zs.c revision 1.26 1 1.26 chs /* $NetBSD: zs.c,v 1.26 2005/01/10 17:07:09 chs Exp $ */
2 1.1 dbj
3 1.1 dbj /*-
4 1.1 dbj * Copyright (c) 1996 The NetBSD Foundation, Inc.
5 1.1 dbj * All rights reserved.
6 1.1 dbj *
7 1.1 dbj * This code is derived from software contributed to The NetBSD Foundation
8 1.1 dbj * by Gordon W. Ross.
9 1.1 dbj *
10 1.1 dbj * Redistribution and use in source and binary forms, with or without
11 1.1 dbj * modification, are permitted provided that the following conditions
12 1.1 dbj * are met:
13 1.1 dbj * 1. Redistributions of source code must retain the above copyright
14 1.1 dbj * notice, this list of conditions and the following disclaimer.
15 1.1 dbj * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 dbj * notice, this list of conditions and the following disclaimer in the
17 1.1 dbj * documentation and/or other materials provided with the distribution.
18 1.1 dbj * 3. All advertising materials mentioning features or use of this software
19 1.1 dbj * must display the following acknowledgement:
20 1.1 dbj * This product includes software developed by the NetBSD
21 1.1 dbj * Foundation, Inc. and its contributors.
22 1.1 dbj * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 dbj * contributors may be used to endorse or promote products derived
24 1.1 dbj * from this software without specific prior written permission.
25 1.1 dbj *
26 1.1 dbj * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 dbj * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 dbj * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 dbj * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 dbj * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 dbj * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 dbj * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 dbj * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 dbj * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 dbj * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 dbj * POSSIBILITY OF SUCH DAMAGE.
37 1.1 dbj */
38 1.1 dbj
39 1.1 dbj /*
40 1.1 dbj * Zilog Z8530 Dual UART driver (machine-dependent part)
41 1.1 dbj *
42 1.1 dbj * Runs two serial lines per chip using slave drivers.
43 1.1 dbj * Plain tty/async lines use the zs_async slave.
44 1.1 dbj * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
45 1.1 dbj */
46 1.1 dbj
47 1.1 dbj /* This was snarfed from the netbsd sparc/dev/zs.c at version 1.56
48 1.1 dbj * and then updated to reflect changes in 1.59
49 1.1 dbj * by Darrin B Jewell <jewell (at) mit.edu> Mon Mar 30 20:24:46 1998
50 1.1 dbj */
51 1.23 lukem
52 1.23 lukem #include <sys/cdefs.h>
53 1.26 chs __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.26 2005/01/10 17:07:09 chs Exp $");
54 1.2 jonathan
55 1.2 jonathan #include "opt_ddb.h"
56 1.15 lukem #include "opt_kgdb.h"
57 1.11 dbj #include "opt_serial.h"
58 1.1 dbj
59 1.1 dbj #include <sys/param.h>
60 1.1 dbj #include <sys/systm.h>
61 1.1 dbj #include <sys/conf.h>
62 1.1 dbj #include <sys/device.h>
63 1.1 dbj #include <sys/file.h>
64 1.1 dbj #include <sys/ioctl.h>
65 1.1 dbj #include <sys/kernel.h>
66 1.1 dbj #include <sys/proc.h>
67 1.1 dbj #include <sys/tty.h>
68 1.1 dbj #include <sys/time.h>
69 1.1 dbj #include <sys/syslog.h>
70 1.1 dbj
71 1.1 dbj #include <machine/autoconf.h>
72 1.1 dbj #include <machine/cpu.h>
73 1.1 dbj #include <machine/psl.h>
74 1.1 dbj
75 1.1 dbj #include <dev/cons.h>
76 1.1 dbj
77 1.1 dbj #include <dev/ic/z8530reg.h>
78 1.1 dbj #include <machine/z8530var.h>
79 1.1 dbj
80 1.1 dbj #include <next68k/next68k/isr.h>
81 1.17 mycroft
82 1.17 mycroft #include <next68k/dev/intiovar.h>
83 1.10 dbj #include <next68k/dev/zs_cons.h>
84 1.1 dbj
85 1.1 dbj #include "zsc.h" /* NZSC */
86 1.1 dbj
87 1.1 dbj #if (NZSC < 0)
88 1.1 dbj #error "No serial controllers?"
89 1.1 dbj #endif
90 1.1 dbj
91 1.1 dbj /*
92 1.1 dbj * Some warts needed by z8530tty.c -
93 1.1 dbj * The default parity REALLY needs to be the same as the PROM uses,
94 1.1 dbj * or you can not see messages done with printf during boot-up...
95 1.1 dbj */
96 1.1 dbj int zs_def_cflag = (CREAD | CS8 | HUPCL);
97 1.1 dbj
98 1.1 dbj /*
99 1.1 dbj * The NeXT provides a 3.686400 MHz clock to the ZS chips.
100 1.1 dbj */
101 1.7 mycroft #define PCLK (9600 * 384) /* PCLK pin input clock rate */
102 1.1 dbj
103 1.1 dbj #define ZS_DELAY() delay(2)
104 1.1 dbj
105 1.1 dbj /* The layout of this is hardware-dependent (padding, order). */
106 1.1 dbj struct zschan {
107 1.1 dbj volatile u_char zc_csr; /* ctrl,status, and indirect access */
108 1.1 dbj u_char zc_xxx0;
109 1.1 dbj volatile u_char zc_data; /* data */
110 1.1 dbj u_char zc_xxx1;
111 1.1 dbj };
112 1.1 dbj
113 1.1 dbj /* Flags from cninit() */
114 1.26 chs static int zs_hwflags[2];
115 1.1 dbj
116 1.1 dbj /* Default speed for each channel */
117 1.26 chs static int zs_defspeed[2] = {
118 1.26 chs 9600, /* ttya */
119 1.26 chs 9600, /* ttyb */
120 1.1 dbj };
121 1.1 dbj
122 1.1 dbj static u_char zs_init_reg[16] = {
123 1.1 dbj 0, /* 0: CMD (reset, etc.) */
124 1.1 dbj 0, /* 1: No interrupts yet. */
125 1.1 dbj 0x18 + NEXT_I_IPL(NEXT_I_SCC), /* 2: IVECT */
126 1.1 dbj ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
127 1.1 dbj ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
128 1.1 dbj ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
129 1.1 dbj 0, /* 6: TXSYNC/SYNCLO */
130 1.1 dbj 0, /* 7: RXSYNC/SYNCHI */
131 1.1 dbj 0, /* 8: alias for data port */
132 1.1 dbj ZSWR9_MASTER_IE,
133 1.1 dbj 0, /*10: Misc. TX/RX control bits */
134 1.1 dbj ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
135 1.7 mycroft ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */
136 1.7 mycroft 0, /*13: BAUDHI (default=9600) */
137 1.1 dbj ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK,
138 1.6 mycroft ZSWR15_BREAK_IE,
139 1.1 dbj };
140 1.1 dbj
141 1.10 dbj struct zschan *
142 1.26 chs zs_get_chan_addr(int channel)
143 1.1 dbj {
144 1.1 dbj char *addr;
145 1.1 dbj struct zschan *zc;
146 1.1 dbj
147 1.26 chs addr = (void *)IIOV(NEXT_P_SCC);
148 1.1 dbj if (channel == 0) {
149 1.1 dbj /* handle the fact the ports are intertwined. */
150 1.26 chs zc = (struct zschan *)(addr + 1);
151 1.1 dbj } else {
152 1.1 dbj zc = (struct zschan *)(addr);
153 1.1 dbj }
154 1.1 dbj return (zc);
155 1.1 dbj }
156 1.1 dbj
157 1.1 dbj
158 1.1 dbj /****************************************************************
159 1.1 dbj * Autoconfig
160 1.1 dbj ****************************************************************/
161 1.1 dbj
162 1.1 dbj /* Definition of the driver for autoconfig. */
163 1.24 chs static int zs_match(struct device *, struct cfdata *, void *);
164 1.24 chs static void zs_attach(struct device *, struct device *, void *);
165 1.24 chs static int zs_print(void *, const char *);
166 1.1 dbj
167 1.24 chs extern int zs_getc(void *);
168 1.24 chs extern void zs_putc(void *, int);
169 1.1 dbj
170 1.20 thorpej CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
171 1.20 thorpej zs_match, zs_attach, NULL, NULL);
172 1.1 dbj
173 1.1 dbj extern struct cfdriver zsc_cd;
174 1.1 dbj
175 1.26 chs static int zs_attached;
176 1.26 chs
177 1.1 dbj /* Interrupt handlers. */
178 1.24 chs static int zshard(void *);
179 1.24 chs static void zssoft(void *);
180 1.1 dbj
181 1.24 chs static int zs_get_speed(struct zs_chanstate *);
182 1.1 dbj
183 1.1 dbj /*
184 1.1 dbj * Is the zs chip present?
185 1.1 dbj */
186 1.1 dbj static int
187 1.24 chs zs_match(struct device *parent, struct cfdata *cf, void *aux)
188 1.1 dbj {
189 1.17 mycroft struct intio_attach_args *ia = (struct intio_attach_args *)aux;
190 1.17 mycroft
191 1.26 chs if (zs_attached)
192 1.26 chs return 0;
193 1.17 mycroft
194 1.26 chs ia->ia_addr = (void *)IIOV(NEXT_P_SCC);
195 1.17 mycroft
196 1.26 chs return 1;
197 1.1 dbj }
198 1.1 dbj
199 1.1 dbj /*
200 1.1 dbj * Attach a found zs.
201 1.1 dbj *
202 1.1 dbj * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR
203 1.1 dbj * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE?
204 1.1 dbj */
205 1.1 dbj static void
206 1.24 chs zs_attach(struct device *parent, struct device *self, void *aux)
207 1.1 dbj {
208 1.1 dbj struct zsc_softc *zsc = (void *) self;
209 1.1 dbj struct zsc_attach_args zsc_args;
210 1.1 dbj volatile struct zschan *zc;
211 1.1 dbj struct zs_chanstate *cs;
212 1.26 chs int s, channel, sir;
213 1.26 chs
214 1.26 chs zs_attached = 1;
215 1.1 dbj
216 1.5 dbj printf("\n");
217 1.5 dbj
218 1.1 dbj /*
219 1.1 dbj * Initialize software state for each channel.
220 1.1 dbj */
221 1.1 dbj for (channel = 0; channel < 2; channel++) {
222 1.1 dbj zsc_args.channel = channel;
223 1.26 chs zsc_args.hwflags = zs_hwflags[channel];
224 1.1 dbj cs = &zsc->zsc_cs_store[channel];
225 1.1 dbj zsc->zsc_cs[channel] = cs;
226 1.1 dbj
227 1.22 pk simple_lock_init(&cs->cs_lock);
228 1.1 dbj cs->cs_channel = channel;
229 1.1 dbj cs->cs_private = NULL;
230 1.1 dbj cs->cs_ops = &zsops_null;
231 1.1 dbj cs->cs_brg_clk = PCLK / 16;
232 1.1 dbj
233 1.26 chs zc = zs_get_chan_addr(channel);
234 1.1 dbj cs->cs_reg_csr = &zc->zc_csr;
235 1.1 dbj cs->cs_reg_data = &zc->zc_data;
236 1.1 dbj
237 1.26 chs memcpy(cs->cs_creg, zs_init_reg, 16);
238 1.26 chs memcpy(cs->cs_preg, zs_init_reg, 16);
239 1.1 dbj
240 1.1 dbj /* XXX: Get these from the PROM properties! */
241 1.1 dbj /* XXX: See the mvme167 code. Better. */
242 1.1 dbj if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE)
243 1.1 dbj cs->cs_defspeed = zs_get_speed(cs);
244 1.1 dbj else
245 1.26 chs cs->cs_defspeed = zs_defspeed[channel];
246 1.1 dbj cs->cs_defcflag = zs_def_cflag;
247 1.1 dbj
248 1.1 dbj /* Make these correspond to cs_defcflag (-crtscts) */
249 1.1 dbj cs->cs_rr0_dcd = ZSRR0_DCD;
250 1.1 dbj cs->cs_rr0_cts = 0;
251 1.1 dbj cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
252 1.1 dbj cs->cs_wr5_rts = 0;
253 1.1 dbj
254 1.1 dbj /*
255 1.1 dbj * Clear the master interrupt enable.
256 1.1 dbj * The INTENA is common to both channels,
257 1.1 dbj * so just do it on the A channel.
258 1.1 dbj */
259 1.1 dbj if (channel == 0) {
260 1.1 dbj zs_write_reg(cs, 9, 0);
261 1.1 dbj }
262 1.1 dbj
263 1.1 dbj /*
264 1.1 dbj * Look for a child driver for this channel.
265 1.1 dbj * The child attach will setup the hardware.
266 1.1 dbj */
267 1.1 dbj if (!config_found(self, (void *)&zsc_args, zs_print)) {
268 1.1 dbj /* No sub-driver. Just reset it. */
269 1.1 dbj u_char reset = (channel == 0) ?
270 1.1 dbj ZSWR9_A_RESET : ZSWR9_B_RESET;
271 1.1 dbj s = splzs();
272 1.1 dbj zs_write_reg(cs, 9, reset);
273 1.1 dbj splx(s);
274 1.1 dbj }
275 1.1 dbj }
276 1.1 dbj
277 1.17 mycroft isrlink_autovec(zshard, NULL, NEXT_I_IPL(NEXT_I_SCC), 0, NULL);
278 1.1 dbj INTR_ENABLE(NEXT_I_SCC);
279 1.1 dbj
280 1.26 chs sir = allocate_sir(zssoft, zsc);
281 1.26 chs if (sir != SIR_SERIAL) {
282 1.26 chs panic("Unexpected zssoft sir");
283 1.1 dbj }
284 1.1 dbj
285 1.1 dbj /*
286 1.1 dbj * Set the master interrupt enable and interrupt vector.
287 1.1 dbj * (common to both channels, do it on A)
288 1.1 dbj */
289 1.1 dbj cs = zsc->zsc_cs[0];
290 1.1 dbj s = splhigh();
291 1.1 dbj /* interrupt vector */
292 1.1 dbj zs_write_reg(cs, 2, zs_init_reg[2]);
293 1.1 dbj /* master interrupt control (enable) */
294 1.1 dbj zs_write_reg(cs, 9, zs_init_reg[9]);
295 1.1 dbj splx(s);
296 1.1 dbj }
297 1.1 dbj
298 1.1 dbj static int
299 1.24 chs zs_print(void *aux, const char *name)
300 1.1 dbj {
301 1.1 dbj struct zsc_attach_args *args = aux;
302 1.1 dbj
303 1.1 dbj if (name != NULL)
304 1.21 thorpej aprint_normal("%s: ", name);
305 1.1 dbj
306 1.1 dbj if (args->channel != -1)
307 1.21 thorpej aprint_normal(" channel %d", args->channel);
308 1.1 dbj
309 1.1 dbj return (UNCONF);
310 1.1 dbj }
311 1.1 dbj
312 1.1 dbj static volatile int zssoftpending;
313 1.1 dbj
314 1.1 dbj /*
315 1.1 dbj * Our ZS chips all share a common, autovectored interrupt,
316 1.1 dbj * so we have to look at all of them on each interrupt.
317 1.1 dbj */
318 1.1 dbj static int
319 1.24 chs zshard(void *arg)
320 1.1 dbj {
321 1.25 chs struct zsc_softc *zsc;
322 1.25 chs int unit, rr3, rval, softreq;
323 1.24 chs
324 1.24 chs if (!INTR_OCCURRED(NEXT_I_SCC))
325 1.24 chs return 0;
326 1.1 dbj
327 1.1 dbj rval = softreq = 0;
328 1.1 dbj for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
329 1.1 dbj zsc = zsc_cd.cd_devs[unit];
330 1.1 dbj if (zsc == NULL)
331 1.1 dbj continue;
332 1.1 dbj rr3 = zsc_intr_hard(zsc);
333 1.1 dbj /* Count up the interrupts. */
334 1.1 dbj if (rr3) {
335 1.1 dbj rval |= rr3;
336 1.1 dbj zsc->zsc_intrcnt.ev_count++;
337 1.1 dbj }
338 1.1 dbj softreq |= zsc->zsc_cs[0]->cs_softreq;
339 1.1 dbj softreq |= zsc->zsc_cs[1]->cs_softreq;
340 1.1 dbj }
341 1.1 dbj
342 1.1 dbj /* We are at splzs here, so no need to lock. */
343 1.1 dbj if (softreq && (zssoftpending == 0)) {
344 1.1 dbj zssoftpending = 1;
345 1.1 dbj setsoftserial();
346 1.1 dbj }
347 1.1 dbj return(1);
348 1.1 dbj }
349 1.1 dbj
350 1.1 dbj /*
351 1.1 dbj * Similar scheme as for zshard (look at all of them)
352 1.1 dbj */
353 1.14 chs static void
354 1.24 chs zssoft(void *arg)
355 1.1 dbj {
356 1.25 chs struct zsc_softc *zsc;
357 1.25 chs int s, unit;
358 1.1 dbj
359 1.1 dbj /* This is not the only ISR on this IPL. */
360 1.1 dbj if (zssoftpending == 0)
361 1.14 chs panic("zssoft not pending");
362 1.1 dbj
363 1.1 dbj /*
364 1.1 dbj * The soft intr. bit will be set by zshard only if
365 1.1 dbj * the variable zssoftpending is zero. The order of
366 1.1 dbj * these next two statements prevents our clearing
367 1.1 dbj * the soft intr bit just after zshard has set it.
368 1.1 dbj */
369 1.1 dbj /* ienab_bic(IE_ZSSOFT); */
370 1.1 dbj zssoftpending = 0;
371 1.1 dbj
372 1.1 dbj /* Make sure we call the tty layer at spltty. */
373 1.1 dbj s = spltty();
374 1.1 dbj for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) {
375 1.1 dbj zsc = zsc_cd.cd_devs[unit];
376 1.1 dbj if (zsc == NULL)
377 1.1 dbj continue;
378 1.1 dbj (void)zsc_intr_soft(zsc);
379 1.1 dbj }
380 1.1 dbj splx(s);
381 1.1 dbj }
382 1.1 dbj
383 1.1 dbj
384 1.1 dbj /*
385 1.1 dbj * Compute the current baud rate given a ZS channel.
386 1.1 dbj */
387 1.1 dbj static int
388 1.24 chs zs_get_speed(struct zs_chanstate *cs)
389 1.1 dbj {
390 1.1 dbj int tconst;
391 1.1 dbj
392 1.1 dbj tconst = zs_read_reg(cs, 12);
393 1.1 dbj tconst |= zs_read_reg(cs, 13) << 8;
394 1.1 dbj return (TCONST_TO_BPS(cs->cs_brg_clk, tconst));
395 1.1 dbj }
396 1.1 dbj
397 1.1 dbj /*
398 1.1 dbj * MD functions for setting the baud rate and control modes.
399 1.1 dbj */
400 1.1 dbj int
401 1.24 chs zs_set_speed(struct zs_chanstate *cs, int bps)
402 1.1 dbj {
403 1.1 dbj int tconst, real_bps;
404 1.1 dbj
405 1.1 dbj if (bps == 0)
406 1.1 dbj return (0);
407 1.1 dbj
408 1.1 dbj #ifdef DIAGNOSTIC
409 1.1 dbj if (cs->cs_brg_clk == 0)
410 1.1 dbj panic("zs_set_speed");
411 1.1 dbj #endif
412 1.1 dbj
413 1.1 dbj tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps);
414 1.1 dbj if (tconst < 0)
415 1.1 dbj return (EINVAL);
416 1.1 dbj
417 1.1 dbj /* Convert back to make sure we can do it. */
418 1.1 dbj real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst);
419 1.1 dbj
420 1.1 dbj /* XXX - Allow some tolerance here? */
421 1.1 dbj if (real_bps != bps)
422 1.1 dbj return (EINVAL);
423 1.1 dbj
424 1.1 dbj cs->cs_preg[12] = tconst;
425 1.1 dbj cs->cs_preg[13] = tconst >> 8;
426 1.1 dbj
427 1.1 dbj /* Caller will stuff the pending registers. */
428 1.1 dbj return (0);
429 1.1 dbj }
430 1.1 dbj
431 1.1 dbj int
432 1.24 chs zs_set_modes(struct zs_chanstate *cs, int cflag)
433 1.1 dbj {
434 1.1 dbj int s;
435 1.1 dbj
436 1.1 dbj /*
437 1.1 dbj * Output hardware flow control on the chip is horrendous:
438 1.1 dbj * if carrier detect drops, the receiver is disabled, and if
439 1.1 dbj * CTS drops, the transmitter is stoped IN MID CHARACTER!
440 1.1 dbj * Therefore, NEVER set the HFC bit, and instead use the
441 1.1 dbj * status interrupt to detect CTS changes.
442 1.1 dbj */
443 1.1 dbj s = splzs();
444 1.9 wrstuden cs->cs_rr0_pps = 0;
445 1.9 wrstuden if ((cflag & (CLOCAL | MDMBUF)) != 0) {
446 1.1 dbj cs->cs_rr0_dcd = 0;
447 1.9 wrstuden if ((cflag & MDMBUF) == 0)
448 1.9 wrstuden cs->cs_rr0_pps = ZSRR0_DCD;
449 1.9 wrstuden } else
450 1.1 dbj cs->cs_rr0_dcd = ZSRR0_DCD;
451 1.1 dbj if ((cflag & CRTSCTS) != 0) {
452 1.1 dbj cs->cs_wr5_dtr = ZSWR5_DTR;
453 1.1 dbj cs->cs_wr5_rts = ZSWR5_RTS;
454 1.1 dbj cs->cs_rr0_cts = ZSRR0_CTS;
455 1.1 dbj } else if ((cflag & CDTRCTS) != 0) {
456 1.1 dbj cs->cs_wr5_dtr = 0;
457 1.1 dbj cs->cs_wr5_rts = ZSWR5_DTR;
458 1.1 dbj cs->cs_rr0_cts = ZSRR0_CTS;
459 1.1 dbj } else if ((cflag & MDMBUF) != 0) {
460 1.1 dbj cs->cs_wr5_dtr = 0;
461 1.1 dbj cs->cs_wr5_rts = ZSWR5_DTR;
462 1.1 dbj cs->cs_rr0_cts = ZSRR0_DCD;
463 1.1 dbj } else {
464 1.1 dbj cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS;
465 1.1 dbj cs->cs_wr5_rts = 0;
466 1.1 dbj cs->cs_rr0_cts = 0;
467 1.1 dbj }
468 1.1 dbj splx(s);
469 1.1 dbj
470 1.1 dbj /* Caller will stuff the pending registers. */
471 1.1 dbj return (0);
472 1.1 dbj }
473 1.1 dbj
474 1.1 dbj /*
475 1.1 dbj * Read or write the chip with suitable delays.
476 1.1 dbj */
477 1.1 dbj
478 1.1 dbj u_char
479 1.24 chs zs_read_reg(struct zs_chanstate *cs, u_char reg)
480 1.1 dbj {
481 1.1 dbj u_char val;
482 1.1 dbj
483 1.1 dbj *cs->cs_reg_csr = reg;
484 1.1 dbj ZS_DELAY();
485 1.1 dbj val = *cs->cs_reg_csr;
486 1.1 dbj ZS_DELAY();
487 1.1 dbj return (val);
488 1.1 dbj }
489 1.1 dbj
490 1.1 dbj void
491 1.24 chs zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val)
492 1.1 dbj {
493 1.1 dbj *cs->cs_reg_csr = reg;
494 1.1 dbj ZS_DELAY();
495 1.1 dbj *cs->cs_reg_csr = val;
496 1.1 dbj ZS_DELAY();
497 1.1 dbj }
498 1.1 dbj
499 1.1 dbj u_char
500 1.24 chs zs_read_csr(struct zs_chanstate *cs)
501 1.1 dbj {
502 1.25 chs u_char val;
503 1.1 dbj
504 1.1 dbj val = *cs->cs_reg_csr;
505 1.1 dbj ZS_DELAY();
506 1.1 dbj return (val);
507 1.1 dbj }
508 1.1 dbj
509 1.24 chs void
510 1.24 chs zs_write_csr(struct zs_chanstate *cs, u_char val)
511 1.1 dbj {
512 1.1 dbj *cs->cs_reg_csr = val;
513 1.1 dbj ZS_DELAY();
514 1.1 dbj }
515 1.1 dbj
516 1.24 chs u_char
517 1.24 chs zs_read_data(struct zs_chanstate *cs)
518 1.1 dbj {
519 1.25 chs u_char val;
520 1.1 dbj
521 1.1 dbj val = *cs->cs_reg_data;
522 1.1 dbj ZS_DELAY();
523 1.1 dbj return (val);
524 1.1 dbj }
525 1.1 dbj
526 1.24 chs void
527 1.24 chs zs_write_data(struct zs_chanstate *cs, u_char val)
528 1.1 dbj {
529 1.1 dbj *cs->cs_reg_data = val;
530 1.1 dbj ZS_DELAY();
531 1.1 dbj }
532 1.1 dbj
533 1.1 dbj /****************************************************************
534 1.1 dbj * Console support functions (Sun specific!)
535 1.1 dbj * Note: this code is allowed to know about the layout of
536 1.1 dbj * the chip registers, and uses that to keep things simple.
537 1.1 dbj * XXX - I think I like the mvme167 code better. -gwr
538 1.1 dbj ****************************************************************/
539 1.1 dbj
540 1.24 chs extern void Debugger(void);
541 1.1 dbj void *zs_conschan;
542 1.1 dbj int zs_consunit = 0;
543 1.1 dbj
544 1.1 dbj /*
545 1.1 dbj * Handle user request to enter kernel debugger.
546 1.1 dbj */
547 1.1 dbj void
548 1.24 chs zs_abort(struct zs_chanstate *cs)
549 1.1 dbj {
550 1.10 dbj #if defined(ZS_CONSOLE_ABORT)
551 1.25 chs volatile struct zschan *zc = zs_conschan;
552 1.1 dbj int rr0;
553 1.1 dbj
554 1.1 dbj /* Wait for end of break to avoid PROM abort. */
555 1.1 dbj /* XXX - Limit the wait? */
556 1.1 dbj do {
557 1.1 dbj rr0 = zc->zc_csr;
558 1.1 dbj ZS_DELAY();
559 1.1 dbj } while (rr0 & ZSRR0_BREAK);
560 1.1 dbj
561 1.1 dbj #if defined(KGDB)
562 1.1 dbj zskgdb(cs);
563 1.1 dbj #elif defined(DDB)
564 1.1 dbj Debugger();
565 1.1 dbj #else
566 1.12 deberg /* XXX eventually, drop into next rom monitor here */
567 1.12 deberg printf("stopping on keyboard abort not supported without DDB or KGDB\n");
568 1.10 dbj #endif
569 1.10 dbj #else /* !ZS_CONSOLE_ABORT */
570 1.10 dbj return;
571 1.1 dbj #endif
572 1.1 dbj }
573 1.1 dbj
574 1.1 dbj /*
575 1.1 dbj * Polled input char.
576 1.1 dbj */
577 1.1 dbj int
578 1.24 chs zs_getc(void *arg)
579 1.1 dbj {
580 1.25 chs volatile struct zschan *zc = arg;
581 1.25 chs int s, c, rr0;
582 1.1 dbj
583 1.1 dbj s = splhigh();
584 1.1 dbj /* Wait for a character to arrive. */
585 1.1 dbj do {
586 1.1 dbj rr0 = zc->zc_csr;
587 1.1 dbj ZS_DELAY();
588 1.1 dbj } while ((rr0 & ZSRR0_RX_READY) == 0);
589 1.1 dbj
590 1.1 dbj c = zc->zc_data;
591 1.1 dbj ZS_DELAY();
592 1.1 dbj splx(s);
593 1.1 dbj
594 1.1 dbj /*
595 1.1 dbj * This is used by the kd driver to read scan codes,
596 1.1 dbj * so don't translate '\r' ==> '\n' here...
597 1.1 dbj */
598 1.1 dbj return (c);
599 1.1 dbj }
600 1.1 dbj
601 1.1 dbj /*
602 1.1 dbj * Polled output char.
603 1.1 dbj */
604 1.1 dbj void
605 1.24 chs zs_putc(void *arg, int c)
606 1.1 dbj {
607 1.25 chs volatile struct zschan *zc = arg;
608 1.25 chs int s, rr0;
609 1.1 dbj
610 1.1 dbj s = splhigh();
611 1.1 dbj /* Wait for transmitter to become ready. */
612 1.1 dbj do {
613 1.1 dbj rr0 = zc->zc_csr;
614 1.1 dbj ZS_DELAY();
615 1.1 dbj } while ((rr0 & ZSRR0_TX_READY) == 0);
616 1.1 dbj
617 1.1 dbj
618 1.1 dbj zc->zc_data = c;
619 1.1 dbj ZS_DELAY();
620 1.1 dbj
621 1.1 dbj splx(s);
622 1.1 dbj }
623 1.1 dbj
624 1.1 dbj /*****************************************************************/
625 1.1 dbj
626 1.24 chs void zscninit(struct consdev *);
627 1.24 chs int zscngetc(dev_t);
628 1.24 chs void zscnputc(dev_t, int);
629 1.24 chs void zscnprobe(struct consdev *);
630 1.1 dbj
631 1.1 dbj void
632 1.24 chs zscnprobe(struct consdev *cp)
633 1.1 dbj {
634 1.24 chs extern const struct cdevsw zstty_cdevsw;
635 1.24 chs int maj;
636 1.24 chs
637 1.24 chs maj = cdevsw_lookup_major(&zstty_cdevsw);
638 1.24 chs if (maj != -1) {
639 1.8 dbj #ifdef SERCONSOLE
640 1.24 chs cp->cn_pri = CN_REMOTE;
641 1.8 dbj #else
642 1.24 chs cp->cn_pri = CN_NORMAL; /* Lower than CN_INTERNAL */
643 1.8 dbj #endif
644 1.24 chs zs_consunit = 0;
645 1.24 chs cp->cn_dev = makedev(maj, zs_consunit);
646 1.26 chs zs_conschan = zs_get_chan_addr(zs_consunit);
647 1.24 chs } else {
648 1.24 chs cp->cn_pri = CN_DEAD;
649 1.24 chs }
650 1.1 dbj }
651 1.1 dbj
652 1.1 dbj void
653 1.24 chs zscninit(struct consdev *cn)
654 1.1 dbj {
655 1.24 chs struct zs_chanstate xcs;
656 1.24 chs struct zs_chanstate *cs;
657 1.24 chs volatile struct zschan *zc;
658 1.24 chs int tconst, s;
659 1.24 chs
660 1.26 chs zs_hwflags[zs_consunit] = ZS_HWFLAG_CONSOLE;
661 1.1 dbj
662 1.24 chs /* Setup temporary chanstate. */
663 1.24 chs memset(&xcs, 0, sizeof(xcs));
664 1.24 chs cs = &xcs;
665 1.24 chs zc = zs_conschan;
666 1.24 chs cs->cs_reg_csr = &zc->zc_csr;
667 1.24 chs cs->cs_reg_data = &zc->zc_data;
668 1.24 chs cs->cs_channel = zs_consunit;
669 1.24 chs cs->cs_brg_clk = PCLK / 16;
670 1.24 chs
671 1.24 chs memcpy(cs->cs_preg, zs_init_reg, 16);
672 1.24 chs cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
673 1.24 chs cs->cs_preg[15] = ZSWR15_BREAK_IE;
674 1.1 dbj
675 1.26 chs tconst = BPS_TO_TCONST(cs->cs_brg_clk, zs_defspeed[zs_consunit]);
676 1.24 chs cs->cs_preg[12] = tconst;
677 1.24 chs cs->cs_preg[13] = tconst >> 8;
678 1.1 dbj
679 1.24 chs /*
680 1.24 chs * can't use zs_set_speed as we haven't set up the
681 1.24 chs * signal sources, and it's not worth it for now
682 1.24 chs */
683 1.1 dbj
684 1.24 chs cs->cs_preg[9] &= ~ZSWR9_MASTER_IE;
685 1.24 chs /* no interrupts until later, after attach. */
686 1.1 dbj
687 1.24 chs s = splhigh();
688 1.24 chs zs_loadchannelregs(cs);
689 1.24 chs splx(s);
690 1.1 dbj
691 1.1 dbj printf("\nNetBSD/next68k console\n");
692 1.1 dbj }
693 1.1 dbj
694 1.1 dbj /*
695 1.1 dbj * Polled console input putchar.
696 1.1 dbj */
697 1.1 dbj int
698 1.24 chs zscngetc(dev_t dev)
699 1.1 dbj {
700 1.1 dbj return (zs_getc(zs_conschan));
701 1.1 dbj }
702 1.1 dbj
703 1.1 dbj /*
704 1.1 dbj * Polled console output putchar.
705 1.1 dbj */
706 1.1 dbj void
707 1.24 chs zscnputc(dev_t dev, int c)
708 1.1 dbj {
709 1.1 dbj zs_putc(zs_conschan, c);
710 1.1 dbj }
711 1.1 dbj
712 1.1 dbj /*****************************************************************/
713