Home | History | Annotate | Line # | Download | only in ofppc
machdep.c revision 1.4
      1  1.4        ws /*	$NetBSD: machdep.c,v 1.4 1996/10/16 19:33:11 ws Exp $	*/
      2  1.1        ws 
      3  1.1        ws /*
      4  1.1        ws  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
      5  1.1        ws  * Copyright (C) 1995, 1996 TooLs GmbH.
      6  1.1        ws  * All rights reserved.
      7  1.1        ws  *
      8  1.1        ws  * Redistribution and use in source and binary forms, with or without
      9  1.1        ws  * modification, are permitted provided that the following conditions
     10  1.1        ws  * are met:
     11  1.1        ws  * 1. Redistributions of source code must retain the above copyright
     12  1.1        ws  *    notice, this list of conditions and the following disclaimer.
     13  1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     14  1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     15  1.1        ws  *    documentation and/or other materials provided with the distribution.
     16  1.1        ws  * 3. All advertising materials mentioning features or use of this software
     17  1.1        ws  *    must display the following acknowledgement:
     18  1.1        ws  *	This product includes software developed by TooLs GmbH.
     19  1.1        ws  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     20  1.1        ws  *    derived from this software without specific prior written permission.
     21  1.1        ws  *
     22  1.1        ws  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     23  1.1        ws  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  1.1        ws  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  1.1        ws  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     26  1.1        ws  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     27  1.1        ws  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     28  1.1        ws  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     29  1.1        ws  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     30  1.1        ws  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     31  1.1        ws  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  1.1        ws  */
     33  1.4        ws #include "ipkdb.h"
     34  1.1        ws 
     35  1.1        ws #include <sys/param.h>
     36  1.1        ws #include <sys/buf.h>
     37  1.1        ws #include <sys/callout.h>
     38  1.1        ws #include <sys/exec.h>
     39  1.1        ws #include <sys/malloc.h>
     40  1.1        ws #include <sys/map.h>
     41  1.1        ws #include <sys/mbuf.h>
     42  1.1        ws #include <sys/mount.h>
     43  1.1        ws #include <sys/msgbuf.h>
     44  1.1        ws #include <sys/proc.h>
     45  1.1        ws #include <sys/reboot.h>
     46  1.1        ws #include <sys/syscallargs.h>
     47  1.1        ws #include <sys/syslog.h>
     48  1.1        ws #include <sys/systm.h>
     49  1.1        ws #include <sys/user.h>
     50  1.1        ws 
     51  1.1        ws #include <vm/vm.h>
     52  1.1        ws #include <vm/vm_kern.h>
     53  1.1        ws 
     54  1.1        ws #include <net/netisr.h>
     55  1.1        ws 
     56  1.1        ws #include <machine/bat.h>
     57  1.1        ws #include <machine/pmap.h>
     58  1.1        ws #include <machine/powerpc.h>
     59  1.1        ws #include <machine/trap.h>
     60  1.1        ws 
     61  1.1        ws /*
     62  1.1        ws  * Global variables used here and there
     63  1.1        ws  */
     64  1.1        ws struct pcb *curpcb;
     65  1.1        ws struct pmap *curpm;
     66  1.1        ws struct proc *fpuproc;
     67  1.1        ws 
     68  1.1        ws extern struct user *proc0paddr;
     69  1.1        ws 
     70  1.1        ws struct bat battable[16];
     71  1.1        ws 
     72  1.1        ws int astpending;
     73  1.1        ws 
     74  1.1        ws char *bootpath;
     75  1.1        ws 
     76  1.1        ws /*
     77  1.1        ws  * We use the page just above the interrupt vector as message buffer
     78  1.1        ws  */
     79  1.1        ws struct msgbuf *msgbufp = (struct msgbuf *)0x3000;
     80  1.1        ws int msgbufmapped = 1;		/* message buffer is always mapped */
     81  1.1        ws 
     82  1.1        ws caddr_t allocsys __P((caddr_t));
     83  1.1        ws 
     84  1.1        ws static void fake_splx __P((int));
     85  1.1        ws static void fake_irq_establish __P((int, int, void (*)(void *), void *));
     86  1.1        ws 
     87  1.1        ws struct machvec machine_interface = {
     88  1.1        ws 	fake_splx,
     89  1.1        ws 	fake_irq_establish,
     90  1.1        ws };
     91  1.1        ws 
     92  1.1        ws int cold = 1;
     93  1.1        ws 
     94  1.1        ws void
     95  1.1        ws initppc(startkernel, endkernel, args)
     96  1.1        ws 	u_int startkernel, endkernel;
     97  1.1        ws 	char *args;
     98  1.1        ws {
     99  1.1        ws 	int phandle, qhandle;
    100  1.1        ws 	char name[32];
    101  1.1        ws 	struct machvec *mp;
    102  1.1        ws 	extern trapcode, trapsize;
    103  1.1        ws 	extern dsitrap, dsisize;
    104  1.1        ws 	extern isitrap, isisize;
    105  1.1        ws 	extern decrint, decrsize;
    106  1.1        ws 	extern tlbimiss, tlbimsize;
    107  1.1        ws 	extern tlbdlmiss, tlbdlmsize;
    108  1.1        ws 	extern tlbdsmiss, tlbdsmsize;
    109  1.4        ws #if NIPKDB > 0
    110  1.4        ws 	extern ipkdblow, ipkdbsize;
    111  1.1        ws #endif
    112  1.1        ws 	extern void consinit __P((void));
    113  1.1        ws 	extern void callback __P((void *));
    114  1.1        ws 	int exc, scratch;
    115  1.1        ws 
    116  1.1        ws 	proc0.p_addr = proc0paddr;
    117  1.1        ws 	bzero(proc0.p_addr, sizeof *proc0.p_addr);
    118  1.1        ws 
    119  1.1        ws 	curpcb = &proc0paddr->u_pcb;
    120  1.1        ws 
    121  1.1        ws 	curpm = curpcb->pcb_pmreal = curpcb->pcb_pm = pmap_kernel();
    122  1.1        ws 
    123  1.1        ws 	/*
    124  1.1        ws 	 * i386 port says, that this shouldn't be here,
    125  1.1        ws 	 * but I really think the console should be initialized
    126  1.1        ws 	 * as early as possible.
    127  1.1        ws 	 */
    128  1.1        ws 	consinit();
    129  1.1        ws 
    130  1.1        ws #ifdef	__notyet__		/* Needs some rethinking regarding real/virtual OFW */
    131  1.1        ws 	OF_set_callback(callback);
    132  1.1        ws #endif
    133  1.1        ws 	/*
    134  1.1        ws 	 * Initialize BAT registers to unmapped to not generate
    135  1.1        ws 	 * overlapping mappings below.
    136  1.1        ws 	 */
    137  1.1        ws 	asm volatile ("mtibatu 0,%0" :: "r"(0));
    138  1.1        ws 	asm volatile ("mtibatu 1,%0" :: "r"(0));
    139  1.1        ws 	asm volatile ("mtibatu 2,%0" :: "r"(0));
    140  1.1        ws 	asm volatile ("mtibatu 3,%0" :: "r"(0));
    141  1.1        ws 	asm volatile ("mtdbatu 0,%0" :: "r"(0));
    142  1.1        ws 	asm volatile ("mtdbatu 1,%0" :: "r"(0));
    143  1.1        ws 	asm volatile ("mtdbatu 2,%0" :: "r"(0));
    144  1.1        ws 	asm volatile ("mtdbatu 3,%0" :: "r"(0));
    145  1.1        ws 
    146  1.1        ws 	/*
    147  1.1        ws 	 * Set up initial BAT table to only map the lowest 256 MB area
    148  1.1        ws 	 */
    149  1.1        ws 	battable[0].batl = BATL(0x00000000, BAT_M);
    150  1.1        ws 	battable[0].batu = BATU(0x00000000);
    151  1.1        ws 
    152  1.1        ws 	/*
    153  1.1        ws 	 * Now setup fixed bat registers
    154  1.1        ws 	 *
    155  1.1        ws 	 * Note that we still run in real mode, and the BAT
    156  1.1        ws 	 * registers were cleared above.
    157  1.1        ws 	 */
    158  1.1        ws 	/* IBAT0 used for initial 256 MB segment */
    159  1.1        ws 	asm volatile ("mtibatl 0,%0; mtibatu 0,%1"
    160  1.1        ws 		      :: "r"(battable[0].batl), "r"(battable[0].batu));
    161  1.1        ws 	/* DBAT0 used similar */
    162  1.1        ws 	asm volatile ("mtdbatl 0,%0; mtdbatu 0,%1"
    163  1.1        ws 		      :: "r"(battable[0].batl), "r"(battable[0].batu));
    164  1.1        ws 
    165  1.1        ws 	/*
    166  1.1        ws 	 * Set up trap vectors
    167  1.1        ws 	 */
    168  1.1        ws 	for (exc = EXC_RSVD; exc <= EXC_LAST; exc += 0x100)
    169  1.1        ws 		switch (exc) {
    170  1.1        ws 		default:
    171  1.1        ws 			bcopy(&trapcode, (void *)exc, (size_t)&trapsize);
    172  1.1        ws 			break;
    173  1.1        ws 		case EXC_EXI:
    174  1.1        ws 			/*
    175  1.1        ws 			 * This one is (potentially) installed during autoconf
    176  1.1        ws 			 */
    177  1.1        ws 			break;
    178  1.1        ws 		case EXC_DSI:
    179  1.1        ws 			bcopy(&dsitrap, (void *)EXC_DSI, (size_t)&dsisize);
    180  1.1        ws 			break;
    181  1.1        ws 		case EXC_ISI:
    182  1.1        ws 			bcopy(&isitrap, (void *)EXC_ISI, (size_t)&isisize);
    183  1.1        ws 			break;
    184  1.1        ws 		case EXC_DECR:
    185  1.1        ws 			bcopy(&decrint, (void *)EXC_DECR, (size_t)&decrsize);
    186  1.1        ws 			break;
    187  1.1        ws 		case EXC_IMISS:
    188  1.1        ws 			bcopy(&tlbimiss, (void *)EXC_IMISS, (size_t)&tlbimsize);
    189  1.1        ws 			break;
    190  1.1        ws 		case EXC_DLMISS:
    191  1.1        ws 			bcopy(&tlbdlmiss, (void *)EXC_DLMISS, (size_t)&tlbdlmsize);
    192  1.1        ws 			break;
    193  1.1        ws 		case EXC_DSMISS:
    194  1.1        ws 			bcopy(&tlbdsmiss, (void *)EXC_DSMISS, (size_t)&tlbdsmsize);
    195  1.1        ws 			break;
    196  1.4        ws #if NIPKDB > 0
    197  1.1        ws 		case EXC_PGM:
    198  1.1        ws 		case EXC_TRC:
    199  1.1        ws 		case EXC_BPT:
    200  1.4        ws 			bcopy(&ipkdblow, (void *)exc, (size_t)&ipkdbsize);
    201  1.1        ws 			break;
    202  1.1        ws #endif
    203  1.1        ws 		}
    204  1.1        ws 
    205  1.1        ws 	syncicache((void *)EXC_RST, EXC_LAST - EXC_RST + 0x100);
    206  1.1        ws 
    207  1.1        ws 	/*
    208  1.1        ws 	 * Now enable translation (and machine checks/recoverable interrupts).
    209  1.1        ws 	 */
    210  1.1        ws 	asm volatile ("mfmsr %0; ori %0,%0,%1; mtmsr %0; isync"
    211  1.1        ws 		      : "=r"(scratch) : "K"(PSL_IR|PSL_DR|PSL_ME|PSL_RI));
    212  1.1        ws 
    213  1.1        ws 	/*
    214  1.1        ws 	 * Parse arg string.
    215  1.1        ws 	 */
    216  1.1        ws 	bootpath = args;
    217  1.1        ws 	while ( *++args && *args != ' ');
    218  1.1        ws 	if (*args) {
    219  1.1        ws 		*args++ = 0;
    220  1.1        ws 		while (*args) {
    221  1.1        ws 			switch (*args++) {
    222  1.1        ws 			case 'a':
    223  1.1        ws 				boothowto |= RB_ASKNAME;
    224  1.1        ws 				break;
    225  1.1        ws 			case 's':
    226  1.1        ws 				boothowto |= RB_SINGLE;
    227  1.1        ws 				break;
    228  1.1        ws 			case 'd':
    229  1.1        ws 				boothowto |= RB_KDB;
    230  1.1        ws 				break;
    231  1.1        ws 			}
    232  1.1        ws 		}
    233  1.1        ws 	}
    234  1.1        ws 
    235  1.4        ws #if NIPKDB > 0
    236  1.1        ws 	/*
    237  1.4        ws 	 * Now trap to IPKDB
    238  1.1        ws 	 */
    239  1.4        ws 	ipkdb_init();
    240  1.1        ws 	if (boothowto & RB_KDB)
    241  1.4        ws 		ipkdb_connect(0);
    242  1.1        ws #endif
    243  1.1        ws 
    244  1.1        ws 	/*
    245  1.1        ws 	 * Initialize pmap module.
    246  1.1        ws 	 */
    247  1.1        ws 	pmap_bootstrap(startkernel, endkernel);
    248  1.1        ws }
    249  1.1        ws 
    250  1.1        ws /*
    251  1.1        ws  * This should probably be in autoconf!				XXX
    252  1.1        ws  */
    253  1.1        ws int cpu;
    254  1.1        ws char cpu_model[80];
    255  1.1        ws char machine[] = "PowerPC";	/* cpu architecture */
    256  1.1        ws 
    257  1.1        ws void
    258  1.1        ws identifycpu()
    259  1.1        ws {
    260  1.1        ws 	int phandle, pvr;
    261  1.1        ws 	char name[32];
    262  1.1        ws 
    263  1.1        ws 	/*
    264  1.1        ws 	 * Find cpu type (Do it by OpenFirmware?)
    265  1.1        ws 	 */
    266  1.1        ws 	asm ("mfpvr %0" : "=r"(pvr));
    267  1.1        ws 	cpu = pvr >> 16;
    268  1.1        ws 	switch (cpu) {
    269  1.1        ws 	case 1:
    270  1.3  christos 		sprintf(cpu_model, "601");
    271  1.1        ws 		break;
    272  1.1        ws 	case 3:
    273  1.3  christos 		sprintf(cpu_model, "603");
    274  1.1        ws 		break;
    275  1.1        ws 	case 4:
    276  1.3  christos 		sprintf(cpu_model, "604");
    277  1.1        ws 		break;
    278  1.1        ws 	case 5:
    279  1.3  christos 		sprintf(cpu_model, "602");
    280  1.1        ws 		break;
    281  1.1        ws 	case 6:
    282  1.3  christos 		sprintf(cpu_model, "603e");
    283  1.1        ws 		break;
    284  1.1        ws 	case 7:
    285  1.3  christos 		sprintf(cpu_model, "603ev");
    286  1.1        ws 		break;
    287  1.1        ws 	case 9:
    288  1.3  christos 		sprintf(cpu_model, "604ev");
    289  1.1        ws 		break;
    290  1.1        ws 	case 20:
    291  1.3  christos 		sprintf(cpu_model, "620");
    292  1.1        ws 		break;
    293  1.1        ws 	default:
    294  1.3  christos 		sprintf(cpu_model, "Version %x", cpu);
    295  1.1        ws 		break;
    296  1.1        ws 	}
    297  1.1        ws 	sprintf(cpu_model + strlen(cpu_model), " (Revision %x)", pvr & 0xffff);
    298  1.3  christos 	printf("CPU: %s\n", cpu_model);
    299  1.1        ws }
    300  1.1        ws 
    301  1.1        ws void
    302  1.1        ws install_extint(handler)
    303  1.1        ws 	void (*handler) __P((void));
    304  1.1        ws {
    305  1.1        ws 	extern extint, extsize;
    306  1.1        ws 	extern u_long extint_call;
    307  1.1        ws 	u_long offset = (u_long)handler - (u_long)&extint_call;
    308  1.1        ws 	int omsr, msr;
    309  1.1        ws 
    310  1.1        ws #ifdef	DIAGNOSTIC
    311  1.1        ws 	if (offset > 0x1ffffff)
    312  1.1        ws 		panic("install_extint: too far away");
    313  1.1        ws #endif
    314  1.1        ws 	asm volatile ("mfmsr %0; andi. %1, %0, %2; mtmsr %1"
    315  1.1        ws 		      : "=r"(omsr), "=r"(msr) : "K"((u_short)~PSL_EE));
    316  1.1        ws 	extint_call = (extint_call & 0xfc000003) | offset;
    317  1.1        ws 	bcopy(&extint, (void *)EXC_EXI, (size_t)&extsize);
    318  1.1        ws 	syncicache((void *)&extint_call, sizeof extint_call);
    319  1.1        ws 	syncicache((void *)EXC_EXI, (int)&extsize);
    320  1.1        ws 	asm volatile ("mtmsr %0" :: "r"(omsr));
    321  1.1        ws }
    322  1.1        ws 
    323  1.1        ws /*
    324  1.1        ws  * Machine dependent startup code.
    325  1.1        ws  */
    326  1.1        ws void
    327  1.1        ws cpu_startup()
    328  1.1        ws {
    329  1.1        ws 	int sz, i;
    330  1.1        ws 	caddr_t v;
    331  1.1        ws 	vm_offset_t minaddr, maxaddr;
    332  1.1        ws 	int base, residual;
    333  1.1        ws 
    334  1.1        ws 	proc0.p_addr = proc0paddr;
    335  1.1        ws 	v = (caddr_t)proc0paddr + USPACE;
    336  1.1        ws 
    337  1.3  christos 	printf("%s", version);
    338  1.1        ws 	identifycpu();
    339  1.1        ws 
    340  1.3  christos 	printf("real mem = %d\n", ctob(physmem));
    341  1.1        ws 
    342  1.1        ws 	/*
    343  1.1        ws 	 * Find out how much space we need, allocate it,
    344  1.1        ws 	 * and then give everything true virtual addresses.
    345  1.1        ws 	 */
    346  1.1        ws 	sz = (int)allocsys((caddr_t)0);
    347  1.1        ws 	if ((v = (caddr_t)kmem_alloc(kernel_map, round_page(sz))) == 0)
    348  1.1        ws 		panic("startup: no room for tables");
    349  1.1        ws 	if (allocsys(v) - v != sz)
    350  1.1        ws 		panic("startup: table size inconsistency");
    351  1.1        ws 
    352  1.1        ws 	/*
    353  1.1        ws 	 * Now allocate buffers proper.  They are different than the above
    354  1.1        ws 	 * in that they usually occupy more virtual memory than physical.
    355  1.1        ws 	 */
    356  1.1        ws 	sz = MAXBSIZE * nbuf;
    357  1.1        ws 	buffer_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr, sz, TRUE);
    358  1.1        ws 	buffers = (char *)minaddr;
    359  1.1        ws 	if (vm_map_find(buffer_map, vm_object_allocate(sz), (vm_offset_t)0,
    360  1.1        ws 			&minaddr, sz, FALSE) != KERN_SUCCESS)
    361  1.1        ws 		panic("startup: cannot allocate buffers");
    362  1.1        ws 	base = bufpages / nbuf;
    363  1.1        ws 	residual = bufpages % nbuf;
    364  1.1        ws 	if (base >= MAXBSIZE) {
    365  1.1        ws 		/* Don't want to alloc more physical mem than ever needed */
    366  1.1        ws 		base = MAXBSIZE;
    367  1.1        ws 		residual = 0;
    368  1.1        ws 	}
    369  1.1        ws 	for (i = 0; i < nbuf; i++) {
    370  1.1        ws 		vm_size_t curbufsize;
    371  1.1        ws 		vm_offset_t curbuf;
    372  1.1        ws 
    373  1.1        ws 		curbuf = (vm_offset_t)buffers + i * MAXBSIZE;
    374  1.1        ws 		curbufsize = CLBYTES * (i < residual ? base + 1 : base);
    375  1.1        ws 		vm_map_pageable(buffer_map, curbuf, curbuf + curbufsize, FALSE);
    376  1.1        ws 		vm_map_simplify(buffer_map, curbuf);
    377  1.1        ws 	}
    378  1.1        ws 
    379  1.1        ws 	/*
    380  1.1        ws 	 * Allocate a submap for exec arguments.  This map effectively
    381  1.1        ws 	 * limits the number of processes exec'ing at any time.
    382  1.1        ws 	 */
    383  1.1        ws 	exec_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    384  1.1        ws 				 16*NCARGS, TRUE);
    385  1.1        ws 
    386  1.1        ws 	/*
    387  1.1        ws 	 * Allocate a submap for physio
    388  1.1        ws 	 */
    389  1.1        ws 	phys_map = kmem_suballoc(kernel_map, &minaddr, &maxaddr,
    390  1.1        ws 				 VM_PHYS_SIZE, TRUE);
    391  1.1        ws 
    392  1.1        ws 	/*
    393  1.1        ws 	 * Allocate mbuf pool.
    394  1.1        ws 	 */
    395  1.1        ws 	mclrefcnt = (char *)malloc(NMBCLUSTERS + CLBYTES/MCLBYTES,
    396  1.1        ws 				   M_MBUF, M_NOWAIT);
    397  1.1        ws 	bzero(mclrefcnt, NMBCLUSTERS + CLBYTES/MCLBYTES);
    398  1.1        ws 	mb_map = kmem_suballoc(kernel_map, (vm_offset_t *)&mbutl, &maxaddr,
    399  1.1        ws 			       VM_MBUF_SIZE, FALSE);
    400  1.1        ws 
    401  1.1        ws 	/*
    402  1.1        ws 	 * Initialize callouts.
    403  1.1        ws 	 */
    404  1.1        ws 	callfree = callout;
    405  1.1        ws 	for (i = 1; i < ncallout; i++)
    406  1.1        ws 		callout[i - 1].c_next = &callout[i];
    407  1.1        ws 
    408  1.3  christos 	printf("avail mem = %d\n", ptoa(cnt.v_free_count));
    409  1.3  christos 	printf("using %d buffers containing %d bytes of memory\n",
    410  1.1        ws 	       nbuf, bufpages * CLBYTES);
    411  1.1        ws 
    412  1.1        ws 	/*
    413  1.1        ws 	 * Set up the buffers.
    414  1.1        ws 	 */
    415  1.1        ws 	bufinit();
    416  1.1        ws 
    417  1.1        ws 	/*
    418  1.1        ws 	 * Now allow hardware interrupts.
    419  1.1        ws 	 */
    420  1.1        ws 	{
    421  1.1        ws 		int msr;
    422  1.1        ws 
    423  1.1        ws 		splhigh();
    424  1.1        ws 		asm volatile ("mfmsr %0; ori %0, %0, %1; mtmsr %0"
    425  1.1        ws 			      : "=r"(msr) : "K"(PSL_EE));
    426  1.1        ws 	}
    427  1.1        ws 
    428  1.1        ws 	/*
    429  1.1        ws 	 * Configure devices.
    430  1.1        ws 	 */
    431  1.1        ws 	configure();
    432  1.1        ws 
    433  1.1        ws }
    434  1.1        ws 
    435  1.1        ws /*
    436  1.1        ws  * Allocate space for system data structures.
    437  1.1        ws  */
    438  1.1        ws caddr_t
    439  1.1        ws allocsys(v)
    440  1.1        ws 	caddr_t v;
    441  1.1        ws {
    442  1.1        ws #define	valloc(name, type, num) \
    443  1.1        ws 	v = (caddr_t)(((name) = (type *)v) + (num))
    444  1.1        ws 
    445  1.1        ws 	valloc(callout, struct callout, ncallout);
    446  1.1        ws 	valloc(swapmap, struct map, nswapmap = maxproc * 2);
    447  1.1        ws #ifdef	SYSVSHM
    448  1.1        ws 	valloc(shmsegs, struct shmid_ds, shminfo.shmmni);
    449  1.1        ws #endif
    450  1.1        ws #ifdef	SYSVSEM
    451  1.1        ws 	valloc(sema, struct semid_ds, seminfo.semmni);
    452  1.1        ws 	valloc(sem, struct sem, seminfo.semmns);
    453  1.1        ws 	valloc(semu, int, (seminfo.semmnu * seminfo.semusz) / sizeof(int));
    454  1.1        ws #endif
    455  1.1        ws #ifdef	SYSVMSG
    456  1.1        ws 	valloc(msgpool, char, msginfo.msgmax);
    457  1.1        ws 	valloc(msgmaps, struct msgmap, msginfo.msgseg);
    458  1.1        ws 	valloc(msghdrs, struct msg, msginfo.msgtql);
    459  1.1        ws 	valloc(msqids, struct msqid_ds, msginfo.msgmni);
    460  1.1        ws #endif
    461  1.1        ws 
    462  1.1        ws 	/*
    463  1.1        ws 	 * Decide on buffer space to use.
    464  1.1        ws 	 */
    465  1.1        ws 	if (bufpages == 0)
    466  1.1        ws 		bufpages = (physmem / 20) / CLSIZE;
    467  1.1        ws 	if (nbuf == 0) {
    468  1.1        ws 		nbuf = bufpages;
    469  1.1        ws 		if (nbuf < 16)
    470  1.1        ws 			nbuf = 16;
    471  1.1        ws 	}
    472  1.1        ws 	if (nswbuf == 0) {
    473  1.1        ws 		nswbuf = (nbuf / 2) & ~1;
    474  1.1        ws 		if (nswbuf > 256)
    475  1.1        ws 			nswbuf = 256;
    476  1.1        ws 	}
    477  1.1        ws 	valloc(swbuf, struct buf, nswbuf);
    478  1.1        ws 	valloc(buf, struct buf, nbuf);
    479  1.1        ws 
    480  1.1        ws 	return v;
    481  1.1        ws }
    482  1.1        ws 
    483  1.1        ws /*
    484  1.1        ws  * consinit
    485  1.1        ws  * Initialize system console.
    486  1.1        ws  */
    487  1.1        ws void
    488  1.1        ws consinit()
    489  1.1        ws {
    490  1.1        ws 	static int initted;
    491  1.1        ws 
    492  1.1        ws 	if (initted)
    493  1.1        ws 		return;
    494  1.1        ws 	initted = 1;
    495  1.1        ws 	cninit();
    496  1.1        ws }
    497  1.1        ws 
    498  1.1        ws /*
    499  1.1        ws  * Clear registers on exec
    500  1.1        ws  */
    501  1.1        ws void
    502  1.1        ws setregs(p, pack, stack, retval)
    503  1.1        ws 	struct proc *p;
    504  1.1        ws 	struct exec_package *pack;
    505  1.1        ws 	u_long stack;
    506  1.1        ws 	register_t *retval;
    507  1.1        ws {
    508  1.1        ws 	struct trapframe *tf = trapframe(p);
    509  1.1        ws 
    510  1.1        ws 	bzero(tf, sizeof *tf);
    511  1.1        ws 	tf->fixreg[1] = -roundup(-stack + 8, 16);
    512  1.1        ws 	tf->fixreg[3] = *retval = stack;	/* bug in init_main.c		XXX */
    513  1.1        ws 	tf->srr0 = pack->ep_entry;
    514  1.1        ws 	tf->srr1 = PSL_MBO | PSL_USERSET | PSL_FE_DFLT;
    515  1.1        ws 	p->p_addr->u_pcb.pcb_flags = 0;
    516  1.1        ws }
    517  1.1        ws 
    518  1.1        ws /*
    519  1.1        ws  * Send a signal to process.
    520  1.1        ws  */
    521  1.1        ws void
    522  1.1        ws sendsig(catcher, sig, mask, code)
    523  1.1        ws 	sig_t catcher;
    524  1.1        ws 	int sig, mask;
    525  1.1        ws 	u_long code;
    526  1.1        ws {
    527  1.1        ws 	struct proc *p = curproc;
    528  1.1        ws 	struct trapframe *tf;
    529  1.1        ws 	struct sigframe *fp, frame;
    530  1.1        ws 	struct sigacts *psp = p->p_sigacts;
    531  1.1        ws 	int oldonstack;
    532  1.1        ws 
    533  1.1        ws 	frame.sf_signum = sig;
    534  1.1        ws 
    535  1.1        ws 	tf = trapframe(p);
    536  1.1        ws 	oldonstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
    537  1.1        ws 
    538  1.1        ws 	/*
    539  1.1        ws 	 * Allocate stack space for signal handler.
    540  1.1        ws 	 */
    541  1.1        ws 	if ((psp->ps_flags & SAS_ALTSTACK)
    542  1.1        ws 	    && !oldonstack
    543  1.1        ws 	    && (psp->ps_sigonstack & sigmask(sig))) {
    544  1.1        ws 		fp = (struct sigframe *)(psp->ps_sigstk.ss_sp
    545  1.1        ws 					 + psp->ps_sigstk.ss_size);
    546  1.1        ws 		psp->ps_sigstk.ss_flags |= SS_ONSTACK;
    547  1.1        ws 	} else
    548  1.1        ws 		fp = (struct sigframe *)tf->fixreg[1];
    549  1.1        ws 	fp = (struct sigframe *)((int)(fp - 1) & ~0xf);
    550  1.1        ws 
    551  1.1        ws 	frame.sf_code = code;
    552  1.1        ws 
    553  1.1        ws 	/*
    554  1.1        ws 	 * Generate signal context for SYS_sigreturn.
    555  1.1        ws 	 */
    556  1.1        ws 	frame.sf_sc.sc_onstack = oldonstack;
    557  1.1        ws 	frame.sf_sc.sc_mask = mask;
    558  1.1        ws 	bcopy(tf, &frame.sf_sc.sc_frame, sizeof *tf);
    559  1.1        ws 	if (copyout(&frame, fp, sizeof frame) != 0)
    560  1.1        ws 		sigexit(p, SIGILL);
    561  1.1        ws 
    562  1.1        ws 	tf->fixreg[1] = (int)fp;
    563  1.1        ws 	tf->lr = (int)catcher;
    564  1.1        ws 	tf->fixreg[3] = (int)sig;
    565  1.1        ws 	tf->fixreg[4] = (int)code;
    566  1.1        ws 	tf->fixreg[5] = (int)&frame.sf_sc;
    567  1.1        ws 	tf->srr0 = (int)(((char *)PS_STRINGS)
    568  1.1        ws 			 - (p->p_emul->e_esigcode - p->p_emul->e_sigcode));
    569  1.1        ws }
    570  1.1        ws 
    571  1.1        ws /*
    572  1.1        ws  * System call to cleanup state after a signal handler returns.
    573  1.1        ws  */
    574  1.1        ws int
    575  1.1        ws sys_sigreturn(p, v, retval)
    576  1.1        ws 	struct proc *p;
    577  1.1        ws 	void *v;
    578  1.1        ws 	register_t *retval;
    579  1.1        ws {
    580  1.1        ws 	struct sys_sigreturn_args /* {
    581  1.1        ws 		syscallarg(struct sigcontext *) sigcntxp;
    582  1.1        ws 	} */ *uap = v;
    583  1.1        ws 	struct sigcontext sc;
    584  1.1        ws 	struct trapframe *tf;
    585  1.1        ws 	int error;
    586  1.1        ws 
    587  1.1        ws 	if (error = copyin(SCARG(uap, sigcntxp), &sc, sizeof sc))
    588  1.1        ws 		return error;
    589  1.1        ws 	tf = trapframe(p);
    590  1.1        ws 	if ((sc.sc_frame.srr1 & PSL_USERSTATIC) != (tf->srr1 & PSL_USERSTATIC))
    591  1.1        ws 		return EINVAL;
    592  1.1        ws 	bcopy(&sc.sc_frame, tf, sizeof *tf);
    593  1.1        ws 	if (sc.sc_onstack & 1)
    594  1.1        ws 		p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
    595  1.1        ws 	else
    596  1.1        ws 		p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
    597  1.1        ws 	p->p_sigmask = sc.sc_mask & ~sigcantmask;
    598  1.1        ws 	return EJUSTRETURN;
    599  1.1        ws }
    600  1.1        ws 
    601  1.1        ws /*
    602  1.1        ws  * Machine dependent system variables.
    603  1.1        ws  * None for now.
    604  1.1        ws  */
    605  1.1        ws int
    606  1.1        ws cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
    607  1.1        ws 	int *name;
    608  1.1        ws 	u_int namelen;
    609  1.1        ws 	void *oldp;
    610  1.1        ws 	size_t *oldlenp;
    611  1.1        ws 	void *newp;
    612  1.1        ws 	size_t newlen;
    613  1.1        ws 	struct proc *p;
    614  1.1        ws {
    615  1.1        ws 	/* all sysctl names at this level are terminal */
    616  1.1        ws 	if (namelen != 1)
    617  1.1        ws 		return ENOTDIR;
    618  1.1        ws 	switch (name[0]) {
    619  1.1        ws 	default:
    620  1.1        ws 		return EOPNOTSUPP;
    621  1.1        ws 	}
    622  1.1        ws }
    623  1.1        ws 
    624  1.1        ws /*
    625  1.1        ws  * Crash dump handling.
    626  1.1        ws  */
    627  1.1        ws u_long dumpmag = 0x8fca0101;		/* magic number */
    628  1.1        ws int dumpsize = 0;			/* size of dump in pages */
    629  1.1        ws long dumplo = -1;			/* blocks */
    630  1.1        ws 
    631  1.1        ws void
    632  1.1        ws dumpsys()
    633  1.1        ws {
    634  1.3  christos 	printf("dumpsys: TBD\n");
    635  1.1        ws }
    636  1.1        ws 
    637  1.1        ws int cpl;
    638  1.1        ws int clockpending, softclockpending, softnetpending;
    639  1.1        ws 
    640  1.1        ws /*
    641  1.1        ws  * Soft networking interrupts.
    642  1.1        ws  */
    643  1.1        ws void
    644  1.1        ws softnet()
    645  1.1        ws {
    646  1.1        ws 	int isr = netisr;
    647  1.1        ws 
    648  1.1        ws 	netisr = 0;
    649  1.1        ws #ifdef	INET
    650  1.1        ws #include "ether.h"
    651  1.1        ws #if NETHER > 0
    652  1.1        ws 	if (isr & (1 << NETISR_ARP))
    653  1.1        ws 		arpintr();
    654  1.1        ws #endif
    655  1.1        ws 	if (isr & (1 << NETISR_IP))
    656  1.1        ws 		ipintr();
    657  1.1        ws #endif
    658  1.1        ws #ifdef	IMP
    659  1.1        ws 	if (isr & (1 << NETISR_IMP))
    660  1.1        ws 		impintr();
    661  1.1        ws #endif
    662  1.1        ws #ifdef	NS
    663  1.1        ws 	if (isr & (1 << NETISR_NS))
    664  1.1        ws 		nsintr();
    665  1.1        ws #endif
    666  1.1        ws #ifdef	ISO
    667  1.1        ws 	if (isr & (1 << NETISR_ISO))
    668  1.1        ws 		clnlintr();
    669  1.1        ws #endif
    670  1.1        ws #ifdef	CCITT
    671  1.1        ws 	if (isr & (1 << NETISR_CCITT))
    672  1.1        ws 		ccittintr();
    673  1.1        ws #endif
    674  1.1        ws #include "ppp.h"
    675  1.1        ws #if NPPP > 0
    676  1.1        ws 	if (isr & (1 << NETISR_PPP))
    677  1.1        ws 		pppintr();
    678  1.1        ws #endif
    679  1.1        ws }
    680  1.1        ws 
    681  1.1        ws /*
    682  1.1        ws  * Stray interrupts.
    683  1.1        ws  */
    684  1.1        ws void
    685  1.1        ws strayintr(irq)
    686  1.1        ws 	int irq;
    687  1.1        ws {
    688  1.1        ws 	log(LOG_ERR, "stray interrupt %d\n", irq);
    689  1.1        ws }
    690  1.1        ws 
    691  1.1        ws int
    692  1.1        ws splraise(bits)
    693  1.1        ws 	int bits;
    694  1.1        ws {
    695  1.1        ws 	int old;
    696  1.1        ws 
    697  1.1        ws 	old = cpl;
    698  1.1        ws 	cpl |= bits;
    699  1.1        ws 
    700  1.1        ws 	if ((bits & SPLMACHINE) & ~old)
    701  1.1        ws 		(*machine_interface.splx)(cpl & SPLMACHINE);
    702  1.1        ws 
    703  1.1        ws 	return old;
    704  1.1        ws }
    705  1.1        ws 
    706  1.1        ws int
    707  1.1        ws splx(new)
    708  1.1        ws 	int new;
    709  1.1        ws {
    710  1.1        ws 	int pending, old = cpl;
    711  1.1        ws 	int emsr, dmsr;
    712  1.1        ws 
    713  1.1        ws 	asm ("mfmsr %0" : "=r"(emsr));
    714  1.1        ws 	dmsr = emsr & ~PSL_EE;
    715  1.1        ws 
    716  1.1        ws 	cpl = new;
    717  1.1        ws 
    718  1.1        ws 	if ((new & SPLMACHINE) != (old & SPLMACHINE))
    719  1.1        ws 		(*machine_interface.splx)(new & SPLMACHINE);
    720  1.1        ws 
    721  1.1        ws 	while (1) {
    722  1.1        ws 		cpl = new;
    723  1.1        ws 
    724  1.1        ws 		asm volatile ("mtmsr %0" :: "r"(dmsr));
    725  1.1        ws 		if (clockpending && !(cpl & SPLCLOCK)) {
    726  1.1        ws 			struct clockframe frame;
    727  1.1        ws 			extern int intr_depth;
    728  1.1        ws 
    729  1.1        ws 			cpl |= SPLCLOCK;
    730  1.1        ws 			clockpending--;
    731  1.1        ws 			asm volatile ("mtmsr %0" :: "r"(emsr));
    732  1.1        ws 
    733  1.1        ws 			/*
    734  1.1        ws 			 * Fake a clock interrupt frame
    735  1.1        ws 			 */
    736  1.1        ws 			frame.pri = new;
    737  1.1        ws 			frame.depth = intr_depth + 1;
    738  1.1        ws 			frame.srr1 = 0;
    739  1.1        ws 			frame.srr0 = (int)splx;
    740  1.1        ws 			/*
    741  1.1        ws 			 * Do standard timer interrupt stuff
    742  1.1        ws 			 */
    743  1.1        ws 			hardclock(&frame);
    744  1.1        ws 			continue;
    745  1.1        ws 		}
    746  1.1        ws 		if (softclockpending && !(cpl & SPLSOFTCLOCK)) {
    747  1.1        ws 
    748  1.1        ws 			cpl |= SPLSOFTCLOCK;
    749  1.1        ws 			softclockpending = 0;
    750  1.1        ws 			asm volatile ("mtmsr %0" :: "r"(emsr));
    751  1.1        ws 
    752  1.1        ws 			softclock();
    753  1.1        ws 			continue;
    754  1.1        ws 		}
    755  1.1        ws 		if (softnetpending && !(cpl & SPLSOFTNET)) {
    756  1.1        ws 			cpl |= SPLSOFTNET;
    757  1.1        ws 			softnetpending = 0;
    758  1.1        ws 			asm volatile ("mtmsr %0" :: "r"(emsr));
    759  1.1        ws 			softnet();
    760  1.1        ws 			continue;
    761  1.1        ws 		}
    762  1.1        ws 
    763  1.1        ws 		asm volatile ("mtmsr %0" :: "r"(emsr));
    764  1.1        ws 
    765  1.1        ws 		return old;
    766  1.1        ws 	}
    767  1.1        ws }
    768  1.1        ws 
    769  1.1        ws /*
    770  1.1        ws  * This one is similar to the above, but returns with interrupts disabled.
    771  1.1        ws  * It is intended for use during interrupt exit (as the name implies :-)).
    772  1.1        ws  */
    773  1.1        ws void
    774  1.1        ws intr_return(level)
    775  1.1        ws 	int level;
    776  1.1        ws {
    777  1.1        ws 	int pending, old = cpl;
    778  1.1        ws 	int emsr, dmsr;
    779  1.1        ws 
    780  1.1        ws 	asm ("mfmsr %0" : "=r"(emsr));
    781  1.1        ws 	dmsr = emsr & ~PSL_EE;
    782  1.1        ws 
    783  1.1        ws 	cpl = level;
    784  1.1        ws 
    785  1.1        ws 	if ((level & SPLMACHINE) != (old & SPLMACHINE))
    786  1.1        ws 		(*machine_interface.splx)(level & SPLMACHINE);
    787  1.1        ws 
    788  1.1        ws 	while (1) {
    789  1.1        ws 		cpl = level;
    790  1.1        ws 
    791  1.1        ws 		asm volatile ("mtmsr %0" :: "r"(dmsr));
    792  1.1        ws 		if (clockpending && !(cpl & SPLCLOCK)) {
    793  1.1        ws 			struct clockframe frame;
    794  1.1        ws 			extern int intr_depth;
    795  1.1        ws 
    796  1.1        ws 			cpl |= SPLCLOCK;
    797  1.1        ws 			clockpending--;
    798  1.1        ws 			asm volatile ("mtmsr %0" :: "r"(emsr));
    799  1.1        ws 
    800  1.1        ws 			/*
    801  1.1        ws 			 * Fake a clock interrupt frame
    802  1.1        ws 			 */
    803  1.1        ws 			frame.pri = level | (clockpending ? SPLSOFTCLOCK : 0);
    804  1.1        ws 			frame.depth = intr_depth + 1;
    805  1.1        ws 			frame.srr1 = 0;
    806  1.1        ws 			frame.srr0 = (int)splx;
    807  1.1        ws 			/*
    808  1.1        ws 			 * Do standard timer interrupt stuff
    809  1.1        ws 			 */
    810  1.1        ws 			hardclock(&frame);
    811  1.1        ws 			continue;
    812  1.1        ws 		}
    813  1.1        ws 		if (softclockpending && !(cpl & SPLSOFTCLOCK)) {
    814  1.1        ws 
    815  1.1        ws 			cpl |= SPLSOFTCLOCK;
    816  1.1        ws 			softclockpending = 0;
    817  1.1        ws 			asm volatile ("mtmsr %0" :: "r"(emsr));
    818  1.1        ws 
    819  1.1        ws 			softclock();
    820  1.1        ws 			continue;
    821  1.1        ws 		}
    822  1.1        ws 		if (softnetpending && !(cpl & SPLSOFTNET)) {
    823  1.1        ws 			cpl |= SPLSOFTNET;
    824  1.1        ws 			softnetpending = 0;
    825  1.1        ws 			asm volatile ("mtmsr %0" :: "r"(emsr));
    826  1.1        ws 			softnet();
    827  1.1        ws 			continue;
    828  1.1        ws 		}
    829  1.1        ws 		break;
    830  1.1        ws 	}
    831  1.1        ws }
    832  1.1        ws 
    833  1.1        ws /*
    834  1.1        ws  * Halt or reboot the machine after syncing/dumping according to howto.
    835  1.1        ws  */
    836  1.1        ws void
    837  1.1        ws boot(howto, what)
    838  1.1        ws 	int howto;
    839  1.1        ws 	char *what;
    840  1.1        ws {
    841  1.1        ws 	static int syncing;
    842  1.1        ws 	static char str[256];
    843  1.1        ws 	char *ap = str, *ap1 = ap;
    844  1.1        ws 
    845  1.1        ws 	boothowto = howto;
    846  1.1        ws 	if (!cold && !(howto & RB_NOSYNC) && !syncing) {
    847  1.1        ws 		syncing = 1;
    848  1.1        ws 		vfs_shutdown();		/* sync */
    849  1.1        ws 		resettodr();		/* set wall clock */
    850  1.1        ws 	}
    851  1.1        ws 	splhigh();
    852  1.1        ws 	if (howto & RB_HALT) {
    853  1.1        ws 		doshutdownhooks();
    854  1.3  christos 		printf("halted\n\n");
    855  1.1        ws 		ppc_exit();
    856  1.1        ws 	}
    857  1.1        ws 	if (!cold && (howto & RB_DUMP))
    858  1.1        ws 		dumpsys();
    859  1.1        ws 	doshutdownhooks();
    860  1.3  christos 	printf("rebooting\n\n");
    861  1.1        ws 	if (what && *what) {
    862  1.1        ws 		if (strlen(what) > sizeof str - 5)
    863  1.3  christos 			printf("boot string too large, ignored\n");
    864  1.1        ws 		else {
    865  1.1        ws 			strcpy(str, what);
    866  1.1        ws 			ap1 = ap = str + strlen(str);
    867  1.1        ws 			*ap++ = ' ';
    868  1.1        ws 		}
    869  1.1        ws 	}
    870  1.1        ws 	*ap++ = '-';
    871  1.1        ws 	if (howto & RB_SINGLE)
    872  1.1        ws 		*ap++ = 's';
    873  1.1        ws 	if (howto & RB_KDB)
    874  1.1        ws 		*ap++ = 'd';
    875  1.1        ws 	*ap++ = 0;
    876  1.1        ws 	if (ap[-2] == '-')
    877  1.1        ws 		*ap1 = 0;
    878  1.1        ws 	ppc_boot(str);
    879  1.1        ws }
    880  1.1        ws 
    881  1.1        ws /*
    882  1.1        ws  * OpenFirmware callback routine
    883  1.1        ws  */
    884  1.1        ws void
    885  1.1        ws callback(p)
    886  1.1        ws 	void *p;
    887  1.1        ws {
    888  1.1        ws 	panic("callback");	/* for now			XXX */
    889  1.1        ws }
    890  1.1        ws 
    891  1.1        ws /*
    892  1.1        ws  * Fake routines for spl/interrupt handling before autoconfig
    893  1.1        ws  */
    894  1.1        ws static void
    895  1.1        ws fake_splx(new)
    896  1.1        ws 	int new;
    897  1.1        ws {
    898  1.1        ws }
    899  1.1        ws 
    900  1.1        ws static void
    901  1.1        ws fake_irq_establish(irq, level, handler, arg)
    902  1.1        ws 	int irq, level;
    903  1.1        ws 	void (*handler) __P((void *));
    904  1.1        ws 	void *arg;
    905  1.1        ws {
    906  1.1        ws 	panic("fake_irq_establish");
    907  1.1        ws }
    908