 1.1 dbj
708 1.1 dbj cs->cs_preg[9] &= ~ZSWR9_MASTER_IE;
709 1.1 dbj /* no interrupts until later, after attach. */
710 1.1 dbj
711 1.1 dbj s = splhigh();
712 1.1 dbj zs_loadchannelregs(cs);
713 1.1 dbj splx(s);
714 1.1 dbj }
715 1.1 dbj
716 1.1 dbj printf("\nNetBSD/next68k console\n");
717 1.1 dbj }
718 1.1 dbj
719 1.1 dbj /*
720 1.1 dbj * Polled console input putchar.
721 1.1 dbj */
722 1.1 dbj int
723 1.1 dbj zscngetc(dev)
724 1.1 dbj dev_t dev;
725 1.1 dbj {
726 1.1 dbj return (zs_getc(zs_conschan));
727 1.1 dbj }
728 1.1 dbj
729 1.1 dbj /*
730 1.1 dbj * Polled console output putchar.
731 1.1 dbj */
732 1.1 dbj void
733 1.1 dbj zscnputc(dev, c)
734 1.1 dbj dev_t dev;
735 1.1 dbj int c;
736 1.1 dbj {
737 1.1 dbj zs_putc(zs_conschan, c);
738 1.1 dbj }
739 1.1 dbj
740 1.1 dbj /*****************************************************************/
741