1 1.35 thorpej /* $NetBSD: booke_machdep.c,v 1.35 2024/03/05 14:15:34 thorpej Exp $ */ 2 1.2 matt /*- 3 1.2 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc. 4 1.2 matt * All rights reserved. 5 1.2 matt * 6 1.2 matt * This code is derived from software contributed to The NetBSD Foundation 7 1.2 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects 8 1.2 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry. 9 1.2 matt * 10 1.2 matt * This material is based upon work supported by the Defense Advanced Research 11 1.2 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under 12 1.2 matt * Contract No. N66001-09-C-2073. 13 1.2 matt * Approved for Public Release, Distribution Unlimited 14 1.2 matt * 15 1.2 matt * Redistribution and use in source and binary forms, with or without 16 1.2 matt * modification, are permitted provided that the following conditions 17 1.2 matt * are met: 18 1.2 matt * 1. Redistributions of source code must retain the above copyright 19 1.2 matt * notice, this list of conditions and the following disclaimer. 20 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright 21 1.2 matt * notice, this list of conditions and the following disclaimer in the 22 1.2 matt * documentation and/or other materials provided with the distribution. 23 1.2 matt * 24 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 25 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 26 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 28 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 1.2 matt * POSSIBILITY OF SUCH DAMAGE. 35 1.2 matt */ 36 1.2 matt 37 1.2 matt #define __INTR_PRIVATE 38 1.2 matt #define _POWERPC_BUS_DMA_PRIVATE 39 1.2 matt 40 1.2 matt #include <sys/cdefs.h> 41 1.35 thorpej __KERNEL_RCSID(0, "$NetBSD: booke_machdep.c,v 1.35 2024/03/05 14:15:34 thorpej Exp $"); 42 1.32 rin 43 1.32 rin #include "ksyms.h" 44 1.2 matt 45 1.31 rin #ifdef _KERNEL_OPT 46 1.32 rin #include "opt_ddb.h" 47 1.9 matt #include "opt_modular.h" 48 1.32 rin #include "opt_multiprocessor.h" 49 1.31 rin #endif 50 1.9 matt 51 1.2 matt #include <sys/param.h> 52 1.2 matt #include <sys/cpu.h> 53 1.2 matt #include <sys/device.h> 54 1.2 matt #include <sys/intr.h> 55 1.2 matt #include <sys/mount.h> 56 1.2 matt #include <sys/msgbuf.h> 57 1.2 matt #include <sys/kernel.h> 58 1.2 matt #include <sys/reboot.h> 59 1.2 matt #include <sys/bus.h> 60 1.20 christos #include <sys/cpu.h> 61 1.2 matt 62 1.2 matt #include <uvm/uvm_extern.h> 63 1.2 matt 64 1.25 rin #include <dev/cons.h> 65 1.25 rin 66 1.12 matt #include <powerpc/pcb.h> 67 1.4 matt #include <powerpc/spr.h> 68 1.4 matt #include <powerpc/booke/spr.h> 69 1.4 matt #include <powerpc/booke/cpuvar.h> 70 1.2 matt 71 1.2 matt /* 72 1.2 matt * Global variables used here and there 73 1.2 matt */ 74 1.2 matt paddr_t msgbuf_paddr; 75 1.2 matt psize_t pmemsize; 76 1.2 matt struct vm_map *phys_map; 77 1.2 matt 78 1.9 matt #ifdef MODULAR 79 1.9 matt register_t cpu_psluserset = PSL_USERSET; 80 1.9 matt register_t cpu_pslusermod = PSL_USERMOD; 81 1.9 matt register_t cpu_pslusermask = PSL_USERMASK; 82 1.9 matt #endif 83 1.9 matt 84 1.2 matt static bus_addr_t booke_dma_phys_to_bus_mem(bus_dma_tag_t, bus_addr_t); 85 1.2 matt static bus_addr_t booke_dma_bus_mem_to_phys(bus_dma_tag_t, bus_addr_t); 86 1.2 matt 87 1.2 matt 88 1.2 matt struct powerpc_bus_dma_tag booke_bus_dma_tag = { 89 1.2 matt ._dmamap_create = _bus_dmamap_create, 90 1.2 matt ._dmamap_destroy = _bus_dmamap_destroy, 91 1.2 matt ._dmamap_load = _bus_dmamap_load, 92 1.2 matt ._dmamap_load_mbuf = _bus_dmamap_load_mbuf, 93 1.2 matt ._dmamap_load_uio = _bus_dmamap_load_uio, 94 1.2 matt ._dmamap_load_raw = _bus_dmamap_load_raw, 95 1.2 matt ._dmamap_unload = _bus_dmamap_unload, 96 1.17 matt /* 97 1.17 matt * The caches on BookE are coherent so we don't need to do any special 98 1.17 matt * cache synchronization. 99 1.17 matt */ 100 1.17 matt //._dmamap_sync = _bus_dmamap_sync, 101 1.2 matt ._dmamem_alloc = _bus_dmamem_alloc, 102 1.2 matt ._dmamem_free = _bus_dmamem_free, 103 1.2 matt ._dmamem_map = _bus_dmamem_map, 104 1.2 matt ._dmamem_unmap = _bus_dmamem_unmap, 105 1.2 matt ._dmamem_mmap = _bus_dmamem_mmap, 106 1.2 matt ._dma_phys_to_bus_mem = booke_dma_phys_to_bus_mem, 107 1.2 matt ._dma_bus_mem_to_phys = booke_dma_bus_mem_to_phys, 108 1.2 matt }; 109 1.2 matt 110 1.2 matt static bus_addr_t 111 1.2 matt booke_dma_phys_to_bus_mem(bus_dma_tag_t t, bus_addr_t a) 112 1.2 matt { 113 1.2 matt return a; 114 1.2 matt } 115 1.2 matt 116 1.2 matt static bus_addr_t 117 1.2 matt booke_dma_bus_mem_to_phys(bus_dma_tag_t t, bus_addr_t a) 118 1.2 matt { 119 1.2 matt return a; 120 1.2 matt } 121 1.2 matt 122 1.2 matt struct cpu_md_ops cpu_md_ops; 123 1.2 matt 124 1.6 matt struct cpu_softc cpu_softc[] = { 125 1.2 matt [0] = { 126 1.6 matt .cpu_ci = &cpu_info[0], 127 1.6 matt }, 128 1.6 matt #ifdef MULTIPROCESSOR 129 1.6 matt [CPU_MAXNUM-1] = { 130 1.6 matt .cpu_ci = &cpu_info[CPU_MAXNUM-1], 131 1.2 matt }, 132 1.6 matt #endif 133 1.2 matt }; 134 1.6 matt struct cpu_info cpu_info[] = { 135 1.2 matt [0] = { 136 1.2 matt .ci_curlwp = &lwp0, 137 1.2 matt .ci_tlb_info = &pmap_tlb0_info, 138 1.6 matt .ci_softc = &cpu_softc[0], 139 1.6 matt .ci_cpl = IPL_HIGH, 140 1.12 matt .ci_idepth = -1, 141 1.24 matt .ci_pmap_kern_segtab = &pmap_kern_segtab, 142 1.6 matt }, 143 1.6 matt #ifdef MULTIPROCESSOR 144 1.6 matt [CPU_MAXNUM-1] = { 145 1.6 matt .ci_curlwp = NULL, 146 1.6 matt .ci_tlb_info = &pmap_tlb0_info, 147 1.6 matt .ci_softc = &cpu_softc[CPU_MAXNUM-1], 148 1.2 matt .ci_cpl = IPL_HIGH, 149 1.12 matt .ci_idepth = -1, 150 1.24 matt .ci_pmap_kern_segtab = &pmap_kern_segtab, 151 1.6 matt }, 152 1.2 matt #endif 153 1.2 matt }; 154 1.12 matt __CTASSERT(__arraycount(cpu_info) == __arraycount(cpu_softc)); 155 1.2 matt 156 1.2 matt /* 157 1.2 matt * This should probably be in autoconf! XXX 158 1.2 matt */ 159 1.2 matt char machine[] = MACHINE; /* from <machine/param.h> */ 160 1.2 matt char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */ 161 1.2 matt 162 1.2 matt char bootpath[256]; 163 1.2 matt 164 1.2 matt #if NKSYMS || defined(DDB) || defined(MODULAR) 165 1.2 matt void *startsym, *endsym; 166 1.2 matt #endif 167 1.2 matt 168 1.12 matt #if defined(MULTIPROCESSOR) 169 1.12 matt volatile struct cpu_hatch_data cpu_hatch_data __cacheline_aligned; 170 1.12 matt #endif 171 1.12 matt 172 1.2 matt int fake_mapiodev = 1; 173 1.2 matt 174 1.2 matt void 175 1.2 matt booke_cpu_startup(const char *model) 176 1.2 matt { 177 1.2 matt vaddr_t minaddr, maxaddr; 178 1.2 matt char pbuf[9]; 179 1.2 matt 180 1.20 christos cpu_setmodel("%s", model); 181 1.2 matt 182 1.2 matt printf("%s%s", copyright, version); 183 1.2 matt 184 1.5 matt format_bytes(pbuf, sizeof(pbuf), ctob((uint64_t)physmem)); 185 1.2 matt printf("total memory = %s\n", pbuf); 186 1.2 matt 187 1.2 matt minaddr = 0; 188 1.2 matt /* 189 1.2 matt * Allocate a submap for physio 190 1.2 matt */ 191 1.2 matt phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, 192 1.2 matt VM_PHYS_SIZE, 0, false, NULL); 193 1.2 matt 194 1.2 matt /* 195 1.2 matt * No need to allocate an mbuf cluster submap. Mbuf clusters 196 1.2 matt * are allocated via the pool allocator, and we use direct-mapped 197 1.2 matt * pool pages. 198 1.2 matt */ 199 1.2 matt 200 1.30 ad format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false))); 201 1.2 matt printf("avail memory = %s\n", pbuf); 202 1.2 matt 203 1.2 matt /* 204 1.11 matt * Register the tlb's evcnts 205 1.11 matt */ 206 1.11 matt pmap_tlb_info_evcnt_attach(curcpu()->ci_tlb_info); 207 1.11 matt 208 1.11 matt /* 209 1.2 matt * Set up the board properties database. 210 1.2 matt */ 211 1.2 matt board_info_init(); 212 1.2 matt 213 1.2 matt /* 214 1.2 matt * Now that we have VM, malloc()s are OK in bus_space. 215 1.2 matt */ 216 1.2 matt bus_space_mallocok(); 217 1.2 matt fake_mapiodev = 0; 218 1.12 matt 219 1.12 matt #ifdef MULTIPROCESSOR 220 1.22 nonaka pmap_kernel()->pm_active = kcpuset_running; 221 1.22 nonaka pmap_kernel()->pm_onproc = kcpuset_running; 222 1.22 nonaka 223 1.12 matt for (size_t i = 1; i < __arraycount(cpu_info); i++) { 224 1.12 matt struct cpu_info * const ci = &cpu_info[i]; 225 1.12 matt struct cpu_softc * const cpu = &cpu_softc[i]; 226 1.12 matt cpu->cpu_ci = ci; 227 1.12 matt cpu->cpu_bst = cpu_softc[0].cpu_bst; 228 1.12 matt cpu->cpu_le_bst = cpu_softc[0].cpu_le_bst; 229 1.12 matt cpu->cpu_bsh = cpu_softc[0].cpu_bsh; 230 1.12 matt cpu->cpu_highmem = cpu_softc[0].cpu_highmem; 231 1.12 matt ci->ci_softc = cpu; 232 1.12 matt ci->ci_tlb_info = &pmap_tlb0_info; 233 1.12 matt ci->ci_cpl = IPL_HIGH; 234 1.12 matt ci->ci_idepth = -1; 235 1.12 matt ci->ci_pmap_kern_segtab = curcpu()->ci_pmap_kern_segtab; 236 1.12 matt } 237 1.18 matt 238 1.18 matt kcpuset_create(&cpuset_info.cpus_running, true); 239 1.18 matt kcpuset_create(&cpuset_info.cpus_hatched, true); 240 1.18 matt kcpuset_create(&cpuset_info.cpus_paused, true); 241 1.18 matt kcpuset_create(&cpuset_info.cpus_resumed, true); 242 1.18 matt kcpuset_create(&cpuset_info.cpus_halted, true); 243 1.23 nonaka 244 1.23 nonaka kcpuset_set(cpuset_info.cpus_running, cpu_number()); 245 1.12 matt #endif /* MULTIPROCESSOR */ 246 1.2 matt } 247 1.2 matt 248 1.2 matt static void 249 1.2 matt dumpsys(void) 250 1.2 matt { 251 1.2 matt 252 1.2 matt printf("dumpsys: TBD\n"); 253 1.2 matt } 254 1.2 matt 255 1.2 matt /* 256 1.2 matt * Halt or reboot the machine after syncing/dumping according to howto. 257 1.2 matt */ 258 1.2 matt void 259 1.2 matt cpu_reboot(int howto, char *what) 260 1.2 matt { 261 1.2 matt static int syncing; 262 1.2 matt static char str[256]; 263 1.2 matt char *ap = str, *ap1 = ap; 264 1.2 matt 265 1.2 matt boothowto = howto; 266 1.2 matt if (!cold && !(howto & RB_NOSYNC) && !syncing) { 267 1.2 matt syncing = 1; 268 1.2 matt vfs_shutdown(); /* sync */ 269 1.2 matt } 270 1.2 matt 271 1.2 matt splhigh(); 272 1.2 matt 273 1.2 matt if (!cold && (howto & RB_DUMP)) 274 1.2 matt dumpsys(); 275 1.2 matt 276 1.2 matt doshutdownhooks(); 277 1.2 matt 278 1.2 matt pmf_system_shutdown(boothowto); 279 1.2 matt 280 1.2 matt if ((howto & RB_POWERDOWN) == RB_POWERDOWN) { 281 1.2 matt /* Power off here if we know how...*/ 282 1.2 matt } 283 1.2 matt 284 1.2 matt if (howto & RB_HALT) { 285 1.25 rin printf("The operating system has halted.\n" 286 1.25 rin "Press any key to reboot.\n\n"); 287 1.25 rin cnpollc(1); /* For proper keyboard command handling */ 288 1.25 rin cngetc(); 289 1.25 rin cnpollc(0); 290 1.2 matt } 291 1.2 matt 292 1.2 matt printf("rebooting\n\n"); 293 1.2 matt if (what && *what) { 294 1.2 matt if (strlen(what) > sizeof str - 5) 295 1.2 matt printf("boot string too large, ignored\n"); 296 1.2 matt else { 297 1.2 matt strcpy(str, what); 298 1.2 matt ap1 = ap = str + strlen(str); 299 1.2 matt *ap++ = ' '; 300 1.2 matt } 301 1.2 matt } 302 1.2 matt *ap++ = '-'; 303 1.2 matt if (howto & RB_SINGLE) 304 1.2 matt *ap++ = 's'; 305 1.2 matt if (howto & RB_KDB) 306 1.2 matt *ap++ = 'd'; 307 1.2 matt *ap++ = 0; 308 1.2 matt if (ap[-2] == '-') 309 1.2 matt *ap1 = 0; 310 1.2 matt 311 1.2 matt /* flush cache for msgbuf */ 312 1.2 matt dcache_wb(msgbuf_paddr, round_page(MSGBUFSIZE)); 313 1.2 matt 314 1.2 matt __asm volatile("msync; isync"); 315 1.2 matt (*cpu_md_ops.md_cpu_reset)(); 316 1.2 matt 317 1.2 matt printf("%s: md_cpu_reset() failed!\n", __func__); 318 1.2 matt #ifdef DDB 319 1.2 matt for (;;) 320 1.2 matt Debugger(); 321 1.2 matt #else 322 1.2 matt for (;;) 323 1.2 matt /* nothing */; 324 1.2 matt #endif 325 1.2 matt } 326 1.2 matt 327 1.2 matt /* 328 1.2 matt * mapiodev: 329 1.2 matt * 330 1.2 matt * Allocate vm space and mapin the I/O address. Use reserved TLB 331 1.2 matt * mapping if one is found. 332 1.2 matt */ 333 1.2 matt void * 334 1.14 matt mapiodev(paddr_t pa, psize_t len, bool prefetchable) 335 1.2 matt { 336 1.2 matt const vsize_t off = pa & PAGE_MASK; 337 1.2 matt 338 1.2 matt /* 339 1.2 matt * See if we have reserved TLB entry for the pa. This needs to be 340 1.2 matt * true for console as we can't use uvm during early bootstrap. 341 1.2 matt */ 342 1.14 matt void * const p = tlb_mapiodev(pa, len, prefetchable); 343 1.2 matt if (p != NULL) 344 1.2 matt return p; 345 1.2 matt 346 1.2 matt if (fake_mapiodev) 347 1.2 matt panic("mapiodev: no TLB entry reserved for %llx+%llx", 348 1.2 matt (long long)pa, (long long)len); 349 1.2 matt 350 1.15 matt const paddr_t orig_pa = pa; 351 1.15 matt const psize_t orig_len = len; 352 1.15 matt vsize_t align = 0; 353 1.2 matt pa = trunc_page(pa); 354 1.2 matt len = round_page(off + len); 355 1.15 matt /* 356 1.15 matt * If we are allocating a large amount (>= 1MB) try to get an 357 1.15 matt * aligned VA region for it so try to do a large mapping for it. 358 1.15 matt */ 359 1.15 matt if ((len & (len - 1)) == 0 && len >= 0x100000) 360 1.15 matt align = len; 361 1.15 matt 362 1.15 matt vaddr_t va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY); 363 1.2 matt 364 1.15 matt if (va == 0 && align > 0) { 365 1.15 matt /* 366 1.15 matt * Large aligned request failed. Let's just get anything. 367 1.15 matt */ 368 1.15 matt align = 0; 369 1.15 matt va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY); 370 1.15 matt } 371 1.2 matt if (va == 0) 372 1.2 matt return NULL; 373 1.2 matt 374 1.15 matt if (align) { 375 1.15 matt /* 376 1.15 matt * Now try to map that via one big TLB entry. 377 1.15 matt */ 378 1.15 matt pt_entry_t pte = pte_make_kenter_pa(pa, NULL, 379 1.15 matt VM_PROT_READ|VM_PROT_WRITE, 380 1.15 matt prefetchable ? 0 : PMAP_NOCACHE); 381 1.15 matt if (!tlb_ioreserve(va, len, pte)) { 382 1.15 matt void * const p0 = tlb_mapiodev(orig_pa, orig_len, 383 1.15 matt prefetchable); 384 1.15 matt KASSERT(p0 != NULL); 385 1.15 matt return p0; 386 1.15 matt } 387 1.15 matt } 388 1.15 matt 389 1.2 matt for (va += len, pa += len; len > 0; len -= PAGE_SIZE) { 390 1.2 matt va -= PAGE_SIZE; 391 1.2 matt pa -= PAGE_SIZE; 392 1.2 matt pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, 393 1.14 matt prefetchable ? 0 : PMAP_NOCACHE); 394 1.2 matt } 395 1.2 matt pmap_update(pmap_kernel()); 396 1.2 matt return (void *)(va + off); 397 1.2 matt } 398 1.2 matt 399 1.2 matt void 400 1.2 matt unmapiodev(vaddr_t va, vsize_t len) 401 1.2 matt { 402 1.2 matt /* Nothing to do for reserved (ie. not uvm_km_alloc'd) mappings. */ 403 1.2 matt if (va < VM_MIN_KERNEL_ADDRESS || va > VM_MAX_KERNEL_ADDRESS) { 404 1.2 matt tlb_unmapiodev(va, len); 405 1.2 matt return; 406 1.2 matt } 407 1.2 matt 408 1.2 matt len = round_page((va & PAGE_MASK) + len); 409 1.2 matt va = trunc_page(va); 410 1.2 matt 411 1.2 matt pmap_kremove(va, len); 412 1.2 matt uvm_km_free(kernel_map, va, len, UVM_KMF_VAONLY); 413 1.2 matt } 414 1.2 matt 415 1.2 matt void 416 1.2 matt cpu_evcnt_attach(struct cpu_info *ci) 417 1.2 matt { 418 1.2 matt struct cpu_softc * const cpu = ci->ci_softc; 419 1.12 matt const char * const xname = ci->ci_data.cpu_name; 420 1.2 matt 421 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_clock, EVCNT_TYPE_INTR, 422 1.2 matt NULL, xname, "clock"); 423 1.2 matt evcnt_attach_dynamic_nozero(&cpu->cpu_ev_late_clock, EVCNT_TYPE_INTR, 424 1.2 matt NULL, xname, "late clock"); 425 1.2 matt evcnt_attach_dynamic_nozero(&cpu->cpu_ev_exec_trap_sync, EVCNT_TYPE_TRAP, 426 1.2 matt NULL, xname, "exec pages synced (trap)"); 427 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_traps, EVCNT_TYPE_TRAP, 428 1.2 matt NULL, xname, "traps"); 429 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP, 430 1.2 matt &ci->ci_ev_traps, xname, "kernel DSI traps"); 431 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP, 432 1.2 matt &ci->ci_ev_traps, xname, "user DSI traps"); 433 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP, 434 1.2 matt &ci->ci_ev_udsi, xname, "user DSI failures"); 435 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP, 436 1.2 matt &ci->ci_ev_traps, xname, "kernel ISI traps"); 437 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_isi, EVCNT_TYPE_TRAP, 438 1.2 matt &ci->ci_ev_traps, xname, "user ISI traps"); 439 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP, 440 1.2 matt &ci->ci_ev_isi, xname, "user ISI failures"); 441 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP, 442 1.2 matt &ci->ci_ev_traps, xname, "system call traps"); 443 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP, 444 1.2 matt &ci->ci_ev_traps, xname, "PGM traps"); 445 1.3 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_debug, EVCNT_TYPE_TRAP, 446 1.3 matt &ci->ci_ev_traps, xname, "debug traps"); 447 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP, 448 1.2 matt &ci->ci_ev_traps, xname, "FPU unavailable traps"); 449 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_fpusw, EVCNT_TYPE_MISC, 450 1.2 matt &ci->ci_ev_fpu, xname, "FPU context switches"); 451 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_ali, EVCNT_TYPE_TRAP, 452 1.2 matt &ci->ci_ev_traps, xname, "user alignment traps"); 453 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP, 454 1.2 matt &ci->ci_ev_ali, xname, "user alignment traps"); 455 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP, 456 1.2 matt &ci->ci_ev_umchk, xname, "user MCHK failures"); 457 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_vec, EVCNT_TYPE_TRAP, 458 1.2 matt &ci->ci_ev_traps, xname, "SPE unavailable"); 459 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_vecsw, EVCNT_TYPE_MISC, 460 1.2 matt &ci->ci_ev_vec, xname, "SPE context switches"); 461 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_ipi, EVCNT_TYPE_INTR, 462 1.2 matt NULL, xname, "IPIs"); 463 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_tlbmiss_soft, EVCNT_TYPE_TRAP, 464 1.2 matt &ci->ci_ev_traps, xname, "soft tlb misses"); 465 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_dtlbmiss_hard, EVCNT_TYPE_TRAP, 466 1.2 matt &ci->ci_ev_traps, xname, "data tlb misses"); 467 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_itlbmiss_hard, EVCNT_TYPE_TRAP, 468 1.2 matt &ci->ci_ev_traps, xname, "inst tlb misses"); 469 1.2 matt } 470 1.2 matt 471 1.12 matt #ifdef MULTIPROCESSOR 472 1.12 matt register_t 473 1.12 matt cpu_hatch(void) 474 1.12 matt { 475 1.18 matt struct cpuset_info * const csi = &cpuset_info; 476 1.12 matt const size_t id = cpu_number(); 477 1.12 matt 478 1.12 matt /* 479 1.12 matt * We've hatched so tell the spinup code. 480 1.12 matt */ 481 1.18 matt kcpuset_set(csi->cpus_hatched, id); 482 1.12 matt 483 1.12 matt /* 484 1.12 matt * Loop until running bit for this cpu is set. 485 1.12 matt */ 486 1.18 matt while (!kcpuset_isset(csi->cpus_running, id)) { 487 1.12 matt continue; 488 1.12 matt } 489 1.12 matt 490 1.12 matt /* 491 1.12 matt * Now that we are active, start the clocks. 492 1.12 matt */ 493 1.12 matt cpu_initclocks(); 494 1.12 matt 495 1.12 matt /* 496 1.12 matt * Return sp of the idlelwp. Which we should be already using but ... 497 1.12 matt */ 498 1.12 matt return curcpu()->ci_curpcb->pcb_sp; 499 1.12 matt } 500 1.12 matt 501 1.12 matt void 502 1.12 matt cpu_boot_secondary_processors(void) 503 1.12 matt { 504 1.12 matt volatile struct cpuset_info * const csi = &cpuset_info; 505 1.12 matt CPU_INFO_ITERATOR cii; 506 1.12 matt struct cpu_info *ci; 507 1.18 matt kcpuset_t *running; 508 1.18 matt 509 1.18 matt kcpuset_create(&running, true); 510 1.12 matt 511 1.12 matt for (CPU_INFO_FOREACH(cii, ci)) { 512 1.12 matt /* 513 1.28 msaitoh * Skip this CPU if it didn't successfully hatch. 514 1.12 matt */ 515 1.18 matt if (!kcpuset_isset(csi->cpus_hatched, cpu_index(ci))) 516 1.12 matt continue; 517 1.12 matt 518 1.12 matt KASSERT(!CPU_IS_PRIMARY(ci)); 519 1.12 matt KASSERT(ci->ci_data.cpu_idlelwp); 520 1.12 matt 521 1.18 matt kcpuset_set(running, cpu_index(ci)); 522 1.12 matt } 523 1.18 matt KASSERT(kcpuset_match(csi->cpus_hatched, running)); 524 1.18 matt if (!kcpuset_iszero(running)) { 525 1.18 matt kcpuset_merge(csi->cpus_running, running); 526 1.12 matt } 527 1.18 matt kcpuset_destroy(running); 528 1.12 matt } 529 1.12 matt #endif 530 1.12 matt 531 1.2 matt uint32_t 532 1.2 matt cpu_read_4(bus_addr_t a) 533 1.2 matt { 534 1.2 matt struct cpu_softc * const cpu = curcpu()->ci_softc; 535 1.2 matt // printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a); 536 1.2 matt return bus_space_read_4(cpu->cpu_bst, cpu->cpu_bsh, a); 537 1.2 matt } 538 1.2 matt 539 1.2 matt uint8_t 540 1.2 matt cpu_read_1(bus_addr_t a) 541 1.2 matt { 542 1.2 matt struct cpu_softc * const cpu = curcpu()->ci_softc; 543 1.2 matt // printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a); 544 1.2 matt return bus_space_read_1(cpu->cpu_bst, cpu->cpu_bsh, a); 545 1.2 matt } 546 1.2 matt 547 1.2 matt void 548 1.2 matt cpu_write_4(bus_addr_t a, uint32_t v) 549 1.2 matt { 550 1.2 matt struct cpu_softc * const cpu = curcpu()->ci_softc; 551 1.2 matt bus_space_write_4(cpu->cpu_bst, cpu->cpu_bsh, a, v); 552 1.2 matt } 553 1.2 matt 554 1.2 matt void 555 1.2 matt cpu_write_1(bus_addr_t a, uint8_t v) 556 1.2 matt { 557 1.2 matt struct cpu_softc * const cpu = curcpu()->ci_softc; 558 1.2 matt bus_space_write_1(cpu->cpu_bst, cpu->cpu_bsh, a, v); 559 1.2 matt } 560 1.4 matt 561 1.4 matt void 562 1.4 matt booke_sstep(struct trapframe *tf) 563 1.4 matt { 564 1.26 thorpej uint32_t insn; 565 1.26 thorpej 566 1.4 matt KASSERT(tf->tf_srr1 & PSL_DE); 567 1.26 thorpej if (ufetch_32((const void *)tf->tf_srr0, &insn) != 0) 568 1.26 thorpej return; 569 1.26 thorpej 570 1.4 matt register_t dbcr0 = DBCR0_IAC1 | DBCR0_IDM; 571 1.4 matt register_t dbcr1 = DBCR1_IAC1US_USER | DBCR1_IAC1ER_DS1; 572 1.4 matt if ((insn >> 28) == 4) { 573 1.4 matt uint32_t iac2 = 0; 574 1.4 matt if ((insn >> 26) == 0x12) { 575 1.4 matt const int32_t off = (((int32_t)insn << 6) >> 6) & ~3; 576 1.4 matt iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off; 577 1.4 matt dbcr0 |= DBCR0_IAC2; 578 1.4 matt } else if ((insn >> 26) == 0x10) { 579 1.4 matt const int16_t off = insn & ~3; 580 1.4 matt iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off; 581 1.4 matt dbcr0 |= DBCR0_IAC2; 582 1.21 matt } else if ((insn & 0xfc00fffe) == 0x4c000420) { 583 1.4 matt iac2 = tf->tf_ctr; 584 1.4 matt dbcr0 |= DBCR0_IAC2; 585 1.21 matt } else if ((insn & 0xfc00fffe) == 0x4c000020) { 586 1.4 matt iac2 = tf->tf_lr; 587 1.4 matt dbcr0 |= DBCR0_IAC2; 588 1.4 matt } 589 1.4 matt if (dbcr0 & DBCR0_IAC2) { 590 1.4 matt dbcr1 |= DBCR1_IAC2US_USER | DBCR1_IAC2ER_DS1; 591 1.4 matt mtspr(SPR_IAC2, iac2); 592 1.4 matt } 593 1.4 matt } 594 1.4 matt mtspr(SPR_IAC1, tf->tf_srr0 + 4); 595 1.4 matt mtspr(SPR_DBCR1, dbcr1); 596 1.4 matt mtspr(SPR_DBCR0, dbcr0); 597 1.4 matt } 598 1.16 matt 599 1.16 matt #ifdef DIAGNOSTIC 600 1.16 matt static inline void 601 1.16 matt swap_data(uint64_t *data, size_t a, size_t b) 602 1.16 matt { 603 1.16 matt uint64_t swap = data[a]; 604 1.16 matt data[a] = data[b]; 605 1.16 matt data[b] = swap; 606 1.16 matt } 607 1.16 matt 608 1.16 matt static void 609 1.16 matt sort_data(uint64_t *data, size_t count) 610 1.16 matt { 611 1.16 matt #if 0 612 1.16 matt /* 613 1.16 matt * Mostly classic bubble sort 614 1.16 matt */ 615 1.16 matt do { 616 1.16 matt size_t new_count = 0; 617 1.16 matt for (size_t i = 1; i < count; i++) { 618 1.16 matt if (tbs[i - 1] > tbs[i]) { 619 1.16 matt swap_tbs(tbs, i - 1, i); 620 1.16 matt new_count = i; 621 1.16 matt } 622 1.16 matt } 623 1.16 matt count = new_count; 624 1.16 matt } while (count > 0); 625 1.16 matt #else 626 1.16 matt /* 627 1.16 matt * Comb sort 628 1.16 matt */ 629 1.16 matt size_t gap = count; 630 1.16 matt bool swapped = false; 631 1.16 matt while (gap > 1 || swapped) { 632 1.16 matt if (gap > 1) { 633 1.16 matt /* 634 1.16 matt * phi = (1 + sqrt(5)) / 2 [golden ratio] 635 1.16 matt * N = 1 / (1 - e^-phi)) = 1.247330950103979 636 1.16 matt * 637 1.16 matt * We want to but can't use floating point to calculate 638 1.16 matt * gap = (size_t)((double)gap / N) 639 1.16 matt * 640 1.34 andvar * So we will use the multiplicative inverse of N 641 1.16 matt * (module 65536) to achieve the division. 642 1.16 matt * 643 1.16 matt * iN = 2^16 / 1.24733... = 52540 644 1.16 matt * x / N == (x * iN) / 65536 645 1.16 matt */ 646 1.16 matt gap = (gap * 52540) / 65536; 647 1.16 matt } 648 1.16 matt 649 1.16 matt swapped = false; 650 1.16 matt 651 1.16 matt for (size_t i = 0; gap + i < count; i++) { 652 1.16 matt if (data[i] > data[i + gap]) { 653 1.16 matt swap_data(data, i, i + gap); 654 1.16 matt swapped = true; 655 1.16 matt } 656 1.16 matt } 657 1.16 matt } 658 1.16 matt #endif 659 1.16 matt } 660 1.16 matt #endif 661 1.16 matt 662 1.16 matt void 663 1.16 matt dump_splhist(struct cpu_info *ci, void (*pr)(const char *, ...)) 664 1.16 matt { 665 1.16 matt #ifdef DIAGNOSTIC 666 1.16 matt struct cpu_softc * const cpu = ci->ci_softc; 667 1.16 matt uint64_t tbs[NIPL*NIPL]; 668 1.16 matt size_t ntbs = 0; 669 1.16 matt for (size_t to = 0; to < NIPL; to++) { 670 1.16 matt for (size_t from = 0; from < NIPL; from++) { 671 1.16 matt uint64_t tb = cpu->cpu_spl_tb[to][from]; 672 1.16 matt if (tb == 0) 673 1.16 matt continue; 674 1.16 matt tbs[ntbs++] = (tb << 8) | (to << 4) | from; 675 1.16 matt } 676 1.16 matt } 677 1.16 matt sort_data(tbs, ntbs); 678 1.16 matt 679 1.16 matt if (pr == NULL) 680 1.16 matt pr = printf; 681 1.16 matt uint64_t last_tb = 0; 682 1.16 matt for (size_t i = 0; i < ntbs; i++) { 683 1.16 matt uint64_t tb = tbs[i]; 684 1.16 matt size_t from = tb & 15; 685 1.16 matt size_t to = (tb >> 4) & 15; 686 1.16 matt tb >>= 8; 687 1.16 matt (*pr)("%s(%zu) from %zu at %"PRId64"", 688 1.16 matt from < to ? "splraise" : "splx", 689 1.16 matt to, from, tb); 690 1.16 matt if (last_tb && from != IPL_NONE) 691 1.16 matt (*pr)(" (+%"PRId64")", tb - last_tb); 692 1.16 matt (*pr)("\n"); 693 1.16 matt last_tb = tb; 694 1.16 matt } 695 1.16 matt #endif 696 1.16 matt } 697