machdep.c revision 1.45 1 1.45 thorpej /* $NetBSD: machdep.c,v 1.45 1999/11/13 00:30:42 thorpej Exp $ */
2 1.1 ws
3 1.1 ws /*
4 1.1 ws * Copyright (C) 1995, 1996 Wolfgang Solfrank.
5 1.1 ws * Copyright (C) 1995, 1996 TooLs GmbH.
6 1.1 ws * All rights reserved.
7 1.1 ws *
8 1.1 ws * Redistribution and use in source and binary forms, with or without
9 1.1 ws * modification, are permitted provided that the following conditions
10 1.1 ws * are met:
11 1.1 ws * 1. Redistributions of source code must retain the above copyright
12 1.1 ws * notice, this list of conditions and the following disclaimer.
13 1.1 ws * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 ws * notice, this list of conditions and the following disclaimer in the
15 1.1 ws * documentation and/or other materials provided with the distribution.
16 1.1 ws * 3. All advertising materials mentioning features or use of this software
17 1.1 ws * must display the following acknowledgement:
18 1.1 ws * This product includes software developed by TooLs GmbH.
19 1.1 ws * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 1.1 ws * derived from this software without specific prior written permission.
21 1.1 ws *
22 1.1 ws * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 1.1 ws * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 ws * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 ws * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 1.1 ws * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 1.1 ws * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 1.1 ws * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 1.1 ws * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 1.1 ws * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 1.1 ws * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 ws */
33 1.21 jonathan
34 1.27 thorpej #include "opt_compat_netbsd.h"
35 1.21 jonathan #include "opt_ddb.h"
36 1.22 jonathan #include "opt_inet.h"
37 1.23 jonathan #include "opt_ccitt.h"
38 1.24 jonathan #include "opt_iso.h"
39 1.25 jonathan #include "opt_ns.h"
40 1.4 ws #include "ipkdb.h"
41 1.1 ws
42 1.1 ws #include <sys/param.h>
43 1.1 ws #include <sys/buf.h>
44 1.1 ws #include <sys/callout.h>
45 1.1 ws #include <sys/exec.h>
46 1.1 ws #include <sys/malloc.h>
47 1.1 ws #include <sys/map.h>
48 1.1 ws #include <sys/mbuf.h>
49 1.1 ws #include <sys/mount.h>
50 1.1 ws #include <sys/msgbuf.h>
51 1.1 ws #include <sys/proc.h>
52 1.1 ws #include <sys/reboot.h>
53 1.1 ws #include <sys/syscallargs.h>
54 1.1 ws #include <sys/syslog.h>
55 1.1 ws #include <sys/systm.h>
56 1.43 thorpej #include <sys/kernel.h>
57 1.1 ws #include <sys/user.h>
58 1.1 ws
59 1.1 ws #include <vm/vm.h>
60 1.1 ws #include <vm/vm_kern.h>
61 1.1 ws
62 1.19 sakamoto #include <uvm/uvm_extern.h>
63 1.19 sakamoto
64 1.1 ws #include <net/netisr.h>
65 1.1 ws
66 1.1 ws #include <machine/bat.h>
67 1.1 ws #include <machine/pmap.h>
68 1.1 ws #include <machine/powerpc.h>
69 1.1 ws #include <machine/trap.h>
70 1.1 ws
71 1.1 ws /*
72 1.1 ws * Global variables used here and there
73 1.1 ws */
74 1.19 sakamoto vm_map_t exec_map = NULL;
75 1.19 sakamoto vm_map_t mb_map = NULL;
76 1.19 sakamoto vm_map_t phys_map = NULL;
77 1.19 sakamoto
78 1.1 ws struct pcb *curpcb;
79 1.1 ws struct pmap *curpm;
80 1.1 ws struct proc *fpuproc;
81 1.1 ws
82 1.1 ws extern struct user *proc0paddr;
83 1.1 ws
84 1.1 ws struct bat battable[16];
85 1.1 ws
86 1.1 ws int astpending;
87 1.1 ws
88 1.1 ws char *bootpath;
89 1.1 ws
90 1.39 thorpej paddr_t msgbuf_paddr;
91 1.39 thorpej vaddr_t msgbuf_vaddr;
92 1.18 sakamoto
93 1.7 thorpej static int fake_spl __P((void));
94 1.7 thorpej static int fake_splx __P((int));
95 1.7 thorpej static void fake_setsoft __P((void));
96 1.7 thorpej static void fake_clock_return __P((struct clockframe *, int));
97 1.1 ws static void fake_irq_establish __P((int, int, void (*)(void *), void *));
98 1.1 ws
99 1.1 ws struct machvec machine_interface = {
100 1.44 wrstuden fake_spl,
101 1.7 thorpej fake_spl,
102 1.7 thorpej fake_spl,
103 1.7 thorpej fake_spl,
104 1.7 thorpej fake_spl,
105 1.7 thorpej fake_spl,
106 1.7 thorpej fake_spl,
107 1.7 thorpej fake_spl,
108 1.7 thorpej fake_spl,
109 1.7 thorpej fake_spl,
110 1.1 ws fake_splx,
111 1.7 thorpej fake_setsoft,
112 1.7 thorpej fake_setsoft,
113 1.7 thorpej fake_clock_return,
114 1.1 ws fake_irq_establish,
115 1.1 ws };
116 1.1 ws
117 1.1 ws void
118 1.1 ws initppc(startkernel, endkernel, args)
119 1.1 ws u_int startkernel, endkernel;
120 1.1 ws char *args;
121 1.1 ws {
122 1.1 ws int phandle, qhandle;
123 1.1 ws char name[32];
124 1.1 ws struct machvec *mp;
125 1.1 ws extern trapcode, trapsize;
126 1.1 ws extern dsitrap, dsisize;
127 1.1 ws extern isitrap, isisize;
128 1.1 ws extern decrint, decrsize;
129 1.1 ws extern tlbimiss, tlbimsize;
130 1.1 ws extern tlbdlmiss, tlbdlmsize;
131 1.1 ws extern tlbdsmiss, tlbdsmsize;
132 1.14 sakamoto #ifdef DDB
133 1.14 sakamoto extern ddblow, ddbsize;
134 1.14 sakamoto extern void *startsym, *endsym;
135 1.14 sakamoto #endif
136 1.4 ws #if NIPKDB > 0
137 1.4 ws extern ipkdblow, ipkdbsize;
138 1.1 ws #endif
139 1.1 ws extern void consinit __P((void));
140 1.1 ws extern void callback __P((void *));
141 1.1 ws int exc, scratch;
142 1.1 ws
143 1.1 ws proc0.p_addr = proc0paddr;
144 1.1 ws bzero(proc0.p_addr, sizeof *proc0.p_addr);
145 1.29 sakamoto
146 1.1 ws curpcb = &proc0paddr->u_pcb;
147 1.29 sakamoto
148 1.1 ws curpm = curpcb->pcb_pmreal = curpcb->pcb_pm = pmap_kernel();
149 1.29 sakamoto
150 1.1 ws /*
151 1.1 ws * i386 port says, that this shouldn't be here,
152 1.1 ws * but I really think the console should be initialized
153 1.1 ws * as early as possible.
154 1.1 ws */
155 1.1 ws consinit();
156 1.1 ws
157 1.1 ws #ifdef __notyet__ /* Needs some rethinking regarding real/virtual OFW */
158 1.1 ws OF_set_callback(callback);
159 1.1 ws #endif
160 1.1 ws /*
161 1.1 ws * Initialize BAT registers to unmapped to not generate
162 1.1 ws * overlapping mappings below.
163 1.1 ws */
164 1.1 ws asm volatile ("mtibatu 0,%0" :: "r"(0));
165 1.1 ws asm volatile ("mtibatu 1,%0" :: "r"(0));
166 1.1 ws asm volatile ("mtibatu 2,%0" :: "r"(0));
167 1.1 ws asm volatile ("mtibatu 3,%0" :: "r"(0));
168 1.1 ws asm volatile ("mtdbatu 0,%0" :: "r"(0));
169 1.1 ws asm volatile ("mtdbatu 1,%0" :: "r"(0));
170 1.1 ws asm volatile ("mtdbatu 2,%0" :: "r"(0));
171 1.1 ws asm volatile ("mtdbatu 3,%0" :: "r"(0));
172 1.29 sakamoto
173 1.1 ws /*
174 1.1 ws * Set up initial BAT table to only map the lowest 256 MB area
175 1.1 ws */
176 1.1 ws battable[0].batl = BATL(0x00000000, BAT_M);
177 1.1 ws battable[0].batu = BATU(0x00000000);
178 1.1 ws
179 1.1 ws /*
180 1.1 ws * Now setup fixed bat registers
181 1.1 ws *
182 1.1 ws * Note that we still run in real mode, and the BAT
183 1.1 ws * registers were cleared above.
184 1.1 ws */
185 1.1 ws /* IBAT0 used for initial 256 MB segment */
186 1.1 ws asm volatile ("mtibatl 0,%0; mtibatu 0,%1"
187 1.1 ws :: "r"(battable[0].batl), "r"(battable[0].batu));
188 1.1 ws /* DBAT0 used similar */
189 1.1 ws asm volatile ("mtdbatl 0,%0; mtdbatu 0,%1"
190 1.1 ws :: "r"(battable[0].batl), "r"(battable[0].batu));
191 1.29 sakamoto
192 1.1 ws /*
193 1.1 ws * Set up trap vectors
194 1.1 ws */
195 1.1 ws for (exc = EXC_RSVD; exc <= EXC_LAST; exc += 0x100)
196 1.1 ws switch (exc) {
197 1.1 ws default:
198 1.1 ws bcopy(&trapcode, (void *)exc, (size_t)&trapsize);
199 1.1 ws break;
200 1.1 ws case EXC_EXI:
201 1.1 ws /*
202 1.1 ws * This one is (potentially) installed during autoconf
203 1.1 ws */
204 1.1 ws break;
205 1.1 ws case EXC_DSI:
206 1.1 ws bcopy(&dsitrap, (void *)EXC_DSI, (size_t)&dsisize);
207 1.1 ws break;
208 1.1 ws case EXC_ISI:
209 1.1 ws bcopy(&isitrap, (void *)EXC_ISI, (size_t)&isisize);
210 1.1 ws break;
211 1.1 ws case EXC_DECR:
212 1.1 ws bcopy(&decrint, (void *)EXC_DECR, (size_t)&decrsize);
213 1.1 ws break;
214 1.1 ws case EXC_IMISS:
215 1.1 ws bcopy(&tlbimiss, (void *)EXC_IMISS, (size_t)&tlbimsize);
216 1.1 ws break;
217 1.1 ws case EXC_DLMISS:
218 1.1 ws bcopy(&tlbdlmiss, (void *)EXC_DLMISS, (size_t)&tlbdlmsize);
219 1.1 ws break;
220 1.1 ws case EXC_DSMISS:
221 1.1 ws bcopy(&tlbdsmiss, (void *)EXC_DSMISS, (size_t)&tlbdsmsize);
222 1.1 ws break;
223 1.15 thorpej #if defined(DDB) || NIPKDB > 0
224 1.14 sakamoto case EXC_PGM:
225 1.14 sakamoto case EXC_TRC:
226 1.14 sakamoto case EXC_BPT:
227 1.15 thorpej #if defined(DDB)
228 1.14 sakamoto bcopy(&ddblow, (void *)exc, (size_t)&ddbsize);
229 1.15 thorpej #else
230 1.15 thorpej bcopy(&ipkdblow, (void *)exc, (size_t)&ipkdbsize);
231 1.14 sakamoto #endif
232 1.1 ws break;
233 1.15 thorpej #endif /* DDB || NIPKDB > 0 */
234 1.1 ws }
235 1.1 ws
236 1.38 ws __syncicache((void *)EXC_RST, EXC_LAST - EXC_RST + 0x100);
237 1.1 ws
238 1.1 ws /*
239 1.1 ws * Now enable translation (and machine checks/recoverable interrupts).
240 1.1 ws */
241 1.1 ws asm volatile ("mfmsr %0; ori %0,%0,%1; mtmsr %0; isync"
242 1.1 ws : "=r"(scratch) : "K"(PSL_IR|PSL_DR|PSL_ME|PSL_RI));
243 1.1 ws
244 1.1 ws /*
245 1.1 ws * Parse arg string.
246 1.1 ws */
247 1.1 ws bootpath = args;
248 1.7 thorpej while (*++args && *args != ' ');
249 1.1 ws if (*args) {
250 1.1 ws *args++ = 0;
251 1.1 ws while (*args) {
252 1.1 ws switch (*args++) {
253 1.1 ws case 'a':
254 1.1 ws boothowto |= RB_ASKNAME;
255 1.1 ws break;
256 1.1 ws case 's':
257 1.1 ws boothowto |= RB_SINGLE;
258 1.1 ws break;
259 1.1 ws case 'd':
260 1.1 ws boothowto |= RB_KDB;
261 1.1 ws break;
262 1.1 ws }
263 1.1 ws }
264 1.29 sakamoto }
265 1.1 ws
266 1.14 sakamoto #ifdef DDB
267 1.31 thorpej /* ddb_init((int)(endsym - startsym), startsym, endsym); */
268 1.14 sakamoto #endif
269 1.4 ws #if NIPKDB > 0
270 1.1 ws /*
271 1.4 ws * Now trap to IPKDB
272 1.1 ws */
273 1.4 ws ipkdb_init();
274 1.1 ws if (boothowto & RB_KDB)
275 1.4 ws ipkdb_connect(0);
276 1.1 ws #endif
277 1.16 thorpej
278 1.16 thorpej /*
279 1.16 thorpej * Set the page size.
280 1.16 thorpej */
281 1.19 sakamoto uvm_setpagesize();
282 1.1 ws
283 1.1 ws /*
284 1.1 ws * Initialize pmap module.
285 1.1 ws */
286 1.1 ws pmap_bootstrap(startkernel, endkernel);
287 1.1 ws }
288 1.1 ws
289 1.1 ws /*
290 1.1 ws * This should probably be in autoconf! XXX
291 1.1 ws */
292 1.1 ws int cpu;
293 1.1 ws char cpu_model[80];
294 1.9 veego char machine[] = MACHINE; /* from <machine/param.h> */
295 1.9 veego char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
296 1.1 ws
297 1.1 ws void
298 1.1 ws identifycpu()
299 1.1 ws {
300 1.1 ws int phandle, pvr;
301 1.1 ws char name[32];
302 1.1 ws
303 1.1 ws /*
304 1.1 ws * Find cpu type (Do it by OpenFirmware?)
305 1.1 ws */
306 1.1 ws asm ("mfpvr %0" : "=r"(pvr));
307 1.1 ws cpu = pvr >> 16;
308 1.1 ws switch (cpu) {
309 1.1 ws case 1:
310 1.3 christos sprintf(cpu_model, "601");
311 1.1 ws break;
312 1.1 ws case 3:
313 1.3 christos sprintf(cpu_model, "603");
314 1.1 ws break;
315 1.1 ws case 4:
316 1.3 christos sprintf(cpu_model, "604");
317 1.1 ws break;
318 1.1 ws case 5:
319 1.3 christos sprintf(cpu_model, "602");
320 1.1 ws break;
321 1.1 ws case 6:
322 1.3 christos sprintf(cpu_model, "603e");
323 1.1 ws break;
324 1.1 ws case 7:
325 1.3 christos sprintf(cpu_model, "603ev");
326 1.1 ws break;
327 1.1 ws case 9:
328 1.3 christos sprintf(cpu_model, "604ev");
329 1.1 ws break;
330 1.1 ws case 20:
331 1.3 christos sprintf(cpu_model, "620");
332 1.1 ws break;
333 1.1 ws default:
334 1.3 christos sprintf(cpu_model, "Version %x", cpu);
335 1.1 ws break;
336 1.1 ws }
337 1.1 ws sprintf(cpu_model + strlen(cpu_model), " (Revision %x)", pvr & 0xffff);
338 1.3 christos printf("CPU: %s\n", cpu_model);
339 1.1 ws }
340 1.1 ws
341 1.1 ws void
342 1.1 ws install_extint(handler)
343 1.1 ws void (*handler) __P((void));
344 1.1 ws {
345 1.1 ws extern extint, extsize;
346 1.1 ws extern u_long extint_call;
347 1.1 ws u_long offset = (u_long)handler - (u_long)&extint_call;
348 1.1 ws int omsr, msr;
349 1.29 sakamoto
350 1.1 ws #ifdef DIAGNOSTIC
351 1.1 ws if (offset > 0x1ffffff)
352 1.1 ws panic("install_extint: too far away");
353 1.1 ws #endif
354 1.7 thorpej asm volatile ("mfmsr %0; andi. %1,%0,%2; mtmsr %1"
355 1.1 ws : "=r"(omsr), "=r"(msr) : "K"((u_short)~PSL_EE));
356 1.1 ws extint_call = (extint_call & 0xfc000003) | offset;
357 1.1 ws bcopy(&extint, (void *)EXC_EXI, (size_t)&extsize);
358 1.38 ws __syncicache((void *)&extint_call, sizeof extint_call);
359 1.38 ws __syncicache((void *)EXC_EXI, (int)&extsize);
360 1.1 ws asm volatile ("mtmsr %0" :: "r"(omsr));
361 1.1 ws }
362 1.1 ws
363 1.1 ws /*
364 1.1 ws * Machine dependent startup code.
365 1.1 ws */
366 1.1 ws void
367 1.1 ws cpu_startup()
368 1.1 ws {
369 1.1 ws int sz, i;
370 1.1 ws caddr_t v;
371 1.26 sakamoto paddr_t minaddr, maxaddr;
372 1.1 ws int base, residual;
373 1.40 lukem char pbuf[9];
374 1.18 sakamoto
375 1.39 thorpej proc0.p_addr = proc0paddr;
376 1.39 thorpej v = (caddr_t)proc0paddr + USPACE;
377 1.39 thorpej
378 1.18 sakamoto /*
379 1.18 sakamoto * Initialize error message buffer (at end of core).
380 1.18 sakamoto */
381 1.39 thorpej if (!(msgbuf_vaddr = uvm_km_alloc(kernel_map, round_page(MSGBUFSIZE))))
382 1.39 thorpej panic("startup: no room for message buffer");
383 1.39 thorpej for (i = 0; i < btoc(MSGBUFSIZE); i++)
384 1.39 thorpej pmap_enter(pmap_kernel(), msgbuf_vaddr + i * NBPG,
385 1.45 thorpej msgbuf_paddr + i * NBPG, VM_PROT_READ|VM_PROT_WRITE,
386 1.45 thorpej VM_PROT_READ|VM_PROT_WRITE|PMAP_WIRED);
387 1.39 thorpej initmsgbuf((caddr_t)msgbuf_vaddr, round_page(MSGBUFSIZE));
388 1.1 ws
389 1.3 christos printf("%s", version);
390 1.1 ws identifycpu();
391 1.29 sakamoto
392 1.40 lukem format_bytes(pbuf, sizeof(pbuf), ctob(physmem));
393 1.40 lukem printf("total memory = %s\n", pbuf);
394 1.19 sakamoto
395 1.1 ws /*
396 1.1 ws * Find out how much space we need, allocate it,
397 1.1 ws * and then give everything true virtual addresses.
398 1.1 ws */
399 1.40 lukem sz = (int)allocsys(NULL, NULL);
400 1.19 sakamoto if ((v = (caddr_t)uvm_km_zalloc(kernel_map, round_page(sz))) == 0)
401 1.19 sakamoto panic("startup: no room for tables");
402 1.40 lukem if (allocsys(v, NULL) - v != sz)
403 1.1 ws panic("startup: table size inconsistency");
404 1.19 sakamoto
405 1.1 ws /*
406 1.1 ws * Now allocate buffers proper. They are different than the above
407 1.1 ws * in that they usually occupy more virtual memory than physical.
408 1.1 ws */
409 1.1 ws sz = MAXBSIZE * nbuf;
410 1.26 sakamoto if (uvm_map(kernel_map, (vaddr_t *)&buffers, round_page(sz),
411 1.19 sakamoto NULL, UVM_UNKNOWN_OFFSET,
412 1.19 sakamoto UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
413 1.19 sakamoto UVM_ADV_NORMAL, 0)) != KERN_SUCCESS)
414 1.19 sakamoto panic("startup: cannot allocate VM for buffers");
415 1.29 sakamoto minaddr = (vaddr_t)buffers;
416 1.1 ws base = bufpages / nbuf;
417 1.1 ws residual = bufpages % nbuf;
418 1.1 ws if (base >= MAXBSIZE) {
419 1.1 ws /* Don't want to alloc more physical mem than ever needed */
420 1.1 ws base = MAXBSIZE;
421 1.1 ws residual = 0;
422 1.1 ws }
423 1.1 ws for (i = 0; i < nbuf; i++) {
424 1.26 sakamoto vsize_t curbufsize;
425 1.26 sakamoto vaddr_t curbuf;
426 1.19 sakamoto struct vm_page *pg;
427 1.19 sakamoto
428 1.19 sakamoto /*
429 1.19 sakamoto * Each buffer has MAXBSIZE bytes of VM space allocated. Of
430 1.19 sakamoto * that MAXBSIZE space, we allocate and map (base+1) pages
431 1.19 sakamoto * for the first "residual" buffers, and then we allocate
432 1.19 sakamoto * "base" pages for the rest.
433 1.19 sakamoto */
434 1.26 sakamoto curbuf = (vaddr_t) buffers + (i * MAXBSIZE);
435 1.19 sakamoto curbufsize = CLBYTES * ((i < residual) ? (base+1) : base);
436 1.19 sakamoto
437 1.19 sakamoto while (curbufsize) {
438 1.36 chs pg = uvm_pagealloc(NULL, 0, NULL, 0);
439 1.19 sakamoto if (pg == NULL)
440 1.19 sakamoto panic("startup: not enough memory for "
441 1.19 sakamoto "buffer cache");
442 1.19 sakamoto pmap_enter(kernel_map->pmap, curbuf,
443 1.34 mycroft VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE,
444 1.34 mycroft TRUE, VM_PROT_READ|VM_PROT_WRITE);
445 1.19 sakamoto curbuf += PAGE_SIZE;
446 1.19 sakamoto curbufsize -= PAGE_SIZE;
447 1.19 sakamoto }
448 1.1 ws }
449 1.1 ws
450 1.1 ws /*
451 1.1 ws * Allocate a submap for exec arguments. This map effectively
452 1.1 ws * limits the number of processes exec'ing at any time.
453 1.1 ws */
454 1.19 sakamoto exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
455 1.41 thorpej 16*NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
456 1.1 ws
457 1.1 ws /*
458 1.1 ws * Allocate a submap for physio
459 1.1 ws */
460 1.19 sakamoto phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
461 1.41 thorpej VM_PHYS_SIZE, 0, FALSE, NULL);
462 1.19 sakamoto
463 1.1 ws /*
464 1.37 thorpej * No need to allocate an mbuf cluster submap. Mbuf clusters
465 1.37 thorpej * are allocated via the pool allocator, and we use direct-mapped
466 1.37 thorpej * pool pages.
467 1.1 ws */
468 1.19 sakamoto
469 1.1 ws /*
470 1.1 ws * Initialize callouts.
471 1.1 ws */
472 1.1 ws callfree = callout;
473 1.1 ws for (i = 1; i < ncallout; i++)
474 1.1 ws callout[i - 1].c_next = &callout[i];
475 1.19 sakamoto
476 1.40 lukem format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
477 1.40 lukem printf("avail memory = %s\n", pbuf);
478 1.40 lukem format_bytes(pbuf, sizeof(pbuf), bufpages * CLBYTES);
479 1.40 lukem printf("using %d buffers containing %s of memory\n", nbuf, pbuf);
480 1.29 sakamoto
481 1.1 ws /*
482 1.1 ws * Set up the buffers.
483 1.1 ws */
484 1.1 ws bufinit();
485 1.1 ws
486 1.1 ws /*
487 1.7 thorpej * For now, use soft spl handling.
488 1.7 thorpej */
489 1.7 thorpej {
490 1.7 thorpej extern struct machvec soft_machvec;
491 1.7 thorpej
492 1.7 thorpej machine_interface = soft_machvec;
493 1.7 thorpej }
494 1.7 thorpej
495 1.7 thorpej /*
496 1.1 ws * Now allow hardware interrupts.
497 1.1 ws */
498 1.1 ws {
499 1.1 ws int msr;
500 1.29 sakamoto
501 1.1 ws splhigh();
502 1.7 thorpej asm volatile ("mfmsr %0; ori %0,%0,%1; mtmsr %0"
503 1.7 thorpej : "=r"(msr) : "K"((u_short)(PSL_EE|PSL_RI)));
504 1.1 ws }
505 1.1 ws }
506 1.1 ws
507 1.1 ws /*
508 1.1 ws * consinit
509 1.1 ws * Initialize system console.
510 1.1 ws */
511 1.1 ws void
512 1.1 ws consinit()
513 1.1 ws {
514 1.1 ws static int initted;
515 1.29 sakamoto
516 1.1 ws if (initted)
517 1.1 ws return;
518 1.1 ws initted = 1;
519 1.1 ws cninit();
520 1.1 ws }
521 1.1 ws
522 1.1 ws /*
523 1.7 thorpej * Set set up registers on exec.
524 1.1 ws */
525 1.1 ws void
526 1.11 mycroft setregs(p, pack, stack)
527 1.1 ws struct proc *p;
528 1.1 ws struct exec_package *pack;
529 1.1 ws u_long stack;
530 1.1 ws {
531 1.1 ws struct trapframe *tf = trapframe(p);
532 1.7 thorpej struct ps_strings arginfo;
533 1.1 ws
534 1.1 ws bzero(tf, sizeof *tf);
535 1.1 ws tf->fixreg[1] = -roundup(-stack + 8, 16);
536 1.7 thorpej
537 1.7 thorpej /*
538 1.7 thorpej * XXX Machine-independent code has already copied arguments and
539 1.7 thorpej * XXX environment to userland. Get them back here.
540 1.7 thorpej */
541 1.29 sakamoto (void)copyin((char *)PS_STRINGS, &arginfo, sizeof (arginfo));
542 1.7 thorpej
543 1.7 thorpej /*
544 1.7 thorpej * Set up arguments for _start():
545 1.7 thorpej * _start(argc, argv, envp, obj, cleanup, ps_strings);
546 1.7 thorpej *
547 1.7 thorpej * Notes:
548 1.7 thorpej * - obj and cleanup are the auxilliary and termination
549 1.7 thorpej * vectors. They are fixed up by ld.elf_so.
550 1.7 thorpej * - ps_strings is a NetBSD extention, and will be
551 1.7 thorpej * ignored by executables which are strictly
552 1.7 thorpej * compliant with the SVR4 ABI.
553 1.7 thorpej *
554 1.7 thorpej * XXX We have to set both regs and retval here due to different
555 1.7 thorpej * XXX calling convention in trap.c and init_main.c.
556 1.7 thorpej */
557 1.12 mycroft tf->fixreg[3] = arginfo.ps_nargvstr;
558 1.12 mycroft tf->fixreg[4] = (register_t)arginfo.ps_argvstr;
559 1.7 thorpej tf->fixreg[5] = (register_t)arginfo.ps_envstr;
560 1.7 thorpej tf->fixreg[6] = 0; /* auxillary vector */
561 1.7 thorpej tf->fixreg[7] = 0; /* termination vector */
562 1.7 thorpej tf->fixreg[8] = (register_t)PS_STRINGS; /* NetBSD extension */
563 1.7 thorpej
564 1.1 ws tf->srr0 = pack->ep_entry;
565 1.1 ws tf->srr1 = PSL_MBO | PSL_USERSET | PSL_FE_DFLT;
566 1.1 ws p->p_addr->u_pcb.pcb_flags = 0;
567 1.1 ws }
568 1.1 ws
569 1.1 ws /*
570 1.1 ws * Send a signal to process.
571 1.1 ws */
572 1.1 ws void
573 1.1 ws sendsig(catcher, sig, mask, code)
574 1.1 ws sig_t catcher;
575 1.27 thorpej int sig;
576 1.27 thorpej sigset_t *mask;
577 1.1 ws u_long code;
578 1.1 ws {
579 1.1 ws struct proc *p = curproc;
580 1.1 ws struct trapframe *tf;
581 1.1 ws struct sigframe *fp, frame;
582 1.1 ws struct sigacts *psp = p->p_sigacts;
583 1.27 thorpej int onstack;
584 1.27 thorpej
585 1.1 ws tf = trapframe(p);
586 1.27 thorpej
587 1.27 thorpej /* Do we need to jump onto the signal stack? */
588 1.27 thorpej onstack =
589 1.27 thorpej (psp->ps_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
590 1.27 thorpej (psp->ps_sigact[sig].sa_flags & SA_ONSTACK) != 0;
591 1.27 thorpej
592 1.27 thorpej /* Allocate space for the signal handler context. */
593 1.27 thorpej if (onstack)
594 1.27 thorpej fp = (struct sigframe *)((caddr_t)psp->ps_sigstk.ss_sp +
595 1.27 thorpej psp->ps_sigstk.ss_size);
596 1.27 thorpej else
597 1.1 ws fp = (struct sigframe *)tf->fixreg[1];
598 1.1 ws fp = (struct sigframe *)((int)(fp - 1) & ~0xf);
599 1.27 thorpej
600 1.27 thorpej /* Build stack frame for signal trampoline. */
601 1.27 thorpej frame.sf_signum = sig;
602 1.1 ws frame.sf_code = code;
603 1.27 thorpej
604 1.27 thorpej /* Save register context. */
605 1.27 thorpej bcopy(tf, &frame.sf_sc.sc_frame, sizeof *tf);
606 1.27 thorpej
607 1.27 thorpej /* Save signal stack. */
608 1.27 thorpej frame.sf_sc.sc_onstack = psp->ps_sigstk.ss_flags & SS_ONSTACK;
609 1.27 thorpej
610 1.27 thorpej /* Save signal mask. */
611 1.27 thorpej frame.sf_sc.sc_mask = *mask;
612 1.27 thorpej
613 1.27 thorpej #ifdef COMPAT_13
614 1.1 ws /*
615 1.27 thorpej * XXX We always have to save an old style signal mask because
616 1.27 thorpej * XXX we might be delivering a signal to a process which will
617 1.27 thorpej * XXX escape from the signal in a non-standard way and invoke
618 1.27 thorpej * XXX sigreturn() directly.
619 1.1 ws */
620 1.27 thorpej native_sigset_to_sigset13(mask, &frame.sf_sc.__sc_mask13);
621 1.27 thorpej #endif
622 1.27 thorpej
623 1.27 thorpej if (copyout(&frame, fp, sizeof frame) != 0) {
624 1.27 thorpej /*
625 1.27 thorpej * Process has trashed its stack; give it an illegal
626 1.27 thorpej * instructoin to halt it in its tracks.
627 1.27 thorpej */
628 1.1 ws sigexit(p, SIGILL);
629 1.28 mycroft /* NOTREACHED */
630 1.27 thorpej }
631 1.27 thorpej
632 1.27 thorpej /*
633 1.27 thorpej * Build context to run handler in.
634 1.27 thorpej */
635 1.1 ws tf->fixreg[1] = (int)fp;
636 1.1 ws tf->lr = (int)catcher;
637 1.1 ws tf->fixreg[3] = (int)sig;
638 1.1 ws tf->fixreg[4] = (int)code;
639 1.1 ws tf->fixreg[5] = (int)&frame.sf_sc;
640 1.28 mycroft tf->srr0 = (int)psp->ps_sigcode;
641 1.28 mycroft
642 1.28 mycroft /* Remember that we're now on the signal stack. */
643 1.28 mycroft if (onstack)
644 1.28 mycroft psp->ps_sigstk.ss_flags |= SS_ONSTACK;
645 1.1 ws }
646 1.1 ws
647 1.1 ws /*
648 1.1 ws * System call to cleanup state after a signal handler returns.
649 1.1 ws */
650 1.1 ws int
651 1.27 thorpej sys___sigreturn14(p, v, retval)
652 1.1 ws struct proc *p;
653 1.1 ws void *v;
654 1.1 ws register_t *retval;
655 1.1 ws {
656 1.27 thorpej struct sys___sigreturn14_args /* {
657 1.1 ws syscallarg(struct sigcontext *) sigcntxp;
658 1.1 ws } */ *uap = v;
659 1.1 ws struct sigcontext sc;
660 1.1 ws struct trapframe *tf;
661 1.1 ws int error;
662 1.27 thorpej
663 1.27 thorpej /*
664 1.27 thorpej * The trampoline hands us the context.
665 1.27 thorpej * It is unsafe to keep track of it ourselves, in the event that a
666 1.27 thorpej * program jumps out of a signal hander.
667 1.27 thorpej */
668 1.27 thorpej if ((error = copyin(SCARG(uap, sigcntxp), &sc, sizeof sc)) != 0)
669 1.27 thorpej return (error);
670 1.27 thorpej
671 1.27 thorpej /* Restore the register context. */
672 1.1 ws tf = trapframe(p);
673 1.1 ws if ((sc.sc_frame.srr1 & PSL_USERSTATIC) != (tf->srr1 & PSL_USERSTATIC))
674 1.27 thorpej return (EINVAL);
675 1.1 ws bcopy(&sc.sc_frame, tf, sizeof *tf);
676 1.27 thorpej
677 1.27 thorpej /* Restore signal stack. */
678 1.27 thorpej if (sc.sc_onstack & SS_ONSTACK)
679 1.1 ws p->p_sigacts->ps_sigstk.ss_flags |= SS_ONSTACK;
680 1.1 ws else
681 1.1 ws p->p_sigacts->ps_sigstk.ss_flags &= ~SS_ONSTACK;
682 1.27 thorpej
683 1.27 thorpej /* Restore signal mask. */
684 1.27 thorpej (void) sigprocmask1(p, SIG_SETMASK, &sc.sc_mask, 0);
685 1.27 thorpej
686 1.27 thorpej return (EJUSTRETURN);
687 1.1 ws }
688 1.1 ws
689 1.1 ws /*
690 1.1 ws * Machine dependent system variables.
691 1.1 ws */
692 1.1 ws int
693 1.1 ws cpu_sysctl(name, namelen, oldp, oldlenp, newp, newlen, p)
694 1.1 ws int *name;
695 1.1 ws u_int namelen;
696 1.1 ws void *oldp;
697 1.1 ws size_t *oldlenp;
698 1.1 ws void *newp;
699 1.1 ws size_t newlen;
700 1.1 ws struct proc *p;
701 1.1 ws {
702 1.1 ws /* all sysctl names at this level are terminal */
703 1.1 ws if (namelen != 1)
704 1.29 sakamoto return (ENOTDIR);
705 1.38 ws
706 1.1 ws switch (name[0]) {
707 1.38 ws case CPU_CACHELINE:
708 1.38 ws return sysctl_rdint(oldp, oldlenp, newp, CACHELINESIZE);
709 1.1 ws default:
710 1.29 sakamoto return (EOPNOTSUPP);
711 1.1 ws }
712 1.1 ws }
713 1.1 ws
714 1.1 ws /*
715 1.1 ws * Crash dump handling.
716 1.1 ws */
717 1.1 ws u_long dumpmag = 0x8fca0101; /* magic number */
718 1.1 ws int dumpsize = 0; /* size of dump in pages */
719 1.1 ws long dumplo = -1; /* blocks */
720 1.1 ws
721 1.1 ws void
722 1.1 ws dumpsys()
723 1.1 ws {
724 1.3 christos printf("dumpsys: TBD\n");
725 1.1 ws }
726 1.1 ws
727 1.1 ws /*
728 1.1 ws * Soft networking interrupts.
729 1.1 ws */
730 1.1 ws void
731 1.1 ws softnet()
732 1.1 ws {
733 1.1 ws int isr = netisr;
734 1.1 ws
735 1.1 ws netisr = 0;
736 1.1 ws #ifdef INET
737 1.13 veego #include "arp.h"
738 1.13 veego #if NARP > 0
739 1.1 ws if (isr & (1 << NETISR_ARP))
740 1.1 ws arpintr();
741 1.1 ws #endif
742 1.1 ws if (isr & (1 << NETISR_IP))
743 1.1 ws ipintr();
744 1.42 itojun #endif
745 1.42 itojun #ifdef INET6
746 1.42 itojun if (isr & (1 << NETISR_IPV6))
747 1.42 itojun ip6intr();
748 1.1 ws #endif
749 1.1 ws #ifdef IMP
750 1.1 ws if (isr & (1 << NETISR_IMP))
751 1.1 ws impintr();
752 1.1 ws #endif
753 1.1 ws #ifdef NS
754 1.1 ws if (isr & (1 << NETISR_NS))
755 1.1 ws nsintr();
756 1.1 ws #endif
757 1.1 ws #ifdef ISO
758 1.1 ws if (isr & (1 << NETISR_ISO))
759 1.1 ws clnlintr();
760 1.1 ws #endif
761 1.1 ws #ifdef CCITT
762 1.1 ws if (isr & (1 << NETISR_CCITT))
763 1.1 ws ccittintr();
764 1.1 ws #endif
765 1.1 ws #include "ppp.h"
766 1.1 ws #if NPPP > 0
767 1.1 ws if (isr & (1 << NETISR_PPP))
768 1.1 ws pppintr();
769 1.1 ws #endif
770 1.1 ws }
771 1.1 ws
772 1.1 ws /*
773 1.1 ws * Stray interrupts.
774 1.1 ws */
775 1.1 ws void
776 1.1 ws strayintr(irq)
777 1.1 ws int irq;
778 1.1 ws {
779 1.1 ws log(LOG_ERR, "stray interrupt %d\n", irq);
780 1.1 ws }
781 1.1 ws
782 1.1 ws /*
783 1.1 ws * Halt or reboot the machine after syncing/dumping according to howto.
784 1.1 ws */
785 1.1 ws void
786 1.5 gwr cpu_reboot(howto, what)
787 1.1 ws int howto;
788 1.1 ws char *what;
789 1.1 ws {
790 1.1 ws static int syncing;
791 1.1 ws static char str[256];
792 1.1 ws char *ap = str, *ap1 = ap;
793 1.1 ws
794 1.1 ws boothowto = howto;
795 1.1 ws if (!cold && !(howto & RB_NOSYNC) && !syncing) {
796 1.1 ws syncing = 1;
797 1.1 ws vfs_shutdown(); /* sync */
798 1.1 ws resettodr(); /* set wall clock */
799 1.1 ws }
800 1.1 ws splhigh();
801 1.1 ws if (howto & RB_HALT) {
802 1.1 ws doshutdownhooks();
803 1.3 christos printf("halted\n\n");
804 1.1 ws ppc_exit();
805 1.1 ws }
806 1.1 ws if (!cold && (howto & RB_DUMP))
807 1.1 ws dumpsys();
808 1.1 ws doshutdownhooks();
809 1.3 christos printf("rebooting\n\n");
810 1.1 ws if (what && *what) {
811 1.1 ws if (strlen(what) > sizeof str - 5)
812 1.3 christos printf("boot string too large, ignored\n");
813 1.1 ws else {
814 1.1 ws strcpy(str, what);
815 1.1 ws ap1 = ap = str + strlen(str);
816 1.1 ws *ap++ = ' ';
817 1.1 ws }
818 1.1 ws }
819 1.1 ws *ap++ = '-';
820 1.1 ws if (howto & RB_SINGLE)
821 1.1 ws *ap++ = 's';
822 1.1 ws if (howto & RB_KDB)
823 1.1 ws *ap++ = 'd';
824 1.1 ws *ap++ = 0;
825 1.1 ws if (ap[-2] == '-')
826 1.1 ws *ap1 = 0;
827 1.1 ws ppc_boot(str);
828 1.1 ws }
829 1.1 ws
830 1.1 ws /*
831 1.1 ws * OpenFirmware callback routine
832 1.1 ws */
833 1.1 ws void
834 1.1 ws callback(p)
835 1.1 ws void *p;
836 1.1 ws {
837 1.1 ws panic("callback"); /* for now XXX */
838 1.1 ws }
839 1.1 ws
840 1.1 ws /*
841 1.7 thorpej * Initial Machine Interface.
842 1.1 ws */
843 1.7 thorpej static int
844 1.7 thorpej fake_spl()
845 1.7 thorpej {
846 1.7 thorpej int scratch;
847 1.7 thorpej
848 1.7 thorpej asm volatile ("mfmsr %0; andi. %0,%0,%1; mtmsr %0; isync"
849 1.7 thorpej : "=r"(scratch) : "K"((u_short)~(PSL_EE|PSL_ME)));
850 1.29 sakamoto return (-1);
851 1.7 thorpej }
852 1.7 thorpej
853 1.1 ws static void
854 1.7 thorpej fake_setsoft()
855 1.7 thorpej {
856 1.7 thorpej /* Do nothing */
857 1.7 thorpej }
858 1.7 thorpej
859 1.7 thorpej static int
860 1.1 ws fake_splx(new)
861 1.1 ws int new;
862 1.1 ws {
863 1.29 sakamoto return (fake_spl());
864 1.7 thorpej }
865 1.7 thorpej
866 1.7 thorpej static void
867 1.7 thorpej fake_clock_return(frame, nticks)
868 1.7 thorpej struct clockframe *frame;
869 1.7 thorpej int nticks;
870 1.7 thorpej {
871 1.7 thorpej /* Do nothing */
872 1.1 ws }
873 1.1 ws
874 1.1 ws static void
875 1.1 ws fake_irq_establish(irq, level, handler, arg)
876 1.1 ws int irq, level;
877 1.1 ws void (*handler) __P((void *));
878 1.1 ws void *arg;
879 1.1 ws {
880 1.1 ws panic("fake_irq_establish");
881 1.1 ws }
882