booke_machdep.c revision 1.24 1 1.24 matt /* $NetBSD: booke_machdep.c,v 1.24 2016/07/11 16:06:52 matt Exp $ */
2 1.2 matt /*-
3 1.2 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 1.2 matt * All rights reserved.
5 1.2 matt *
6 1.2 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.2 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 1.2 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 1.2 matt *
10 1.2 matt * This material is based upon work supported by the Defense Advanced Research
11 1.2 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 1.2 matt * Contract No. N66001-09-C-2073.
13 1.2 matt * Approved for Public Release, Distribution Unlimited
14 1.2 matt *
15 1.2 matt * Redistribution and use in source and binary forms, with or without
16 1.2 matt * modification, are permitted provided that the following conditions
17 1.2 matt * are met:
18 1.2 matt * 1. Redistributions of source code must retain the above copyright
19 1.2 matt * notice, this list of conditions and the following disclaimer.
20 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright
21 1.2 matt * notice, this list of conditions and the following disclaimer in the
22 1.2 matt * documentation and/or other materials provided with the distribution.
23 1.2 matt *
24 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.2 matt * POSSIBILITY OF SUCH DAMAGE.
35 1.2 matt */
36 1.2 matt
37 1.2 matt #define __INTR_PRIVATE
38 1.2 matt #define _POWERPC_BUS_DMA_PRIVATE
39 1.2 matt
40 1.2 matt #include <sys/cdefs.h>
41 1.24 matt __KERNEL_RCSID(0, "$NetBSD: booke_machdep.c,v 1.24 2016/07/11 16:06:52 matt Exp $");
42 1.2 matt
43 1.9 matt #include "opt_modular.h"
44 1.9 matt
45 1.2 matt #include <sys/param.h>
46 1.2 matt #include <sys/cpu.h>
47 1.2 matt #include <sys/device.h>
48 1.2 matt #include <sys/intr.h>
49 1.2 matt #include <sys/mount.h>
50 1.2 matt #include <sys/msgbuf.h>
51 1.2 matt #include <sys/kernel.h>
52 1.2 matt #include <sys/reboot.h>
53 1.2 matt #include <sys/bus.h>
54 1.20 christos #include <sys/cpu.h>
55 1.2 matt
56 1.2 matt #include <uvm/uvm_extern.h>
57 1.2 matt
58 1.12 matt #include <powerpc/pcb.h>
59 1.4 matt #include <powerpc/spr.h>
60 1.4 matt #include <powerpc/booke/spr.h>
61 1.4 matt #include <powerpc/booke/cpuvar.h>
62 1.2 matt
63 1.2 matt /*
64 1.2 matt * Global variables used here and there
65 1.2 matt */
66 1.2 matt paddr_t msgbuf_paddr;
67 1.2 matt psize_t pmemsize;
68 1.2 matt struct vm_map *phys_map;
69 1.2 matt
70 1.9 matt #ifdef MODULAR
71 1.9 matt register_t cpu_psluserset = PSL_USERSET;
72 1.9 matt register_t cpu_pslusermod = PSL_USERMOD;
73 1.9 matt register_t cpu_pslusermask = PSL_USERMASK;
74 1.9 matt #endif
75 1.9 matt
76 1.2 matt static bus_addr_t booke_dma_phys_to_bus_mem(bus_dma_tag_t, bus_addr_t);
77 1.2 matt static bus_addr_t booke_dma_bus_mem_to_phys(bus_dma_tag_t, bus_addr_t);
78 1.2 matt
79 1.2 matt
80 1.2 matt struct powerpc_bus_dma_tag booke_bus_dma_tag = {
81 1.2 matt ._dmamap_create = _bus_dmamap_create,
82 1.2 matt ._dmamap_destroy = _bus_dmamap_destroy,
83 1.2 matt ._dmamap_load = _bus_dmamap_load,
84 1.2 matt ._dmamap_load_mbuf = _bus_dmamap_load_mbuf,
85 1.2 matt ._dmamap_load_uio = _bus_dmamap_load_uio,
86 1.2 matt ._dmamap_load_raw = _bus_dmamap_load_raw,
87 1.2 matt ._dmamap_unload = _bus_dmamap_unload,
88 1.17 matt /*
89 1.17 matt * The caches on BookE are coherent so we don't need to do any special
90 1.17 matt * cache synchronization.
91 1.17 matt */
92 1.17 matt //._dmamap_sync = _bus_dmamap_sync,
93 1.2 matt ._dmamem_alloc = _bus_dmamem_alloc,
94 1.2 matt ._dmamem_free = _bus_dmamem_free,
95 1.2 matt ._dmamem_map = _bus_dmamem_map,
96 1.2 matt ._dmamem_unmap = _bus_dmamem_unmap,
97 1.2 matt ._dmamem_mmap = _bus_dmamem_mmap,
98 1.2 matt ._dma_phys_to_bus_mem = booke_dma_phys_to_bus_mem,
99 1.2 matt ._dma_bus_mem_to_phys = booke_dma_bus_mem_to_phys,
100 1.2 matt };
101 1.2 matt
102 1.2 matt static bus_addr_t
103 1.2 matt booke_dma_phys_to_bus_mem(bus_dma_tag_t t, bus_addr_t a)
104 1.2 matt {
105 1.2 matt return a;
106 1.2 matt }
107 1.2 matt
108 1.2 matt static bus_addr_t
109 1.2 matt booke_dma_bus_mem_to_phys(bus_dma_tag_t t, bus_addr_t a)
110 1.2 matt {
111 1.2 matt return a;
112 1.2 matt }
113 1.2 matt
114 1.2 matt struct cpu_md_ops cpu_md_ops;
115 1.2 matt
116 1.6 matt struct cpu_softc cpu_softc[] = {
117 1.2 matt [0] = {
118 1.6 matt .cpu_ci = &cpu_info[0],
119 1.6 matt },
120 1.6 matt #ifdef MULTIPROCESSOR
121 1.6 matt [CPU_MAXNUM-1] = {
122 1.6 matt .cpu_ci = &cpu_info[CPU_MAXNUM-1],
123 1.2 matt },
124 1.6 matt #endif
125 1.2 matt };
126 1.6 matt struct cpu_info cpu_info[] = {
127 1.2 matt [0] = {
128 1.2 matt .ci_curlwp = &lwp0,
129 1.2 matt .ci_tlb_info = &pmap_tlb0_info,
130 1.6 matt .ci_softc = &cpu_softc[0],
131 1.6 matt .ci_cpl = IPL_HIGH,
132 1.12 matt .ci_idepth = -1,
133 1.24 matt .ci_pmap_kern_segtab = &pmap_kern_segtab,
134 1.6 matt },
135 1.6 matt #ifdef MULTIPROCESSOR
136 1.6 matt [CPU_MAXNUM-1] = {
137 1.6 matt .ci_curlwp = NULL,
138 1.6 matt .ci_tlb_info = &pmap_tlb0_info,
139 1.6 matt .ci_softc = &cpu_softc[CPU_MAXNUM-1],
140 1.2 matt .ci_cpl = IPL_HIGH,
141 1.12 matt .ci_idepth = -1,
142 1.24 matt .ci_pmap_kern_segtab = &pmap_kern_segtab,
143 1.6 matt },
144 1.2 matt #endif
145 1.2 matt };
146 1.12 matt __CTASSERT(__arraycount(cpu_info) == __arraycount(cpu_softc));
147 1.2 matt
148 1.2 matt /*
149 1.2 matt * This should probably be in autoconf! XXX
150 1.2 matt */
151 1.2 matt char machine[] = MACHINE; /* from <machine/param.h> */
152 1.2 matt char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
153 1.2 matt
154 1.2 matt char bootpath[256];
155 1.2 matt
156 1.2 matt #if NKSYMS || defined(DDB) || defined(MODULAR)
157 1.2 matt void *startsym, *endsym;
158 1.2 matt #endif
159 1.2 matt
160 1.12 matt #if defined(MULTIPROCESSOR)
161 1.12 matt volatile struct cpu_hatch_data cpu_hatch_data __cacheline_aligned;
162 1.12 matt #endif
163 1.12 matt
164 1.2 matt int fake_mapiodev = 1;
165 1.2 matt
166 1.2 matt void
167 1.2 matt booke_cpu_startup(const char *model)
168 1.2 matt {
169 1.2 matt vaddr_t minaddr, maxaddr;
170 1.2 matt char pbuf[9];
171 1.2 matt
172 1.20 christos cpu_setmodel("%s", model);
173 1.2 matt
174 1.2 matt printf("%s%s", copyright, version);
175 1.2 matt
176 1.5 matt format_bytes(pbuf, sizeof(pbuf), ctob((uint64_t)physmem));
177 1.2 matt printf("total memory = %s\n", pbuf);
178 1.2 matt
179 1.2 matt minaddr = 0;
180 1.2 matt /*
181 1.2 matt * Allocate a submap for physio
182 1.2 matt */
183 1.2 matt phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
184 1.2 matt VM_PHYS_SIZE, 0, false, NULL);
185 1.2 matt
186 1.2 matt /*
187 1.2 matt * No need to allocate an mbuf cluster submap. Mbuf clusters
188 1.2 matt * are allocated via the pool allocator, and we use direct-mapped
189 1.2 matt * pool pages.
190 1.2 matt */
191 1.2 matt
192 1.2 matt format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
193 1.2 matt printf("avail memory = %s\n", pbuf);
194 1.2 matt
195 1.2 matt /*
196 1.11 matt * Register the tlb's evcnts
197 1.11 matt */
198 1.11 matt pmap_tlb_info_evcnt_attach(curcpu()->ci_tlb_info);
199 1.11 matt
200 1.11 matt /*
201 1.2 matt * Set up the board properties database.
202 1.2 matt */
203 1.2 matt board_info_init();
204 1.2 matt
205 1.2 matt /*
206 1.2 matt * Now that we have VM, malloc()s are OK in bus_space.
207 1.2 matt */
208 1.2 matt bus_space_mallocok();
209 1.2 matt fake_mapiodev = 0;
210 1.12 matt
211 1.12 matt #ifdef MULTIPROCESSOR
212 1.22 nonaka pmap_kernel()->pm_active = kcpuset_running;
213 1.22 nonaka pmap_kernel()->pm_onproc = kcpuset_running;
214 1.22 nonaka
215 1.12 matt for (size_t i = 1; i < __arraycount(cpu_info); i++) {
216 1.12 matt struct cpu_info * const ci = &cpu_info[i];
217 1.12 matt struct cpu_softc * const cpu = &cpu_softc[i];
218 1.12 matt cpu->cpu_ci = ci;
219 1.12 matt cpu->cpu_bst = cpu_softc[0].cpu_bst;
220 1.12 matt cpu->cpu_le_bst = cpu_softc[0].cpu_le_bst;
221 1.12 matt cpu->cpu_bsh = cpu_softc[0].cpu_bsh;
222 1.12 matt cpu->cpu_highmem = cpu_softc[0].cpu_highmem;
223 1.12 matt ci->ci_softc = cpu;
224 1.12 matt ci->ci_tlb_info = &pmap_tlb0_info;
225 1.12 matt ci->ci_cpl = IPL_HIGH;
226 1.12 matt ci->ci_idepth = -1;
227 1.12 matt ci->ci_pmap_kern_segtab = curcpu()->ci_pmap_kern_segtab;
228 1.12 matt }
229 1.18 matt
230 1.18 matt kcpuset_create(&cpuset_info.cpus_running, true);
231 1.18 matt kcpuset_create(&cpuset_info.cpus_hatched, true);
232 1.18 matt kcpuset_create(&cpuset_info.cpus_paused, true);
233 1.18 matt kcpuset_create(&cpuset_info.cpus_resumed, true);
234 1.18 matt kcpuset_create(&cpuset_info.cpus_halted, true);
235 1.23 nonaka
236 1.23 nonaka kcpuset_set(cpuset_info.cpus_running, cpu_number());
237 1.12 matt #endif /* MULTIPROCESSOR */
238 1.2 matt }
239 1.2 matt
240 1.2 matt static void
241 1.2 matt dumpsys(void)
242 1.2 matt {
243 1.2 matt
244 1.2 matt printf("dumpsys: TBD\n");
245 1.2 matt }
246 1.2 matt
247 1.2 matt /*
248 1.2 matt * Halt or reboot the machine after syncing/dumping according to howto.
249 1.2 matt */
250 1.2 matt void
251 1.2 matt cpu_reboot(int howto, char *what)
252 1.2 matt {
253 1.2 matt static int syncing;
254 1.2 matt static char str[256];
255 1.2 matt char *ap = str, *ap1 = ap;
256 1.2 matt
257 1.2 matt boothowto = howto;
258 1.2 matt if (!cold && !(howto & RB_NOSYNC) && !syncing) {
259 1.2 matt syncing = 1;
260 1.2 matt vfs_shutdown(); /* sync */
261 1.2 matt resettodr(); /* set wall clock */
262 1.2 matt }
263 1.2 matt
264 1.2 matt splhigh();
265 1.2 matt
266 1.2 matt if (!cold && (howto & RB_DUMP))
267 1.2 matt dumpsys();
268 1.2 matt
269 1.2 matt doshutdownhooks();
270 1.2 matt
271 1.2 matt pmf_system_shutdown(boothowto);
272 1.2 matt
273 1.2 matt if ((howto & RB_POWERDOWN) == RB_POWERDOWN) {
274 1.2 matt /* Power off here if we know how...*/
275 1.2 matt }
276 1.2 matt
277 1.2 matt if (howto & RB_HALT) {
278 1.2 matt printf("halted\n\n");
279 1.2 matt
280 1.2 matt goto reboot; /* XXX for now... */
281 1.2 matt
282 1.2 matt #ifdef DDB
283 1.2 matt printf("dropping to debugger\n");
284 1.2 matt while(1)
285 1.2 matt Debugger();
286 1.2 matt #endif
287 1.2 matt }
288 1.2 matt
289 1.2 matt printf("rebooting\n\n");
290 1.2 matt if (what && *what) {
291 1.2 matt if (strlen(what) > sizeof str - 5)
292 1.2 matt printf("boot string too large, ignored\n");
293 1.2 matt else {
294 1.2 matt strcpy(str, what);
295 1.2 matt ap1 = ap = str + strlen(str);
296 1.2 matt *ap++ = ' ';
297 1.2 matt }
298 1.2 matt }
299 1.2 matt *ap++ = '-';
300 1.2 matt if (howto & RB_SINGLE)
301 1.2 matt *ap++ = 's';
302 1.2 matt if (howto & RB_KDB)
303 1.2 matt *ap++ = 'd';
304 1.2 matt *ap++ = 0;
305 1.2 matt if (ap[-2] == '-')
306 1.2 matt *ap1 = 0;
307 1.2 matt
308 1.2 matt /* flush cache for msgbuf */
309 1.2 matt dcache_wb(msgbuf_paddr, round_page(MSGBUFSIZE));
310 1.2 matt
311 1.2 matt reboot:
312 1.2 matt __asm volatile("msync; isync");
313 1.2 matt (*cpu_md_ops.md_cpu_reset)();
314 1.2 matt
315 1.2 matt printf("%s: md_cpu_reset() failed!\n", __func__);
316 1.2 matt #ifdef DDB
317 1.2 matt for (;;)
318 1.2 matt Debugger();
319 1.2 matt #else
320 1.2 matt for (;;)
321 1.2 matt /* nothing */;
322 1.2 matt #endif
323 1.2 matt }
324 1.2 matt
325 1.2 matt /*
326 1.2 matt * mapiodev:
327 1.2 matt *
328 1.2 matt * Allocate vm space and mapin the I/O address. Use reserved TLB
329 1.2 matt * mapping if one is found.
330 1.2 matt */
331 1.2 matt void *
332 1.14 matt mapiodev(paddr_t pa, psize_t len, bool prefetchable)
333 1.2 matt {
334 1.2 matt const vsize_t off = pa & PAGE_MASK;
335 1.2 matt
336 1.2 matt /*
337 1.2 matt * See if we have reserved TLB entry for the pa. This needs to be
338 1.2 matt * true for console as we can't use uvm during early bootstrap.
339 1.2 matt */
340 1.14 matt void * const p = tlb_mapiodev(pa, len, prefetchable);
341 1.2 matt if (p != NULL)
342 1.2 matt return p;
343 1.2 matt
344 1.2 matt if (fake_mapiodev)
345 1.2 matt panic("mapiodev: no TLB entry reserved for %llx+%llx",
346 1.2 matt (long long)pa, (long long)len);
347 1.2 matt
348 1.15 matt const paddr_t orig_pa = pa;
349 1.15 matt const psize_t orig_len = len;
350 1.15 matt vsize_t align = 0;
351 1.2 matt pa = trunc_page(pa);
352 1.2 matt len = round_page(off + len);
353 1.15 matt /*
354 1.15 matt * If we are allocating a large amount (>= 1MB) try to get an
355 1.15 matt * aligned VA region for it so try to do a large mapping for it.
356 1.15 matt */
357 1.15 matt if ((len & (len - 1)) == 0 && len >= 0x100000)
358 1.15 matt align = len;
359 1.15 matt
360 1.15 matt vaddr_t va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY);
361 1.2 matt
362 1.15 matt if (va == 0 && align > 0) {
363 1.15 matt /*
364 1.15 matt * Large aligned request failed. Let's just get anything.
365 1.15 matt */
366 1.15 matt align = 0;
367 1.15 matt va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY);
368 1.15 matt }
369 1.2 matt if (va == 0)
370 1.2 matt return NULL;
371 1.2 matt
372 1.15 matt if (align) {
373 1.15 matt /*
374 1.15 matt * Now try to map that via one big TLB entry.
375 1.15 matt */
376 1.15 matt pt_entry_t pte = pte_make_kenter_pa(pa, NULL,
377 1.15 matt VM_PROT_READ|VM_PROT_WRITE,
378 1.15 matt prefetchable ? 0 : PMAP_NOCACHE);
379 1.15 matt if (!tlb_ioreserve(va, len, pte)) {
380 1.15 matt void * const p0 = tlb_mapiodev(orig_pa, orig_len,
381 1.15 matt prefetchable);
382 1.15 matt KASSERT(p0 != NULL);
383 1.15 matt return p0;
384 1.15 matt }
385 1.15 matt }
386 1.15 matt
387 1.2 matt for (va += len, pa += len; len > 0; len -= PAGE_SIZE) {
388 1.2 matt va -= PAGE_SIZE;
389 1.2 matt pa -= PAGE_SIZE;
390 1.2 matt pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE,
391 1.14 matt prefetchable ? 0 : PMAP_NOCACHE);
392 1.2 matt }
393 1.2 matt pmap_update(pmap_kernel());
394 1.2 matt return (void *)(va + off);
395 1.2 matt }
396 1.2 matt
397 1.2 matt void
398 1.2 matt unmapiodev(vaddr_t va, vsize_t len)
399 1.2 matt {
400 1.2 matt /* Nothing to do for reserved (ie. not uvm_km_alloc'd) mappings. */
401 1.2 matt if (va < VM_MIN_KERNEL_ADDRESS || va > VM_MAX_KERNEL_ADDRESS) {
402 1.2 matt tlb_unmapiodev(va, len);
403 1.2 matt return;
404 1.2 matt }
405 1.2 matt
406 1.2 matt len = round_page((va & PAGE_MASK) + len);
407 1.2 matt va = trunc_page(va);
408 1.2 matt
409 1.2 matt pmap_kremove(va, len);
410 1.2 matt uvm_km_free(kernel_map, va, len, UVM_KMF_VAONLY);
411 1.2 matt }
412 1.2 matt
413 1.2 matt void
414 1.2 matt cpu_evcnt_attach(struct cpu_info *ci)
415 1.2 matt {
416 1.2 matt struct cpu_softc * const cpu = ci->ci_softc;
417 1.12 matt const char * const xname = ci->ci_data.cpu_name;
418 1.2 matt
419 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
420 1.2 matt NULL, xname, "clock");
421 1.2 matt evcnt_attach_dynamic_nozero(&cpu->cpu_ev_late_clock, EVCNT_TYPE_INTR,
422 1.2 matt NULL, xname, "late clock");
423 1.2 matt evcnt_attach_dynamic_nozero(&cpu->cpu_ev_exec_trap_sync, EVCNT_TYPE_TRAP,
424 1.2 matt NULL, xname, "exec pages synced (trap)");
425 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
426 1.2 matt NULL, xname, "traps");
427 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
428 1.2 matt &ci->ci_ev_traps, xname, "kernel DSI traps");
429 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
430 1.2 matt &ci->ci_ev_traps, xname, "user DSI traps");
431 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
432 1.2 matt &ci->ci_ev_udsi, xname, "user DSI failures");
433 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
434 1.2 matt &ci->ci_ev_traps, xname, "kernel ISI traps");
435 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
436 1.2 matt &ci->ci_ev_traps, xname, "user ISI traps");
437 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
438 1.2 matt &ci->ci_ev_isi, xname, "user ISI failures");
439 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
440 1.2 matt &ci->ci_ev_traps, xname, "system call traps");
441 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
442 1.2 matt &ci->ci_ev_traps, xname, "PGM traps");
443 1.3 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_debug, EVCNT_TYPE_TRAP,
444 1.3 matt &ci->ci_ev_traps, xname, "debug traps");
445 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
446 1.2 matt &ci->ci_ev_traps, xname, "FPU unavailable traps");
447 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_fpusw, EVCNT_TYPE_MISC,
448 1.2 matt &ci->ci_ev_fpu, xname, "FPU context switches");
449 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
450 1.2 matt &ci->ci_ev_traps, xname, "user alignment traps");
451 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
452 1.2 matt &ci->ci_ev_ali, xname, "user alignment traps");
453 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
454 1.2 matt &ci->ci_ev_umchk, xname, "user MCHK failures");
455 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
456 1.2 matt &ci->ci_ev_traps, xname, "SPE unavailable");
457 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_vecsw, EVCNT_TYPE_MISC,
458 1.2 matt &ci->ci_ev_vec, xname, "SPE context switches");
459 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
460 1.2 matt NULL, xname, "IPIs");
461 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_tlbmiss_soft, EVCNT_TYPE_TRAP,
462 1.2 matt &ci->ci_ev_traps, xname, "soft tlb misses");
463 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_dtlbmiss_hard, EVCNT_TYPE_TRAP,
464 1.2 matt &ci->ci_ev_traps, xname, "data tlb misses");
465 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_itlbmiss_hard, EVCNT_TYPE_TRAP,
466 1.2 matt &ci->ci_ev_traps, xname, "inst tlb misses");
467 1.2 matt }
468 1.2 matt
469 1.12 matt #ifdef MULTIPROCESSOR
470 1.12 matt register_t
471 1.12 matt cpu_hatch(void)
472 1.12 matt {
473 1.18 matt struct cpuset_info * const csi = &cpuset_info;
474 1.12 matt const size_t id = cpu_number();
475 1.12 matt
476 1.12 matt /*
477 1.12 matt * We've hatched so tell the spinup code.
478 1.12 matt */
479 1.18 matt kcpuset_set(csi->cpus_hatched, id);
480 1.12 matt
481 1.12 matt /*
482 1.12 matt * Loop until running bit for this cpu is set.
483 1.12 matt */
484 1.18 matt while (!kcpuset_isset(csi->cpus_running, id)) {
485 1.12 matt continue;
486 1.12 matt }
487 1.12 matt
488 1.12 matt /*
489 1.12 matt * Now that we are active, start the clocks.
490 1.12 matt */
491 1.12 matt cpu_initclocks();
492 1.12 matt
493 1.12 matt /*
494 1.12 matt * Return sp of the idlelwp. Which we should be already using but ...
495 1.12 matt */
496 1.12 matt return curcpu()->ci_curpcb->pcb_sp;
497 1.12 matt }
498 1.12 matt
499 1.12 matt void
500 1.12 matt cpu_boot_secondary_processors(void)
501 1.12 matt {
502 1.12 matt volatile struct cpuset_info * const csi = &cpuset_info;
503 1.12 matt CPU_INFO_ITERATOR cii;
504 1.12 matt struct cpu_info *ci;
505 1.18 matt kcpuset_t *running;
506 1.18 matt
507 1.18 matt kcpuset_create(&running, true);
508 1.12 matt
509 1.12 matt for (CPU_INFO_FOREACH(cii, ci)) {
510 1.12 matt /*
511 1.12 matt * Skip this CPU if it didn't sucessfully hatch.
512 1.12 matt */
513 1.18 matt if (!kcpuset_isset(csi->cpus_hatched, cpu_index(ci)))
514 1.12 matt continue;
515 1.12 matt
516 1.12 matt KASSERT(!CPU_IS_PRIMARY(ci));
517 1.12 matt KASSERT(ci->ci_data.cpu_idlelwp);
518 1.12 matt
519 1.18 matt kcpuset_set(running, cpu_index(ci));
520 1.12 matt }
521 1.18 matt KASSERT(kcpuset_match(csi->cpus_hatched, running));
522 1.18 matt if (!kcpuset_iszero(running)) {
523 1.18 matt kcpuset_merge(csi->cpus_running, running);
524 1.12 matt }
525 1.18 matt kcpuset_destroy(running);
526 1.12 matt }
527 1.12 matt #endif
528 1.12 matt
529 1.2 matt uint32_t
530 1.2 matt cpu_read_4(bus_addr_t a)
531 1.2 matt {
532 1.2 matt struct cpu_softc * const cpu = curcpu()->ci_softc;
533 1.2 matt // printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a);
534 1.2 matt return bus_space_read_4(cpu->cpu_bst, cpu->cpu_bsh, a);
535 1.2 matt }
536 1.2 matt
537 1.2 matt uint8_t
538 1.2 matt cpu_read_1(bus_addr_t a)
539 1.2 matt {
540 1.2 matt struct cpu_softc * const cpu = curcpu()->ci_softc;
541 1.2 matt // printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a);
542 1.2 matt return bus_space_read_1(cpu->cpu_bst, cpu->cpu_bsh, a);
543 1.2 matt }
544 1.2 matt
545 1.2 matt void
546 1.2 matt cpu_write_4(bus_addr_t a, uint32_t v)
547 1.2 matt {
548 1.2 matt struct cpu_softc * const cpu = curcpu()->ci_softc;
549 1.2 matt bus_space_write_4(cpu->cpu_bst, cpu->cpu_bsh, a, v);
550 1.2 matt }
551 1.2 matt
552 1.2 matt void
553 1.2 matt cpu_write_1(bus_addr_t a, uint8_t v)
554 1.2 matt {
555 1.2 matt struct cpu_softc * const cpu = curcpu()->ci_softc;
556 1.2 matt bus_space_write_1(cpu->cpu_bst, cpu->cpu_bsh, a, v);
557 1.2 matt }
558 1.4 matt
559 1.4 matt void
560 1.4 matt booke_sstep(struct trapframe *tf)
561 1.4 matt {
562 1.4 matt KASSERT(tf->tf_srr1 & PSL_DE);
563 1.4 matt const uint32_t insn = ufetch_32((const void *)tf->tf_srr0);
564 1.4 matt register_t dbcr0 = DBCR0_IAC1 | DBCR0_IDM;
565 1.4 matt register_t dbcr1 = DBCR1_IAC1US_USER | DBCR1_IAC1ER_DS1;
566 1.4 matt if ((insn >> 28) == 4) {
567 1.4 matt uint32_t iac2 = 0;
568 1.4 matt if ((insn >> 26) == 0x12) {
569 1.4 matt const int32_t off = (((int32_t)insn << 6) >> 6) & ~3;
570 1.4 matt iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off;
571 1.4 matt dbcr0 |= DBCR0_IAC2;
572 1.4 matt } else if ((insn >> 26) == 0x10) {
573 1.4 matt const int16_t off = insn & ~3;
574 1.4 matt iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off;
575 1.4 matt dbcr0 |= DBCR0_IAC2;
576 1.21 matt } else if ((insn & 0xfc00fffe) == 0x4c000420) {
577 1.4 matt iac2 = tf->tf_ctr;
578 1.4 matt dbcr0 |= DBCR0_IAC2;
579 1.21 matt } else if ((insn & 0xfc00fffe) == 0x4c000020) {
580 1.4 matt iac2 = tf->tf_lr;
581 1.4 matt dbcr0 |= DBCR0_IAC2;
582 1.4 matt }
583 1.4 matt if (dbcr0 & DBCR0_IAC2) {
584 1.4 matt dbcr1 |= DBCR1_IAC2US_USER | DBCR1_IAC2ER_DS1;
585 1.4 matt mtspr(SPR_IAC2, iac2);
586 1.4 matt }
587 1.4 matt }
588 1.4 matt mtspr(SPR_IAC1, tf->tf_srr0 + 4);
589 1.4 matt mtspr(SPR_DBCR1, dbcr1);
590 1.4 matt mtspr(SPR_DBCR0, dbcr0);
591 1.4 matt }
592 1.16 matt
593 1.16 matt #ifdef DIAGNOSTIC
594 1.16 matt static inline void
595 1.16 matt swap_data(uint64_t *data, size_t a, size_t b)
596 1.16 matt {
597 1.16 matt uint64_t swap = data[a];
598 1.16 matt data[a] = data[b];
599 1.16 matt data[b] = swap;
600 1.16 matt }
601 1.16 matt
602 1.16 matt static void
603 1.16 matt sort_data(uint64_t *data, size_t count)
604 1.16 matt {
605 1.16 matt #if 0
606 1.16 matt /*
607 1.16 matt * Mostly classic bubble sort
608 1.16 matt */
609 1.16 matt do {
610 1.16 matt size_t new_count = 0;
611 1.16 matt for (size_t i = 1; i < count; i++) {
612 1.16 matt if (tbs[i - 1] > tbs[i]) {
613 1.16 matt swap_tbs(tbs, i - 1, i);
614 1.16 matt new_count = i;
615 1.16 matt }
616 1.16 matt }
617 1.16 matt count = new_count;
618 1.16 matt } while (count > 0);
619 1.16 matt #else
620 1.16 matt /*
621 1.16 matt * Comb sort
622 1.16 matt */
623 1.16 matt size_t gap = count;
624 1.16 matt bool swapped = false;
625 1.16 matt while (gap > 1 || swapped) {
626 1.16 matt if (gap > 1) {
627 1.16 matt /*
628 1.16 matt * phi = (1 + sqrt(5)) / 2 [golden ratio]
629 1.16 matt * N = 1 / (1 - e^-phi)) = 1.247330950103979
630 1.16 matt *
631 1.16 matt * We want to but can't use floating point to calculate
632 1.16 matt * gap = (size_t)((double)gap / N)
633 1.16 matt *
634 1.16 matt * So we will use the multicative inverse of N
635 1.16 matt * (module 65536) to achieve the division.
636 1.16 matt *
637 1.16 matt * iN = 2^16 / 1.24733... = 52540
638 1.16 matt * x / N == (x * iN) / 65536
639 1.16 matt */
640 1.16 matt gap = (gap * 52540) / 65536;
641 1.16 matt }
642 1.16 matt
643 1.16 matt swapped = false;
644 1.16 matt
645 1.16 matt for (size_t i = 0; gap + i < count; i++) {
646 1.16 matt if (data[i] > data[i + gap]) {
647 1.16 matt swap_data(data, i, i + gap);
648 1.16 matt swapped = true;
649 1.16 matt }
650 1.16 matt }
651 1.16 matt }
652 1.16 matt #endif
653 1.16 matt }
654 1.16 matt #endif
655 1.16 matt
656 1.16 matt void
657 1.16 matt dump_splhist(struct cpu_info *ci, void (*pr)(const char *, ...))
658 1.16 matt {
659 1.16 matt #ifdef DIAGNOSTIC
660 1.16 matt struct cpu_softc * const cpu = ci->ci_softc;
661 1.16 matt uint64_t tbs[NIPL*NIPL];
662 1.16 matt size_t ntbs = 0;
663 1.16 matt for (size_t to = 0; to < NIPL; to++) {
664 1.16 matt for (size_t from = 0; from < NIPL; from++) {
665 1.16 matt uint64_t tb = cpu->cpu_spl_tb[to][from];
666 1.16 matt if (tb == 0)
667 1.16 matt continue;
668 1.16 matt tbs[ntbs++] = (tb << 8) | (to << 4) | from;
669 1.16 matt }
670 1.16 matt }
671 1.16 matt sort_data(tbs, ntbs);
672 1.16 matt
673 1.16 matt if (pr == NULL)
674 1.16 matt pr = printf;
675 1.16 matt uint64_t last_tb = 0;
676 1.16 matt for (size_t i = 0; i < ntbs; i++) {
677 1.16 matt uint64_t tb = tbs[i];
678 1.16 matt size_t from = tb & 15;
679 1.16 matt size_t to = (tb >> 4) & 15;
680 1.16 matt tb >>= 8;
681 1.16 matt (*pr)("%s(%zu) from %zu at %"PRId64"",
682 1.16 matt from < to ? "splraise" : "splx",
683 1.16 matt to, from, tb);
684 1.16 matt if (last_tb && from != IPL_NONE)
685 1.16 matt (*pr)(" (+%"PRId64")", tb - last_tb);
686 1.16 matt (*pr)("\n");
687 1.16 matt last_tb = tb;
688 1.16 matt }
689 1.16 matt #endif
690 1.16 matt }
691