machdep.c revision 1.43 1 1.43 thorpej /* $NetBSD: machdep.c,v 1.43 1999/09/17 20:04:46 thorpej Exp $ */
2 1.1 ws
3 1.1 ws /*
4 1.1 ws * Copyright (C) 1995, 1996 Wolfgang Solfrank.
5 1.1 ws * Copyright (C) 1995, 1996 TooLs GmbH.
6 1.1 ws * All rights reserved.
7 1.1 ws *
8 1.1 ws * Redistribution and use in source and binary forms, with or without
9 1.1 ws * modification, are permitted provided that the following conditions
10 1.1 ws * are met:
11 1.1 ws * 1. Redistributions of source code must retain the above copyright
12 1.1 ws * notice, this list of conditions and the following disclaimer.
13 1.1 ws * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 ws * notice, this list of conditions and the following disclaimer in the
15 1.1 ws * documentation and/or other materials provided with the distribution.
16 1.1 ws * 3. All advertising materials mentioning features or use of this software
17 1.1 ws * must display the following acknowledgement:
18 1.1 ws * This product includes software developed by TooLs GmbH.
19 1.1 ws * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 1.1 ws * derived from this software without specific prior written permission.
21 1.1 ws *
22 1.1 ws * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 1.1 ws * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 ws * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 ws * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 1.1 ws * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 1.1 ws * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 1.1 ws * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 1.1 ws * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 1.1 ws * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 1.1 ws * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 ws */
33 1.21 jonathan
34 1.27 thorpej #include "opt_compat_netbsd.h"
35 1.21 jonathan #include "opt_ddb.h"
36 1.22 jonathan #include "opt_inet.h"
37 1.23 jonathan #include "opt_ccitt.h"
38 1.24 jonathan #include "opt_iso.h"
39 1.25 jonathan #include "opt_ns.h"
40 1.4 ws #include "ipkdb.h"
41 1.1 ws
42 1.1 ws #include <sys/param.h>
43 1.1 ws #include <sys/buf.h>
44 1.1 ws #include <sys/callout.h>
45 1.1 ws #include <sys/exec.h>
46 1.1 ws #include <sys/malloc.h>
47 1.1 ws #include <sys/map.h>
48 1.1 ws #include <sys/mbuf.h>
49 1.1 ws #include <sys/mount.h>
50 1.1 ws #include <sys/msgbuf.h>
51 1.1 ws #include <sys/proc.h>
52 1.1 ws #include <sys/reboot.h>
53 1.1 ws #include <sys/syscallargs.h>
54 1.1 ws #include <sys/syslog.h>
55 1.1 ws #include <sys/systm.h>
56 1.43 thorpej #include <sys/kernel.h>
57 1.1 ws #include <sys/user.h>
58 1.1 ws
59 1.1 ws #include <vm/vm.h>
60 1.1 ws #include <vm/vm_kern.h>
61 1.1 ws
62 1.19 sakamoto #include <uvm/uvm_extern.h>
63 1.19 sakamoto
64 1.1 ws #include <net/netisr.h>
65 1.1 ws
66 1.1 ws #include <machine/bat.h>
67 1.1 ws #include <machine/pmap.h>
68 1.1 ws #include <machine/powerpc.h>
69 1.1 ws #include <machine/trap.h>
70 1.1 ws
71 1.1 ws /*
72 1.1 ws * Global variables used here and there
73 1.1 ws */
74 1.19 sakamoto vm_map_t exec_map = NULL;
75 1.19 sakamoto vm_map_t mb_map = NULL;
76 1.19 sakamoto vm_map_t phys_map = NULL;
77 1.19 sakamoto
78 1.1 ws struct pcb *curpcb;
79 1.1 ws struct pmap *curpm;
80 1.1 ws struct proc *fpuproc;
81 1.1 ws
82 1.1 ws extern struct user *proc0paddr;
83 1.1 ws
84 1.1 ws struct bat battable[16];
85 1.1 ws
86 1.1 ws int astpending;
87 1.1 ws
88 1.1 ws char *bootpath;
89 1.1 ws
90 1.39 thorpej paddr_t msgbuf_paddr;
91 1.39 thorpej vaddr_t msgbuf_vaddr;
92 1.18 sakamoto
93 1.7 thorpej static int fake_spl __P((void));
94 1.7 thorpej static int fake_splx __P((int));
95 1.7 thorpej static void fake_setsoft __P((void));
96 1.7 thorpej static void fake_clock_return __P((struct clockframe *, int));
97 1.1 ws static void fake_irq_establish __P((int, int, void (*)(void *), void *));
98 1.1 ws
99 1.1 ws struct machvec machine_interface = {
100 1.7 thorpej fake_spl,
101 1.7 thorpej fake_spl,
102 1.7 thorpej fake_spl,
103 1.7 thorpej fake_spl,
104 1.7 thorpej fake_spl,
105 1.7 thorpej fake_spl,
106 1.7 thorpej fake_spl,
107 1.7 thorpej fake_spl,
108 1.7 thorpej fake_spl,
109 1.1 ws fake_splx,
110 1.7 thorpej fake_setsoft,
111 1.7 thorpej fake_setsoft,
112 1.7 thorpej fake_clock_return,
113 1.1 ws fake_irq_establish,
114 1.1 ws };
115 1.1 ws
116 1.1 ws void
117 1.1 ws initppc(startkernel, endkernel, args)
118 1.1 ws u_int startkernel, endkernel;
119 1.1 ws char *args;
120 1.1 ws {
121 1.1 ws int phandle, qhandle;
122 1.1 ws char name[32];
123 1.1 ws struct machvec *mp;
124 1.1 ws extern trapcode, trapsize;
125 1.1 ws extern dsitrap, dsisize;
126 1.1 ws extern isitrap, isisize;
127 1.1 ws extern decrint, decrsize;
128 1.1 ws extern tlbimiss, tlbimsize;
129 1.1 ws extern tlbdlmiss, tlbdlmsize;
130 1.1 ws extern tlbdsmiss, tlbdsmsize;
131 1.14 sakamoto #ifdef DDB
132 1.14 sakamoto extern ddblow, ddbsize;
133 1.14 sakamoto extern void *startsym, *endsym;
134 1.14 sakamoto #endif
135 1.4 ws #if NIPKDB > 0
136 1.4 ws extern ipkdblow, ipkdbsize;
137 1.1 ws #endif
138 1.1 ws extern void consinit __P((void));
139 1.1 ws extern void callback __P((void *));
140 1.1 ws int exc, scratch;
141 1.1 ws
142 1.1 ws proc0.p_addr = proc0paddr;
143 1.1 ws bzero(proc0.p_addr, sizeof *proc0.p_addr);
144 1.29 sakamoto
145 1.1 ws curpcb = &proc0paddr->u_pcb;
146 1.29 sakamoto
147 1.1 ws curpm = curpcb->pcb_pmreal = curpcb->pcb_pm = pmap_kernel();
148 1.29 sakamoto
149 1.1 ws /*
150 1.1 ws * i386 port says, that this shouldn't be here,
151 1.1 ws * but I really think the console should be initialized
152 1.1 ws * as early as possible.
153 1.1 ws */
154 1.1 ws consinit();
155 1.1 ws
156 1.1 ws #ifdef __notyet__ /* Needs some rethinking regarding real/virtual OFW */
157 1.1 ws OF_set_callback(callback);
158 1.1 ws #endif
159 1.1 ws /*
160 1.1 ws * Initialize BAT registers to unmapped to not generate
161 1.1 ws * overlapping mappings below.
162 1.1 ws */
163 1.1 ws asm volatile ("mtibatu 0,%0" :: "r"(0));
164 1.1 ws asm volatile ("mtibatu 1,%0" :: "r"(0));
165 1.1 ws asm volatile ("mtibatu 2,%0" :: "r"(0));
166 1.1 ws asm volatile ("mtibatu 3,%0" :: "r"(0));
167 1.1 ws asm volatile ("mtdbatu 0,%0" :: "r"(0));
168 1.1 ws asm volatile ("mtdbatu 1,%0" :: "r"(0));
169 1.1 ws asm volatile ("mtdbatu 2,%0" :: "r"(0));
170 1.1 ws asm volatile ("mtdbatu 3,%0" :: "r"(0));
171 1.29 sakamoto
172 1.1 ws /*
173 1.1 ws * Set up initial BAT table to only map the lowest 256 MB area
174 1.1 ws */
175 1.1 ws battable[0].batl = BATL(0x00000000, BAT_M);
176 1.1 ws battable[0].batu = BATU(0x00000000);
177 1.1 ws
178 1.1 ws /*
179 1.1 ws * Now setup fixed bat registers
180 1.1 ws *
181 1.1 ws * Note that we still run in real mode, and the BAT
182 1.1 ws * registers were cleared above.
183 1.1 ws */
184 1.1 ws /* IBAT0 used for initial 256 MB segment */
185 1.1 ws asm volatile ("mtibatl 0,%0; mtibatu 0,%1"
186 1.1 ws :: "r"(battable[0].batl), "r"(battable[0].batu));
187 1.1 ws /* DBAT0 used similar */
188 1.1 ws asm volatile ("mtdbatl 0,%0; mtdbatu 0,%1"
189 1.1 ws :: "r"(battable[0].batl), "r"(battable[0].batu));
190 1.29 sakamoto
191 1.1 ws /*
192 1.1 ws * Set up trap vectors
193 1.1 ws */
194 1.1 ws for (exc = EXC_RSVD; exc <= EXC_LAST; exc += 0x100)
195 1.1 ws switch (exc) {
196 1.1 ws default:
197 1.1 ws bcopy(&trapcode, (void *)exc, (size_t)&trapsize);
198 1.1 ws break;
199 1.1 ws case EXC_EXI:
200 1.1 ws /*
201 1.1 ws * This one is (potentially) installed during autoconf
202 1.1 ws */
203 1.1 ws break;
204 1.1 ws case EXC_DSI:
205 1.1 ws bcopy(&dsitrap, (void *)EXC_DSI, (size_t)&dsisize);
206 1.1 ws break;
207 1.1 ws case EXC_ISI:
208 1.1 ws bcopy(&isitrap, (void *)EXC_ISI, (size_t)&isisize);
209 1.1 ws break;
210 1.1 ws case EXC_DECR:
211 1.1 ws bcopy(&decrint, (void *)EXC_DECR, (size_t)&decrsize);
212 1.1 ws break;
213 1.1 ws case EXC_IMISS:
214 1.1 ws bcopy(&tlbimiss, (void *)EXC_IMISS, (size_t)&tlbimsize);
215 1.1 ws break;
216 1.1 ws case EXC_DLMISS:
217 1.1 ws bcopy(&tlbdlmiss, (void *)EXC_DLMISS, (size_t)&tlbdlmsize);
218 1.1 ws break;
219 1.1 ws case EXC_DSMISS:
220 1.1 ws bcopy(&tlbdsmiss, (void *)EXC_DSMISS, (size_t)&tlbdsmsize);
221 1.1 ws break;
222 1.15 thorpej #if defined(DDB) || NIPKDB > 0
223 1.14 sakamoto case EXC_PGM:
224 1.14 sakamoto case EXC_TRC:
225 1.14 sakamoto case EXC_BPT:
226 1.15 thorpej #if defined(DDB)
227 1.14 sakamoto bcopy(&ddblow, (void *)exc, (size_t)&ddbsize);
228 1.15 thorpej #else
229 1.15 thorpej bcopy(&ipkdblow, (void *)exc, (size_t)&ipkdbsize);
230 1.14 sakamoto #endif
231 1.1 ws break;
232 1.15 thorpej #endif /* DDB || NIPKDB > 0 */
233 1.1 ws }
234 1.1 ws
235 1.38 ws __syncicache((void *)EXC_RST, EXC_LAST - EXC_RST + 0x100);
236 1.1 ws
237 1.1 ws /*
238 1.1 ws * Now enable translation (and machine checks/recoverable interrupts).
239 1.1 ws */
240 1.1 ws asm volatile ("mfmsr %0; ori %0,%0,%1; mtmsr %0; isync"
241 1.1 ws : "=r"(scratch) : "K"(PSL_IR|PSL_DR|PSL_ME|PSL_RI));
242 1.1 ws
243 1.1 ws /*
244 1.1 ws * Parse arg string.
245 1.1 ws */
246 1.1 ws bootpath = args;
247 1.7 thorpej while (*++args && *args != ' ');
248 1.1 ws if (*args) {
249 1.1 ws *args++ = 0;
250 1.1 ws while (*args) {
251 1.1 ws switch (*args++) {
252 1.1 ws case 'a':
253 1.1 ws boothowto |= RB_ASKNAME;
254 1.1 ws break;
255 1.1 ws case 's':
256 1.1 ws boothowto |= RB_SINGLE;
257 1.1 ws break;
258 1.1 ws case 'd':
259 1.1 ws boothowto |= RB_KDB;
260 1.1 ws break;
261 1.1 ws }
262 1.1 ws }
263 1.29 sakamoto }
264 1.1 ws
265 1.14 sakamoto #ifdef DDB
266 1.31 thorpej /* ddb_init((int)(endsym - startsym), startsym, endsym); */
267 1.14 sakamoto #endif
268 1.4 ws #if NIPKDB > 0
269 1.1 ws /*
270 1.4 ws * Now trap to IPKDB
271 1.1 ws */
272 1.4 ws ipkdb_init();
273 1.1 ws if (boothowto & RB_KDB)
274 1.4 ws ipkdb_connect(0);
275 1.1 ws #endif
276 1.16 thorpej
277 1.16 thorpej /*
278 1.16 thorpej * Set the page size.
279 1.16 thorpej */
280 1.19 sakamoto uvm_setpagesize();
281 1.1 ws
282 1.1 ws /*
283 1.1 ws * Initialize pmap module.
284 1.1 ws */
285 1.1 ws pmap_bootstrap(startkernel, endkernel);
286 1.1 ws }
287 1.1 ws
288 1.1 ws /*
289 1.1 ws * This should probably be in autoconf! XXX
290 1.1 ws */
291 1.1 ws int cpu;
292 1.1 ws char cpu_model[80];
293 1.9 veego char machine[] = MACHINE; /* from <machine/param.h> */
294 1.9 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
295 1.1 ws
296 1.1 ws void
297 1.1 ws identifycpu()
298 1.1 ws {
299 1.1 ws int phandle, pvr;
300 1.1 ws char name[32];
301 1.1 ws
302 1.1 ws /*
303 1.1 ws * Find cpu type (Do it by OpenFirmware?)
304 1.1 ws */
305 1.1 ws asm ("mfpvr %0" : "=r"(pvr));
306 1.1 ws cpu = pvr >> 16;
307 1.1 ws switch (cpu) {
308 1.1 ws case 1:
309 1.3 christos sprintf(cpu_model, "601");
310 1.1 ws break;
311 1.1 ws case 3:
312 1.3 christos sprintf(cpu_model, "603");
313 1.1 ws break;
314 1.1 ws case 4:
315 1.3 christos sprintf(cpu_model, "604");
316 1.1 ws break;
317 1.1 ws case 5:
318 1.3 christos sprintf(cpu_model, "602");
319 1.1 ws break;
320 1.1 ws case 6:
321 1.3 christos sprintf(cpu_model, "603e");
322 1.1 ws break;
323 1.1 ws case 7:
324 1.3 christos sprintf(cpu_model, "603ev");
325 1.1 ws break;
326 1.1 ws case 9:
327 1.3 christos sprintf(cpu_model, "604ev");
328 1.1 ws break;
329 1.1 ws case 20:
330 1.3 christos sprintf(cpu_model, "620");
331 1.1 ws break;
332 1.1 ws default:
333 1.3 christos sprintf(cpu_model, "Version %x", cpu);
334 1.1 ws break;
335 1.1 ws }
336 1.1 ws sprintf(cpu_model + strlen(cpu_model), " (Revision %x)", pvr & 0xffff);
337 1.3 christos printf("CPU: %s\n", cpu_model);
338 1.1 ws }
339 1.1 ws
340 1.1 ws void
341 1.1 ws install_extint(handler)
342 1.1 ws void (*handler) __P((void));
343 1.1 ws {
344 1.1 ws extern extint, extsize;
345 1.1 ws extern u_long extint_call;
346 1.1 ws u_long offset = (u_long)handler - (u_long)&extint_call;
347 1.1 ws int omsr, msr;
348 1.29 sakamoto
349 1.1 ws #ifdef DIAGNOSTIC
350 1.1 ws if (offset > 0x1ffffff)
351 1.1 ws panic("install_extint: too far away");
352 1.1 ws #endif
353 1.7 thorpej asm volatile ("mfmsr %0; andi. %1,%0,%2; mtmsr %1"
354 1.1 ws : "=r"(omsr), "=r"(msr) : "K"((u_short)~PSL_EE));
355 1.1 ws extint_call = (extint_call & 0xfc000003) | offset;
356 1.1 ws bcopy(&extint, (void *)EXC_EXI, (size_t)&extsize);
357 1.38 ws __syncicache((void *)&extint_call, sizeof extint_call);
358 1.38 ws __syncicache((void *)EXC_EXI, (int)&extsize);
359 1.1 ws asm volatile ("mtmsr %0" :: "r"(omsr));
360 1.1 ws }
361 1.1 ws
362 1.1 ws /*
363 1.1 ws * Machine dependent startup code.
364 1.1 ws */
365 1.1 ws void
366 1.1 ws cpu_startup()
367 1.1 ws {
368 1.1 ws int sz, i;
369 1.1 ws caddr_t v;
370 1.26 sakamoto paddr_t minaddr, maxaddr;
371 1.1 ws int base, residual;
372 1.40 lukem char pbuf[9];
373 1.18 sakamoto
374 1.39 thorpej proc0.p_addr = proc0paddr;
375 1.39 thorpej v = (caddr_t)proc0paddr + USPACE;
376 1.39 thorpej
377 1.18 sakamoto /*
378 1.18 sakamoto * Initialize error message buffer (at end of core).
379 1.18 sakamoto */
380 1.39 thorpej if (!(msgbuf_vaddr = uvm_km_alloc(kernel_map, round_page(MSGBUFSIZE))))
381 1.39 thorpej panic("startup: no room for message buffer");
382 1.39 thorpej for (i = 0; i < btoc(MSGBUFSIZE); i++)
383 1.39 thorpej pmap_enter(pmap_kernel(), msgbuf_vaddr + i * NBPG,
384 1.39 thorpej msgbuf_paddr + i * NBPG, VM_PROT_READ|VM_PROT_WRITE, TRUE,
385 1.39 thorpej VM_PROT_READ|VM_PROT_WRITE);
386 1.39 thorpej initmsgbuf((caddr_t)msgbuf_vaddr, round_page(MSGBUFSIZE));
387 1.1 ws
388 1.3 christos printf("%s", version);
389 1.1 ws identifycpu();
390 1.29 sakamoto
391 1.40 lukem format_bytes(pbuf, sizeof(pbuf), ctob(physmem));
392 1.40 lukem printf("total memory = %s\n", pbuf);
393 1.19 sakamoto
394 1.1 ws /*
395 1.1 ws * Find out how much space we need, allocate it,
396 1.1 ws * and then give everything true virtual addresses.
397 1.1 ws */
398 1.40 lukem sz = (int)allocsys(NULL, NULL);
399 1.19 sakamoto if ((v = (caddr_t)uvm_km_zalloc(kernel_map, round_page(sz))) == 0)
400 1.19 sakamoto panic("startup: no room for tables");
401 1.40 lukem if (allocsys(v, NULL) - v != sz)
402 1.1 ws panic("startup: table size inconsistency");
403 1.19 sakamoto
404 1.1 ws /*
405 1.1 ws * Now allocate buffers proper. They are different than the above
406 1.1 ws * in that they usually occupy more virtual memory than physical.
407 1.1 ws */
408 1.1 ws sz = MAXBSIZE * nbuf;
409 1.26 sakamoto if (uvm_map(kernel_map, (vaddr_t *)&buffers, round_page(sz),
410 1.19 sakamoto NULL, UVM_UNKNOWN_OFFSET,
411 1.19 sakamoto UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
412 1.19 sakamoto UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
413 1.19 sakamoto panic("startup: cannot allocate VM for buffers");
414 1.29 sakamoto minaddr = (vaddr_t)buffers;
415 1.1 ws base = bufpages / nbuf;
416 1.1 ws residual = bufpages % nbuf;
417 1.1 ws if (base >= MAXBSIZE) {
418 1.1 ws /* Don't want to alloc more physical mem than ever needed */
419 1.1 ws base = MAXBSIZE;
420 1.1 ws residual = 0;
421 1.1 ws }
422 1.1 ws for (i = 0; i < nbuf; i++) {
423 1.26 sakamoto vsize_t curbufsize;
424 1.26 sakamoto vaddr_t curbuf;
425 1.19 sakamoto struct vm_page *pg;
426 1.19 sakamoto
427 1.19 sakamoto /*
428 1.19 sakamoto * Each buffer has MAXBSIZE bytes of VM space allocated. Of
429 1.19 sakamoto * that MAXBSIZE space, we allocate and map (base+1) pages
430 1.19 sakamoto * for the first "residual" buffers, and then we allocate
431 1.19 sakamoto * "base" pages for the rest.
432 1.19 sakamoto */
433 1.26 sakamoto curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
434 1.19 sakamoto curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
435 1.19 sakamoto
436 1.19 sakamoto while (curbufsize) {
437 1.36 chs pg = uvm_pagealloc(NULL, 0, NULL, 0);
438 1.19 sakamoto if (pg == NULL)
439 1.19 sakamoto panic("startup: not enough memory for "
440 1.19 sakamoto "buffer cache");
441 1.19 sakamoto pmap_enter(kernel_map->pmap, curbuf,
442 1.34 mycroft VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE,
443 1.34 mycroft TRUE, VM_PROT_READ|VM_PROT_WRITE);
444 1.19 sakamoto curbuf += PAGE_SIZE;
445 1.19 sakamoto curbufsize -= PAGE_SIZE;
446 1.19 sakamoto }
447 1.1 ws }
448 1.1 ws
449 1.1 ws /*
450 1.1 ws * Allocate a submap for exec arguments. This map effectively
451 1.1 ws * limits the number of processes exec'ing at any time.
452 1.1 ws */
453 1.19 sakamoto exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
454 1.41 thorpej 16*NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
455 1.1 ws
456 1.1 ws /*
457 1.1 ws * Allocate a submap for physio
458 1.1 ws */
459 1.19 sakamoto phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
460 1.41 thorpej VM_PHYS_SIZE, 0, FALSE, NULL);
461 1.19 sakamoto
462 1.1 ws /*
463 1.37 thorpej * No need to allocate an mbuf cluster submap. Mbuf clusters
464 1.37 thorpej * are allocated via the pool allocator, and we use direct-mapped
465 1.37 thorpej * pool pages.
466 1.1 ws */
467 1.19 sakamoto
468 1.1 ws /*
469 1.1 ws * Initialize callouts.
470 1.1 ws */
471 1.1 ws callfree = callout;
472 1.1 ws for (i = 1; i < ncallout; i++)
473 1.1 ws callout[i - 1].c_next = &callout[i];
474 1.19 sakamoto
475 1.40 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
476 1.40 lukem printf("avail memory = %s\n", pbuf);
477 1.40 lukem format_bytes(pbuf, sizeof(pbuf), bufpages * CLBYTES);
478 1.40 lukem printf("using %d buffers containing %s of memory\n", nbuf, pbuf);
479 1.29 sakamoto
480 1.1 ws /*
481 1.1 ws * Set up the buffers.
482 1.1 ws */
483 1.1 ws bufinit();
484 1.1 ws
485 1.1 ws /*
486 1.7 thorpej * For now, use soft spl handling.
487 1.7 thorpej */
488 1.7 thorpej {
489 1.7 thorpej extern struct machvec soft_machvec;
490 1.7 thorpej
491 1.7 thorpej machine_interface = soft_machvec;
492 1.7 thorpej }
493 1.7 thorpej
494 1.7 thorpej /*
495 1.1 ws * Now allow hardware interrupts.
496 1.1 ws */
497 1.1 ws {
498 1.1 ws int msr;
499 1.29 sakamoto
500 1.1 ws splhigh();
501 1.7 thorpej asm volatile ("mfmsr %0; ori %0,%0,%1; mtmsr %0"
502 1.7 thorpej : "=r"(msr) : "K"((u_short)(PSL_EE|PSL_RI)));
503 1.1 ws }
504 1.1 ws }
505 1.1 ws
506 1.1 ws /*
507 1.1 ws * consinit
508 1.1 ws * Initialize system console.
509 1.1 ws */
510 1.1 ws void
511 1.1 ws consinit()
512 1.1 ws {
513 1.1 ws static int initted;
514 1.29 sakamoto
515 1.1 ws if (initted)
516 1.1 ws return;
517 1.1 ws initted = 1;
518 1.1 ws cninit();
519 1.1 ws }
520 1.1 ws
521 1.1 ws /*
522 1.7 thorpej * Set set up registers on exec.
523 1.1 ws */
524 1.1 ws void
525 1.11 mycroft setregs(p, pack, stack)
526 1.1 ws struct proc *p;
527 1.1 ws struct exec_package *pack;
528 1.1 ws u_long stack;
529 1.1 ws {
530 1.1 ws struct trapframe *tf = trapframe(p);
531 1.7 thorpej struct ps_strings arginfo;
532 1.1 ws
533 1.1 ws bzero(tf, sizeof *tf);
534 1.1 ws tf->fixreg[1] = -roundup(-stack + 8, 16);
535 1.7 thorpej
536 1.7 thorpej /*
537 1.7 thorpej * XXX Machine-independent code has already copied arguments and
538 1.7 thorpej * XXX environment to userland. Get them back here.
539 1.7 thorpej */
540 1.29 sakamoto (void)copyin((char *)PS_STRINGS, &arginfo, sizeof (arginfo));
541 1.7 thorpej
542 1.7 thorpej /*
543 1.7 thorpej * Set up arguments for _start():
544 1.7 thorpej * _start(argc, argv, envp, obj, cleanup, ps_strings);
545 1.7 thorpej *
546 1.7 thorpej * Notes:
547 1.7 thorpej * - obj and cleanup are the auxilliary and termination
548 1.7 thorpej * vectors. They are fixed up by ld.elf_so.
549 1.7 thorpej * - ps_strings is a NetBSD extention, and will be
550 1.7 thorpej * ignored by executables which are strictly
551 1.7 thorpej * compliant with the SVR4 ABI.
552 1.7 thorpej *
553 1.7 thorpej * XXX We have to set both regs and retval here due to different
554 1.7 thorpej * XXX calling convention in trap.c and init_main.c.
555 1.7 thorpej */
556 1.12 mycroft tf->fixreg[3] = arginfo.ps_nargvstr;
557 1.12 mycroft tf->fixreg[4] = (register_t)arginfo.ps_argvstr;
558 1.7 thorpej tf->fixreg[5] = (register_t)arginfo.ps_envstr;
559 1.7 thorpej tf->fixreg[6] = 0; /* auxillary vector */
560 1.7 thorpej tf->fixreg[7] = 0; /* termination vector */
561 1.7 thorpej tf->fixreg[8] = (register_t)PS_STRINGS; /* NetBSD extension */
562 1.7 thorpej
563 1.1 ws tf->srr0 = pack->ep_entry;
564 1.1 ws tf->srr1 = PSL_MBO | PSL_USERSET | PSL_FE_DFLT;
565 1.1 ws p->p_addr->u_pcb.pcb_flags = 0;
566 1.1 ws }
567 1.1 ws
568 1.1 ws /*
569 1.1 ws * Send a signal to process.
570 1.1 ws */
571 1.1 ws void
572 1.1 ws sendsig(catcher, sig, mask, code)
573 1.1 ws sig_t catcher;
574 1.27 thorpej int sig;
575 1.27 thorpej sigset_t *mask;
576 1.1 ws u_long code;
577 1.1 ws {
578 1.1 ws struct proc *p = curproc;
579 1.1 ws struct trapframe *tf;
580 1.1 ws struct sigframe *fp, frame;
581 1.1 ws struct sigacts *psp = p->p_sigacts;
582 1.27 thorpej int onstack;
583 1.27 thorpej
584 1.1 ws tf = trapframe(p);
585 1.27 thorpej
586 1.27 thorpej /* Do we need to jump onto the signal stack? */
587 1.27 thorpej onstack =
588 1.27 thorpej (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
589 1.27 thorpej (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
590 1.27 thorpej
591 1.27 thorpej /* Allocate space for the signal handler context. */
592 1.27 thorpej if (onstack)
593 1.27 thorpej fp = (struct sigframe *)((caddr_t)psp->ps_sigstk.ss_sp +
594 1.27 thorpej psp->ps_sigstk.ss_size);
595 1.27 thorpej else
596 1.1 ws fp = (struct sigframe *)tf->fixreg[1];
597 1.1 ws fp = (struct sigframe *)((int)(fp - 1) & ~0xf);
598 1.27 thorpej
599 1.27 thorpej /* Build stack frame for signal trampoline. */
600 1.27 thorpej frame.sf_signum = sig;
601 1.1 ws frame.sf_code = code;
602 1.27 thorpej
603 1.27 thorpej /* Save register context. */
604 1.27 thorpej bcopy(tf, &frame.sf_sc.sc_frame, sizeof *tf);
605 1.27 thorpej
606 1.27 thorpej /* Save signal stack. */
607 1.27 thorpej frame.sf_sc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
608 1.27 thorpej
609 1.27 thorpej /* Save signal mask. */
610 1.27 thorpej frame.sf_sc.sc_mask = *mask;
611 1.27 thorpej
612 1.27 thorpej #ifdef COMPAT_13
613 1.1 ws /*
614 1.27 thorpej * XXX We always have to save an old style signal mask because
615 1.27 thorpej * XXX we might be delivering a signal to a process which will
616 1.27 thorpej * XXX escape from the signal in a non-standard way and invoke
617 1.27 thorpej * XXX sigreturn() directly.
618 1.1 ws */
619 1.27 thorpej native_sigset_to_sigset13(mask, &frame.sf_sc.__sc_mask13);
620 1.27 thorpej #endif
621 1.27 thorpej
622 1.27 thorpej if (copyout(&frame, fp, sizeof frame) != 0) {
623 1.27 thorpej /*
624 1.27 thorpej * Process has trashed its stack; give it an illegal
625 1.27 thorpej * instructoin to halt it in its tracks.
626 1.27 thorpej */
627 1.1 ws sigexit(p, SIGILL);
628 1.28 mycroft /* NOTREACHED */
629 1.27 thorpej }
630 1.27 thorpej
631 1.27 thorpej /*
632 1.27 thorpej * Build context to run handler in.
633 1.27 thorpej */
634 1.1 ws tf->fixreg[1] = (int)fp;
635 1.1 ws tf->lr = (int)catcher;
636 1.1 ws tf->fixreg[3] = (int)sig;
637 1.1 ws tf->fixreg[4] = (int)code;
638 1.1 ws tf->fixreg[5] = (int)&frame.sf_sc;
639 1.28 mycroft tf->srr0 = (int)psp->ps_sigcode;
640 1.28 mycroft
641 1.28 mycroft /* Remember that we're now on the signal stack. */
642 1.28 mycroft if (onstack)
643 1.28 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
644 1.1 ws }
645 1.1 ws
646 1.1 ws /*
647 1.1 ws * System call to cleanup state after a signal handler returns.
648 1.1 ws */
649 1.1 ws int
650 1.27 thorpej sys___sigreturn14(p, v, retval)
651 1.1 ws struct proc *p;
652 1.1 ws void *v;
653 1.1 ws register_t *retval;
654 1.1 ws {
655 1.27 thorpej struct sys___sigreturn14_args /* {
656 1.1 ws syscallarg(struct sigcontext *) sigcntxp;
657 1.1 ws } */ *uap = v;
658 1.1 ws struct sigcontext sc;
659 1.1 ws struct trapframe *tf;
660 1.1 ws int error;
661 1.27 thorpej
662 1.27 thorpej /*
663 1.27 thorpej * The trampoline hands us the context.
664 1.27 thorpej * It is unsafe to keep track of it ourselves, in the event that a
665 1.27 thorpej * program jumps out of a signal hander.
666 1.27 thorpej */
667 1.27 thorpej if ((error = copyin(SCARG(uap, sigcntxp), &sc, sizeof sc)) != 0)
668 1.27 thorpej return (error);
669 1.27 thorpej
670 1.27 thorpej /* Restore the register context. */
671 1.1 ws tf = trapframe(p);
672 1.1 ws if ((sc.sc_frame.srr1 & PSL_USERSTATIC) != (tf->srr1 & PSL_USERSTATIC))
673 1.27 thorpej return (EINVAL);
674 1.1 ws bcopy(&sc.sc_frame, tf, sizeof *tf);
675 1.27 thorpej
676 1.27 thorpej /* Restore signal stack. */
677 1.27 thorpej if (sc.sc_onstack & SS_ONSTACK)
678 1.1 ws p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
679 1.1 ws else
680 1.1 ws p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
681 1.27 thorpej
682 1.27 thorpej /* Restore signal mask. */
683 1.27 thorpej (void) sigprocmask1(p, SIG_SETMASK, &sc.sc_mask, 0);
684 1.27 thorpej
685 1.27 thorpej return (EJUSTRETURN);
686 1.1 ws }
687 1.1 ws
688 1.1 ws /*
689 1.1 ws * Machine dependent system variables.
690 1.1 ws */
691 1.1 ws int
692 1.1 ws cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
693 1.1 ws int *name;
694 1.1 ws u_int namelen;
695 1.1 ws void *oldp;
696 1.1 ws size_t *oldlenp;
697 1.1 ws void *newp;
698 1.1 ws size_t newlen;
699 1.1 ws struct proc *p;
700 1.1 ws {
701 1.1 ws /* all sysctl names at this level are terminal */
702 1.1 ws if (namelen != 1)
703 1.29 sakamoto return (ENOTDIR);
704 1.38 ws
705 1.1 ws switch (name[0]) {
706 1.38 ws case CPU_CACHELINE:
707 1.38 ws return sysctl_rdint(oldp, oldlenp, newp, CACHELINESIZE);
708 1.1 ws default:
709 1.29 sakamoto return (EOPNOTSUPP);
710 1.1 ws }
711 1.1 ws }
712 1.1 ws
713 1.1 ws /*
714 1.1 ws * Crash dump handling.
715 1.1 ws */
716 1.1 ws u_long dumpmag = 0x8fca0101; /* magic number */
717 1.1 ws int dumpsize = 0; /* size of dump in pages */
718 1.1 ws long dumplo = -1; /* blocks */
719 1.1 ws
720 1.1 ws void
721 1.1 ws dumpsys()
722 1.1 ws {
723 1.3 christos printf("dumpsys: TBD\n");
724 1.1 ws }
725 1.1 ws
726 1.1 ws /*
727 1.1 ws * Soft networking interrupts.
728 1.1 ws */
729 1.1 ws void
730 1.1 ws softnet()
731 1.1 ws {
732 1.1 ws int isr = netisr;
733 1.1 ws
734 1.1 ws netisr = 0;
735 1.1 ws #ifdef INET
736 1.13 veego #include "arp.h"
737 1.13 veego #if NARP > 0
738 1.1 ws if (isr & (1 << NETISR_ARP))
739 1.1 ws arpintr();
740 1.1 ws #endif
741 1.1 ws if (isr & (1 << NETISR_IP))
742 1.1 ws ipintr();
743 1.42 itojun #endif
744 1.42 itojun #ifdef INET6
745 1.42 itojun if (isr & (1 << NETISR_IPV6))
746 1.42 itojun ip6intr();
747 1.1 ws #endif
748 1.1 ws #ifdef IMP
749 1.1 ws if (isr & (1 << NETISR_IMP))
750 1.1 ws impintr();
751 1.1 ws #endif
752 1.1 ws #ifdef NS
753 1.1 ws if (isr & (1 << NETISR_NS))
754 1.1 ws nsintr();
755 1.1 ws #endif
756 1.1 ws #ifdef ISO
757 1.1 ws if (isr & (1 << NETISR_ISO))
758 1.1 ws clnlintr();
759 1.1 ws #endif
760 1.1 ws #ifdef CCITT
761 1.1 ws if (isr & (1 << NETISR_CCITT))
762 1.1 ws ccittintr();
763 1.1 ws #endif
764 1.1 ws #include "ppp.h"
765 1.1 ws #if NPPP > 0
766 1.1 ws if (isr & (1 << NETISR_PPP))
767 1.1 ws pppintr();
768 1.1 ws #endif
769 1.1 ws }
770 1.1 ws
771 1.1 ws /*
772 1.1 ws * Stray interrupts.
773 1.1 ws */
774 1.1 ws void
775 1.1 ws strayintr(irq)
776 1.1 ws int irq;
777 1.1 ws {
778 1.1 ws log(LOG_ERR, "stray interrupt %d\n", irq);
779 1.1 ws }
780 1.1 ws
781 1.1 ws /*
782 1.1 ws * Halt or reboot the machine after syncing/dumping according to howto.
783 1.1 ws */
784 1.1 ws void
785 1.5 gwr cpu_reboot(howto, what)
786 1.1 ws int howto;
787 1.1 ws char *what;
788 1.1 ws {
789 1.1 ws static int syncing;
790 1.1 ws static char str[256];
791 1.1 ws char *ap = str, *ap1 = ap;
792 1.1 ws
793 1.1 ws boothowto = howto;
794 1.1 ws if (!cold && !(howto & RB_NOSYNC) && !syncing) {
795 1.1 ws syncing = 1;
796 1.1 ws vfs_shutdown(); /* sync */
797 1.1 ws resettodr(); /* set wall clock */
798 1.1 ws }
799 1.1 ws splhigh();
800 1.1 ws if (howto & RB_HALT) {
801 1.1 ws doshutdownhooks();
802 1.3 christos printf("halted\n\n");
803 1.1 ws ppc_exit();
804 1.1 ws }
805 1.1 ws if (!cold && (howto & RB_DUMP))
806 1.1 ws dumpsys();
807 1.1 ws doshutdownhooks();
808 1.3 christos printf("rebooting\n\n");
809 1.1 ws if (what && *what) {
810 1.1 ws if (strlen(what) > sizeof str - 5)
811 1.3 christos printf("boot string too large, ignored\n");
812 1.1 ws else {
813 1.1 ws strcpy(str, what);
814 1.1 ws ap1 = ap = str + strlen(str);
815 1.1 ws *ap++ = ' ';
816 1.1 ws }
817 1.1 ws }
818 1.1 ws *ap++ = '-';
819 1.1 ws if (howto & RB_SINGLE)
820 1.1 ws *ap++ = 's';
821 1.1 ws if (howto & RB_KDB)
822 1.1 ws *ap++ = 'd';
823 1.1 ws *ap++ = 0;
824 1.1 ws if (ap[-2] == '-')
825 1.1 ws *ap1 = 0;
826 1.1 ws ppc_boot(str);
827 1.1 ws }
828 1.1 ws
829 1.1 ws /*
830 1.1 ws * OpenFirmware callback routine
831 1.1 ws */
832 1.1 ws void
833 1.1 ws callback(p)
834 1.1 ws void *p;
835 1.1 ws {
836 1.1 ws panic("callback"); /* for now XXX */
837 1.1 ws }
838 1.1 ws
839 1.1 ws /*
840 1.7 thorpej * Initial Machine Interface.
841 1.1 ws */
842 1.7 thorpej static int
843 1.7 thorpej fake_spl()
844 1.7 thorpej {
845 1.7 thorpej int scratch;
846 1.7 thorpej
847 1.7 thorpej asm volatile ("mfmsr %0; andi. %0,%0,%1; mtmsr %0; isync"
848 1.7 thorpej : "=r"(scratch) : "K"((u_short)~(PSL_EE|PSL_ME)));
849 1.29 sakamoto return (-1);
850 1.7 thorpej }
851 1.7 thorpej
852 1.1 ws static void
853 1.7 thorpej fake_setsoft()
854 1.7 thorpej {
855 1.7 thorpej /* Do nothing */
856 1.7 thorpej }
857 1.7 thorpej
858 1.7 thorpej static int
859 1.1 ws fake_splx(new)
860 1.1 ws int new;
861 1.1 ws {
862 1.29 sakamoto return (fake_spl());
863 1.7 thorpej }
864 1.7 thorpej
865 1.7 thorpej static void
866 1.7 thorpej fake_clock_return(frame, nticks)
867 1.7 thorpej struct clockframe *frame;
868 1.7 thorpej int nticks;
869 1.7 thorpej {
870 1.7 thorpej /* Do nothing */
871 1.1 ws }
872 1.1 ws
873 1.1 ws static void
874 1.1 ws fake_irq_establish(irq, level, handler, arg)
875 1.1 ws int irq, level;
876 1.1 ws void (*handler) __P((void *));
877 1.1 ws void *arg;
878 1.1 ws {
879 1.1 ws panic("fake_irq_establish");
880 1.1 ws }
881