booke_machdep.c revision 1.32 1 1.32 rin /* $NetBSD: booke_machdep.c,v 1.32 2020/07/06 10:08:16 rin Exp $ */
2 1.2 matt /*-
3 1.2 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 1.2 matt * All rights reserved.
5 1.2 matt *
6 1.2 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.2 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 1.2 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 1.2 matt *
10 1.2 matt * This material is based upon work supported by the Defense Advanced Research
11 1.2 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 1.2 matt * Contract No. N66001-09-C-2073.
13 1.2 matt * Approved for Public Release, Distribution Unlimited
14 1.2 matt *
15 1.2 matt * Redistribution and use in source and binary forms, with or without
16 1.2 matt * modification, are permitted provided that the following conditions
17 1.2 matt * are met:
18 1.2 matt * 1. Redistributions of source code must retain the above copyright
19 1.2 matt * notice, this list of conditions and the following disclaimer.
20 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright
21 1.2 matt * notice, this list of conditions and the following disclaimer in the
22 1.2 matt * documentation and/or other materials provided with the distribution.
23 1.2 matt *
24 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.2 matt * POSSIBILITY OF SUCH DAMAGE.
35 1.2 matt */
36 1.2 matt
37 1.2 matt #define __INTR_PRIVATE
38 1.2 matt #define _POWERPC_BUS_DMA_PRIVATE
39 1.2 matt
40 1.2 matt #include <sys/cdefs.h>
41 1.32 rin __KERNEL_RCSID(0, "$NetBSD: booke_machdep.c,v 1.32 2020/07/06 10:08:16 rin Exp $");
42 1.32 rin
43 1.32 rin #include "ksyms.h"
44 1.2 matt
45 1.31 rin #ifdef _KERNEL_OPT
46 1.32 rin #include "opt_ddb.h"
47 1.9 matt #include "opt_modular.h"
48 1.32 rin #include "opt_multiprocessor.h"
49 1.31 rin #endif
50 1.9 matt
51 1.2 matt #include <sys/param.h>
52 1.2 matt #include <sys/cpu.h>
53 1.2 matt #include <sys/device.h>
54 1.2 matt #include <sys/intr.h>
55 1.2 matt #include <sys/mount.h>
56 1.2 matt #include <sys/msgbuf.h>
57 1.2 matt #include <sys/kernel.h>
58 1.2 matt #include <sys/reboot.h>
59 1.2 matt #include <sys/bus.h>
60 1.20 christos #include <sys/cpu.h>
61 1.2 matt
62 1.2 matt #include <uvm/uvm_extern.h>
63 1.2 matt
64 1.25 rin #include <dev/cons.h>
65 1.25 rin
66 1.12 matt #include <powerpc/pcb.h>
67 1.4 matt #include <powerpc/spr.h>
68 1.4 matt #include <powerpc/booke/spr.h>
69 1.4 matt #include <powerpc/booke/cpuvar.h>
70 1.2 matt
71 1.2 matt /*
72 1.2 matt * Global variables used here and there
73 1.2 matt */
74 1.2 matt paddr_t msgbuf_paddr;
75 1.2 matt psize_t pmemsize;
76 1.2 matt struct vm_map *phys_map;
77 1.2 matt
78 1.9 matt #ifdef MODULAR
79 1.9 matt register_t cpu_psluserset = PSL_USERSET;
80 1.9 matt register_t cpu_pslusermod = PSL_USERMOD;
81 1.9 matt register_t cpu_pslusermask = PSL_USERMASK;
82 1.9 matt #endif
83 1.9 matt
84 1.2 matt static bus_addr_t booke_dma_phys_to_bus_mem(bus_dma_tag_t, bus_addr_t);
85 1.2 matt static bus_addr_t booke_dma_bus_mem_to_phys(bus_dma_tag_t, bus_addr_t);
86 1.2 matt
87 1.2 matt
88 1.2 matt struct powerpc_bus_dma_tag booke_bus_dma_tag = {
89 1.2 matt ._dmamap_create = _bus_dmamap_create,
90 1.2 matt ._dmamap_destroy = _bus_dmamap_destroy,
91 1.2 matt ._dmamap_load = _bus_dmamap_load,
92 1.2 matt ._dmamap_load_mbuf = _bus_dmamap_load_mbuf,
93 1.2 matt ._dmamap_load_uio = _bus_dmamap_load_uio,
94 1.2 matt ._dmamap_load_raw = _bus_dmamap_load_raw,
95 1.2 matt ._dmamap_unload = _bus_dmamap_unload,
96 1.17 matt /*
97 1.17 matt * The caches on BookE are coherent so we don't need to do any special
98 1.17 matt * cache synchronization.
99 1.17 matt */
100 1.17 matt //._dmamap_sync = _bus_dmamap_sync,
101 1.2 matt ._dmamem_alloc = _bus_dmamem_alloc,
102 1.2 matt ._dmamem_free = _bus_dmamem_free,
103 1.2 matt ._dmamem_map = _bus_dmamem_map,
104 1.2 matt ._dmamem_unmap = _bus_dmamem_unmap,
105 1.2 matt ._dmamem_mmap = _bus_dmamem_mmap,
106 1.2 matt ._dma_phys_to_bus_mem = booke_dma_phys_to_bus_mem,
107 1.2 matt ._dma_bus_mem_to_phys = booke_dma_bus_mem_to_phys,
108 1.2 matt };
109 1.2 matt
110 1.2 matt static bus_addr_t
111 1.2 matt booke_dma_phys_to_bus_mem(bus_dma_tag_t t, bus_addr_t a)
112 1.2 matt {
113 1.2 matt return a;
114 1.2 matt }
115 1.2 matt
116 1.2 matt static bus_addr_t
117 1.2 matt booke_dma_bus_mem_to_phys(bus_dma_tag_t t, bus_addr_t a)
118 1.2 matt {
119 1.2 matt return a;
120 1.2 matt }
121 1.2 matt
122 1.2 matt struct cpu_md_ops cpu_md_ops;
123 1.2 matt
124 1.6 matt struct cpu_softc cpu_softc[] = {
125 1.2 matt [0] = {
126 1.6 matt .cpu_ci = &cpu_info[0],
127 1.6 matt },
128 1.6 matt #ifdef MULTIPROCESSOR
129 1.6 matt [CPU_MAXNUM-1] = {
130 1.6 matt .cpu_ci = &cpu_info[CPU_MAXNUM-1],
131 1.2 matt },
132 1.6 matt #endif
133 1.2 matt };
134 1.6 matt struct cpu_info cpu_info[] = {
135 1.2 matt [0] = {
136 1.2 matt .ci_curlwp = &lwp0,
137 1.2 matt .ci_tlb_info = &pmap_tlb0_info,
138 1.6 matt .ci_softc = &cpu_softc[0],
139 1.6 matt .ci_cpl = IPL_HIGH,
140 1.12 matt .ci_idepth = -1,
141 1.24 matt .ci_pmap_kern_segtab = &pmap_kern_segtab,
142 1.6 matt },
143 1.6 matt #ifdef MULTIPROCESSOR
144 1.6 matt [CPU_MAXNUM-1] = {
145 1.6 matt .ci_curlwp = NULL,
146 1.6 matt .ci_tlb_info = &pmap_tlb0_info,
147 1.6 matt .ci_softc = &cpu_softc[CPU_MAXNUM-1],
148 1.2 matt .ci_cpl = IPL_HIGH,
149 1.12 matt .ci_idepth = -1,
150 1.24 matt .ci_pmap_kern_segtab = &pmap_kern_segtab,
151 1.6 matt },
152 1.2 matt #endif
153 1.2 matt };
154 1.12 matt __CTASSERT(__arraycount(cpu_info) == __arraycount(cpu_softc));
155 1.2 matt
156 1.2 matt /*
157 1.2 matt * This should probably be in autoconf! XXX
158 1.2 matt */
159 1.2 matt char machine[] = MACHINE; /* from <machine/param.h> */
160 1.2 matt char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
161 1.2 matt
162 1.2 matt char bootpath[256];
163 1.2 matt
164 1.2 matt #if NKSYMS || defined(DDB) || defined(MODULAR)
165 1.2 matt void *startsym, *endsym;
166 1.2 matt #endif
167 1.2 matt
168 1.12 matt #if defined(MULTIPROCESSOR)
169 1.12 matt volatile struct cpu_hatch_data cpu_hatch_data __cacheline_aligned;
170 1.12 matt #endif
171 1.12 matt
172 1.2 matt int fake_mapiodev = 1;
173 1.2 matt
174 1.2 matt void
175 1.2 matt booke_cpu_startup(const char *model)
176 1.2 matt {
177 1.2 matt vaddr_t minaddr, maxaddr;
178 1.2 matt char pbuf[9];
179 1.2 matt
180 1.20 christos cpu_setmodel("%s", model);
181 1.2 matt
182 1.2 matt printf("%s%s", copyright, version);
183 1.2 matt
184 1.5 matt format_bytes(pbuf, sizeof(pbuf), ctob((uint64_t)physmem));
185 1.2 matt printf("total memory = %s\n", pbuf);
186 1.2 matt
187 1.2 matt minaddr = 0;
188 1.2 matt /*
189 1.2 matt * Allocate a submap for physio
190 1.2 matt */
191 1.2 matt phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
192 1.2 matt VM_PHYS_SIZE, 0, false, NULL);
193 1.2 matt
194 1.2 matt /*
195 1.2 matt * No need to allocate an mbuf cluster submap. Mbuf clusters
196 1.2 matt * are allocated via the pool allocator, and we use direct-mapped
197 1.2 matt * pool pages.
198 1.2 matt */
199 1.2 matt
200 1.30 ad format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false)));
201 1.2 matt printf("avail memory = %s\n", pbuf);
202 1.2 matt
203 1.2 matt /*
204 1.11 matt * Register the tlb's evcnts
205 1.11 matt */
206 1.11 matt pmap_tlb_info_evcnt_attach(curcpu()->ci_tlb_info);
207 1.11 matt
208 1.11 matt /*
209 1.2 matt * Set up the board properties database.
210 1.2 matt */
211 1.2 matt board_info_init();
212 1.2 matt
213 1.2 matt /*
214 1.2 matt * Now that we have VM, malloc()s are OK in bus_space.
215 1.2 matt */
216 1.2 matt bus_space_mallocok();
217 1.2 matt fake_mapiodev = 0;
218 1.12 matt
219 1.12 matt #ifdef MULTIPROCESSOR
220 1.22 nonaka pmap_kernel()->pm_active = kcpuset_running;
221 1.22 nonaka pmap_kernel()->pm_onproc = kcpuset_running;
222 1.22 nonaka
223 1.12 matt for (size_t i = 1; i < __arraycount(cpu_info); i++) {
224 1.12 matt struct cpu_info * const ci = &cpu_info[i];
225 1.12 matt struct cpu_softc * const cpu = &cpu_softc[i];
226 1.12 matt cpu->cpu_ci = ci;
227 1.12 matt cpu->cpu_bst = cpu_softc[0].cpu_bst;
228 1.12 matt cpu->cpu_le_bst = cpu_softc[0].cpu_le_bst;
229 1.12 matt cpu->cpu_bsh = cpu_softc[0].cpu_bsh;
230 1.12 matt cpu->cpu_highmem = cpu_softc[0].cpu_highmem;
231 1.12 matt ci->ci_softc = cpu;
232 1.12 matt ci->ci_tlb_info = &pmap_tlb0_info;
233 1.12 matt ci->ci_cpl = IPL_HIGH;
234 1.12 matt ci->ci_idepth = -1;
235 1.12 matt ci->ci_pmap_kern_segtab = curcpu()->ci_pmap_kern_segtab;
236 1.12 matt }
237 1.18 matt
238 1.18 matt kcpuset_create(&cpuset_info.cpus_running, true);
239 1.18 matt kcpuset_create(&cpuset_info.cpus_hatched, true);
240 1.18 matt kcpuset_create(&cpuset_info.cpus_paused, true);
241 1.18 matt kcpuset_create(&cpuset_info.cpus_resumed, true);
242 1.18 matt kcpuset_create(&cpuset_info.cpus_halted, true);
243 1.23 nonaka
244 1.23 nonaka kcpuset_set(cpuset_info.cpus_running, cpu_number());
245 1.12 matt #endif /* MULTIPROCESSOR */
246 1.2 matt }
247 1.2 matt
248 1.2 matt static void
249 1.2 matt dumpsys(void)
250 1.2 matt {
251 1.2 matt
252 1.2 matt printf("dumpsys: TBD\n");
253 1.2 matt }
254 1.2 matt
255 1.2 matt /*
256 1.2 matt * Halt or reboot the machine after syncing/dumping according to howto.
257 1.2 matt */
258 1.2 matt void
259 1.2 matt cpu_reboot(int howto, char *what)
260 1.2 matt {
261 1.2 matt static int syncing;
262 1.2 matt static char str[256];
263 1.2 matt char *ap = str, *ap1 = ap;
264 1.2 matt
265 1.2 matt boothowto = howto;
266 1.2 matt if (!cold && !(howto & RB_NOSYNC) && !syncing) {
267 1.2 matt syncing = 1;
268 1.2 matt vfs_shutdown(); /* sync */
269 1.2 matt resettodr(); /* set wall clock */
270 1.2 matt }
271 1.2 matt
272 1.2 matt splhigh();
273 1.2 matt
274 1.2 matt if (!cold && (howto & RB_DUMP))
275 1.2 matt dumpsys();
276 1.2 matt
277 1.2 matt doshutdownhooks();
278 1.2 matt
279 1.2 matt pmf_system_shutdown(boothowto);
280 1.2 matt
281 1.2 matt if ((howto & RB_POWERDOWN) == RB_POWERDOWN) {
282 1.2 matt /* Power off here if we know how...*/
283 1.2 matt }
284 1.2 matt
285 1.2 matt if (howto & RB_HALT) {
286 1.25 rin printf("The operating system has halted.\n"
287 1.25 rin "Press any key to reboot.\n\n");
288 1.25 rin cnpollc(1); /* For proper keyboard command handling */
289 1.25 rin cngetc();
290 1.25 rin cnpollc(0);
291 1.2 matt
292 1.25 rin printf("rebooting...\n\n");
293 1.2 matt goto reboot; /* XXX for now... */
294 1.2 matt
295 1.2 matt #ifdef DDB
296 1.2 matt printf("dropping to debugger\n");
297 1.2 matt while(1)
298 1.2 matt Debugger();
299 1.2 matt #endif
300 1.2 matt }
301 1.2 matt
302 1.2 matt printf("rebooting\n\n");
303 1.2 matt if (what && *what) {
304 1.2 matt if (strlen(what) > sizeof str - 5)
305 1.2 matt printf("boot string too large, ignored\n");
306 1.2 matt else {
307 1.2 matt strcpy(str, what);
308 1.2 matt ap1 = ap = str + strlen(str);
309 1.2 matt *ap++ = ' ';
310 1.2 matt }
311 1.2 matt }
312 1.2 matt *ap++ = '-';
313 1.2 matt if (howto & RB_SINGLE)
314 1.2 matt *ap++ = 's';
315 1.2 matt if (howto & RB_KDB)
316 1.2 matt *ap++ = 'd';
317 1.2 matt *ap++ = 0;
318 1.2 matt if (ap[-2] == '-')
319 1.2 matt *ap1 = 0;
320 1.2 matt
321 1.2 matt /* flush cache for msgbuf */
322 1.2 matt dcache_wb(msgbuf_paddr, round_page(MSGBUFSIZE));
323 1.2 matt
324 1.2 matt reboot:
325 1.2 matt __asm volatile("msync; isync");
326 1.2 matt (*cpu_md_ops.md_cpu_reset)();
327 1.2 matt
328 1.2 matt printf("%s: md_cpu_reset() failed!\n", __func__);
329 1.2 matt #ifdef DDB
330 1.2 matt for (;;)
331 1.2 matt Debugger();
332 1.2 matt #else
333 1.2 matt for (;;)
334 1.2 matt /* nothing */;
335 1.2 matt #endif
336 1.2 matt }
337 1.2 matt
338 1.2 matt /*
339 1.2 matt * mapiodev:
340 1.2 matt *
341 1.2 matt * Allocate vm space and mapin the I/O address. Use reserved TLB
342 1.2 matt * mapping if one is found.
343 1.2 matt */
344 1.2 matt void *
345 1.14 matt mapiodev(paddr_t pa, psize_t len, bool prefetchable)
346 1.2 matt {
347 1.2 matt const vsize_t off = pa & PAGE_MASK;
348 1.2 matt
349 1.2 matt /*
350 1.2 matt * See if we have reserved TLB entry for the pa. This needs to be
351 1.2 matt * true for console as we can't use uvm during early bootstrap.
352 1.2 matt */
353 1.14 matt void * const p = tlb_mapiodev(pa, len, prefetchable);
354 1.2 matt if (p != NULL)
355 1.2 matt return p;
356 1.2 matt
357 1.2 matt if (fake_mapiodev)
358 1.2 matt panic("mapiodev: no TLB entry reserved for %llx+%llx",
359 1.2 matt (long long)pa, (long long)len);
360 1.2 matt
361 1.15 matt const paddr_t orig_pa = pa;
362 1.15 matt const psize_t orig_len = len;
363 1.15 matt vsize_t align = 0;
364 1.2 matt pa = trunc_page(pa);
365 1.2 matt len = round_page(off + len);
366 1.15 matt /*
367 1.15 matt * If we are allocating a large amount (>= 1MB) try to get an
368 1.15 matt * aligned VA region for it so try to do a large mapping for it.
369 1.15 matt */
370 1.15 matt if ((len & (len - 1)) == 0 && len >= 0x100000)
371 1.15 matt align = len;
372 1.15 matt
373 1.15 matt vaddr_t va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY);
374 1.2 matt
375 1.15 matt if (va == 0 && align > 0) {
376 1.15 matt /*
377 1.15 matt * Large aligned request failed. Let's just get anything.
378 1.15 matt */
379 1.15 matt align = 0;
380 1.15 matt va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY);
381 1.15 matt }
382 1.2 matt if (va == 0)
383 1.2 matt return NULL;
384 1.2 matt
385 1.15 matt if (align) {
386 1.15 matt /*
387 1.15 matt * Now try to map that via one big TLB entry.
388 1.15 matt */
389 1.15 matt pt_entry_t pte = pte_make_kenter_pa(pa, NULL,
390 1.15 matt VM_PROT_READ|VM_PROT_WRITE,
391 1.15 matt prefetchable ? 0 : PMAP_NOCACHE);
392 1.15 matt if (!tlb_ioreserve(va, len, pte)) {
393 1.15 matt void * const p0 = tlb_mapiodev(orig_pa, orig_len,
394 1.15 matt prefetchable);
395 1.15 matt KASSERT(p0 != NULL);
396 1.15 matt return p0;
397 1.15 matt }
398 1.15 matt }
399 1.15 matt
400 1.2 matt for (va += len, pa += len; len > 0; len -= PAGE_SIZE) {
401 1.2 matt va -= PAGE_SIZE;
402 1.2 matt pa -= PAGE_SIZE;
403 1.2 matt pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE,
404 1.14 matt prefetchable ? 0 : PMAP_NOCACHE);
405 1.2 matt }
406 1.2 matt pmap_update(pmap_kernel());
407 1.2 matt return (void *)(va + off);
408 1.2 matt }
409 1.2 matt
410 1.2 matt void
411 1.2 matt unmapiodev(vaddr_t va, vsize_t len)
412 1.2 matt {
413 1.2 matt /* Nothing to do for reserved (ie. not uvm_km_alloc'd) mappings. */
414 1.2 matt if (va < VM_MIN_KERNEL_ADDRESS || va > VM_MAX_KERNEL_ADDRESS) {
415 1.2 matt tlb_unmapiodev(va, len);
416 1.2 matt return;
417 1.2 matt }
418 1.2 matt
419 1.2 matt len = round_page((va & PAGE_MASK) + len);
420 1.2 matt va = trunc_page(va);
421 1.2 matt
422 1.2 matt pmap_kremove(va, len);
423 1.2 matt uvm_km_free(kernel_map, va, len, UVM_KMF_VAONLY);
424 1.2 matt }
425 1.2 matt
426 1.2 matt void
427 1.2 matt cpu_evcnt_attach(struct cpu_info *ci)
428 1.2 matt {
429 1.2 matt struct cpu_softc * const cpu = ci->ci_softc;
430 1.12 matt const char * const xname = ci->ci_data.cpu_name;
431 1.2 matt
432 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
433 1.2 matt NULL, xname, "clock");
434 1.2 matt evcnt_attach_dynamic_nozero(&cpu->cpu_ev_late_clock, EVCNT_TYPE_INTR,
435 1.2 matt NULL, xname, "late clock");
436 1.2 matt evcnt_attach_dynamic_nozero(&cpu->cpu_ev_exec_trap_sync, EVCNT_TYPE_TRAP,
437 1.2 matt NULL, xname, "exec pages synced (trap)");
438 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
439 1.2 matt NULL, xname, "traps");
440 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
441 1.2 matt &ci->ci_ev_traps, xname, "kernel DSI traps");
442 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
443 1.2 matt &ci->ci_ev_traps, xname, "user DSI traps");
444 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
445 1.2 matt &ci->ci_ev_udsi, xname, "user DSI failures");
446 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
447 1.2 matt &ci->ci_ev_traps, xname, "kernel ISI traps");
448 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
449 1.2 matt &ci->ci_ev_traps, xname, "user ISI traps");
450 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
451 1.2 matt &ci->ci_ev_isi, xname, "user ISI failures");
452 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
453 1.2 matt &ci->ci_ev_traps, xname, "system call traps");
454 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
455 1.2 matt &ci->ci_ev_traps, xname, "PGM traps");
456 1.3 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_debug, EVCNT_TYPE_TRAP,
457 1.3 matt &ci->ci_ev_traps, xname, "debug traps");
458 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
459 1.2 matt &ci->ci_ev_traps, xname, "FPU unavailable traps");
460 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_fpusw, EVCNT_TYPE_MISC,
461 1.2 matt &ci->ci_ev_fpu, xname, "FPU context switches");
462 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
463 1.2 matt &ci->ci_ev_traps, xname, "user alignment traps");
464 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
465 1.2 matt &ci->ci_ev_ali, xname, "user alignment traps");
466 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
467 1.2 matt &ci->ci_ev_umchk, xname, "user MCHK failures");
468 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
469 1.2 matt &ci->ci_ev_traps, xname, "SPE unavailable");
470 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_vecsw, EVCNT_TYPE_MISC,
471 1.2 matt &ci->ci_ev_vec, xname, "SPE context switches");
472 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
473 1.2 matt NULL, xname, "IPIs");
474 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_tlbmiss_soft, EVCNT_TYPE_TRAP,
475 1.2 matt &ci->ci_ev_traps, xname, "soft tlb misses");
476 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_dtlbmiss_hard, EVCNT_TYPE_TRAP,
477 1.2 matt &ci->ci_ev_traps, xname, "data tlb misses");
478 1.2 matt evcnt_attach_dynamic_nozero(&ci->ci_ev_itlbmiss_hard, EVCNT_TYPE_TRAP,
479 1.2 matt &ci->ci_ev_traps, xname, "inst tlb misses");
480 1.2 matt }
481 1.2 matt
482 1.12 matt #ifdef MULTIPROCESSOR
483 1.12 matt register_t
484 1.12 matt cpu_hatch(void)
485 1.12 matt {
486 1.18 matt struct cpuset_info * const csi = &cpuset_info;
487 1.12 matt const size_t id = cpu_number();
488 1.12 matt
489 1.12 matt /*
490 1.12 matt * We've hatched so tell the spinup code.
491 1.12 matt */
492 1.18 matt kcpuset_set(csi->cpus_hatched, id);
493 1.12 matt
494 1.12 matt /*
495 1.12 matt * Loop until running bit for this cpu is set.
496 1.12 matt */
497 1.18 matt while (!kcpuset_isset(csi->cpus_running, id)) {
498 1.12 matt continue;
499 1.12 matt }
500 1.12 matt
501 1.12 matt /*
502 1.12 matt * Now that we are active, start the clocks.
503 1.12 matt */
504 1.12 matt cpu_initclocks();
505 1.12 matt
506 1.12 matt /*
507 1.12 matt * Return sp of the idlelwp. Which we should be already using but ...
508 1.12 matt */
509 1.12 matt return curcpu()->ci_curpcb->pcb_sp;
510 1.12 matt }
511 1.12 matt
512 1.12 matt void
513 1.12 matt cpu_boot_secondary_processors(void)
514 1.12 matt {
515 1.12 matt volatile struct cpuset_info * const csi = &cpuset_info;
516 1.12 matt CPU_INFO_ITERATOR cii;
517 1.12 matt struct cpu_info *ci;
518 1.18 matt kcpuset_t *running;
519 1.18 matt
520 1.18 matt kcpuset_create(&running, true);
521 1.12 matt
522 1.12 matt for (CPU_INFO_FOREACH(cii, ci)) {
523 1.12 matt /*
524 1.28 msaitoh * Skip this CPU if it didn't successfully hatch.
525 1.12 matt */
526 1.18 matt if (!kcpuset_isset(csi->cpus_hatched, cpu_index(ci)))
527 1.12 matt continue;
528 1.12 matt
529 1.12 matt KASSERT(!CPU_IS_PRIMARY(ci));
530 1.12 matt KASSERT(ci->ci_data.cpu_idlelwp);
531 1.12 matt
532 1.18 matt kcpuset_set(running, cpu_index(ci));
533 1.12 matt }
534 1.18 matt KASSERT(kcpuset_match(csi->cpus_hatched, running));
535 1.18 matt if (!kcpuset_iszero(running)) {
536 1.18 matt kcpuset_merge(csi->cpus_running, running);
537 1.12 matt }
538 1.18 matt kcpuset_destroy(running);
539 1.12 matt }
540 1.12 matt #endif
541 1.12 matt
542 1.2 matt uint32_t
543 1.2 matt cpu_read_4(bus_addr_t a)
544 1.2 matt {
545 1.2 matt struct cpu_softc * const cpu = curcpu()->ci_softc;
546 1.2 matt // printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a);
547 1.2 matt return bus_space_read_4(cpu->cpu_bst, cpu->cpu_bsh, a);
548 1.2 matt }
549 1.2 matt
550 1.2 matt uint8_t
551 1.2 matt cpu_read_1(bus_addr_t a)
552 1.2 matt {
553 1.2 matt struct cpu_softc * const cpu = curcpu()->ci_softc;
554 1.2 matt // printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a);
555 1.2 matt return bus_space_read_1(cpu->cpu_bst, cpu->cpu_bsh, a);
556 1.2 matt }
557 1.2 matt
558 1.2 matt void
559 1.2 matt cpu_write_4(bus_addr_t a, uint32_t v)
560 1.2 matt {
561 1.2 matt struct cpu_softc * const cpu = curcpu()->ci_softc;
562 1.2 matt bus_space_write_4(cpu->cpu_bst, cpu->cpu_bsh, a, v);
563 1.2 matt }
564 1.2 matt
565 1.2 matt void
566 1.2 matt cpu_write_1(bus_addr_t a, uint8_t v)
567 1.2 matt {
568 1.2 matt struct cpu_softc * const cpu = curcpu()->ci_softc;
569 1.2 matt bus_space_write_1(cpu->cpu_bst, cpu->cpu_bsh, a, v);
570 1.2 matt }
571 1.4 matt
572 1.4 matt void
573 1.4 matt booke_sstep(struct trapframe *tf)
574 1.4 matt {
575 1.26 thorpej uint32_t insn;
576 1.26 thorpej
577 1.4 matt KASSERT(tf->tf_srr1 & PSL_DE);
578 1.26 thorpej if (ufetch_32((const void *)tf->tf_srr0, &insn) != 0)
579 1.26 thorpej return;
580 1.26 thorpej
581 1.4 matt register_t dbcr0 = DBCR0_IAC1 | DBCR0_IDM;
582 1.4 matt register_t dbcr1 = DBCR1_IAC1US_USER | DBCR1_IAC1ER_DS1;
583 1.4 matt if ((insn >> 28) == 4) {
584 1.4 matt uint32_t iac2 = 0;
585 1.4 matt if ((insn >> 26) == 0x12) {
586 1.4 matt const int32_t off = (((int32_t)insn << 6) >> 6) & ~3;
587 1.4 matt iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off;
588 1.4 matt dbcr0 |= DBCR0_IAC2;
589 1.4 matt } else if ((insn >> 26) == 0x10) {
590 1.4 matt const int16_t off = insn & ~3;
591 1.4 matt iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off;
592 1.4 matt dbcr0 |= DBCR0_IAC2;
593 1.21 matt } else if ((insn & 0xfc00fffe) == 0x4c000420) {
594 1.4 matt iac2 = tf->tf_ctr;
595 1.4 matt dbcr0 |= DBCR0_IAC2;
596 1.21 matt } else if ((insn & 0xfc00fffe) == 0x4c000020) {
597 1.4 matt iac2 = tf->tf_lr;
598 1.4 matt dbcr0 |= DBCR0_IAC2;
599 1.4 matt }
600 1.4 matt if (dbcr0 & DBCR0_IAC2) {
601 1.4 matt dbcr1 |= DBCR1_IAC2US_USER | DBCR1_IAC2ER_DS1;
602 1.4 matt mtspr(SPR_IAC2, iac2);
603 1.4 matt }
604 1.4 matt }
605 1.4 matt mtspr(SPR_IAC1, tf->tf_srr0 + 4);
606 1.4 matt mtspr(SPR_DBCR1, dbcr1);
607 1.4 matt mtspr(SPR_DBCR0, dbcr0);
608 1.4 matt }
609 1.16 matt
610 1.16 matt #ifdef DIAGNOSTIC
611 1.16 matt static inline void
612 1.16 matt swap_data(uint64_t *data, size_t a, size_t b)
613 1.16 matt {
614 1.16 matt uint64_t swap = data[a];
615 1.16 matt data[a] = data[b];
616 1.16 matt data[b] = swap;
617 1.16 matt }
618 1.16 matt
619 1.16 matt static void
620 1.16 matt sort_data(uint64_t *data, size_t count)
621 1.16 matt {
622 1.16 matt #if 0
623 1.16 matt /*
624 1.16 matt * Mostly classic bubble sort
625 1.16 matt */
626 1.16 matt do {
627 1.16 matt size_t new_count = 0;
628 1.16 matt for (size_t i = 1; i < count; i++) {
629 1.16 matt if (tbs[i - 1] > tbs[i]) {
630 1.16 matt swap_tbs(tbs, i - 1, i);
631 1.16 matt new_count = i;
632 1.16 matt }
633 1.16 matt }
634 1.16 matt count = new_count;
635 1.16 matt } while (count > 0);
636 1.16 matt #else
637 1.16 matt /*
638 1.16 matt * Comb sort
639 1.16 matt */
640 1.16 matt size_t gap = count;
641 1.16 matt bool swapped = false;
642 1.16 matt while (gap > 1 || swapped) {
643 1.16 matt if (gap > 1) {
644 1.16 matt /*
645 1.16 matt * phi = (1 + sqrt(5)) / 2 [golden ratio]
646 1.16 matt * N = 1 / (1 - e^-phi)) = 1.247330950103979
647 1.16 matt *
648 1.16 matt * We want to but can't use floating point to calculate
649 1.16 matt * gap = (size_t)((double)gap / N)
650 1.16 matt *
651 1.16 matt * So we will use the multicative inverse of N
652 1.16 matt * (module 65536) to achieve the division.
653 1.16 matt *
654 1.16 matt * iN = 2^16 / 1.24733... = 52540
655 1.16 matt * x / N == (x * iN) / 65536
656 1.16 matt */
657 1.16 matt gap = (gap * 52540) / 65536;
658 1.16 matt }
659 1.16 matt
660 1.16 matt swapped = false;
661 1.16 matt
662 1.16 matt for (size_t i = 0; gap + i < count; i++) {
663 1.16 matt if (data[i] > data[i + gap]) {
664 1.16 matt swap_data(data, i, i + gap);
665 1.16 matt swapped = true;
666 1.16 matt }
667 1.16 matt }
668 1.16 matt }
669 1.16 matt #endif
670 1.16 matt }
671 1.16 matt #endif
672 1.16 matt
673 1.16 matt void
674 1.16 matt dump_splhist(struct cpu_info *ci, void (*pr)(const char *, ...))
675 1.16 matt {
676 1.16 matt #ifdef DIAGNOSTIC
677 1.16 matt struct cpu_softc * const cpu = ci->ci_softc;
678 1.16 matt uint64_t tbs[NIPL*NIPL];
679 1.16 matt size_t ntbs = 0;
680 1.16 matt for (size_t to = 0; to < NIPL; to++) {
681 1.16 matt for (size_t from = 0; from < NIPL; from++) {
682 1.16 matt uint64_t tb = cpu->cpu_spl_tb[to][from];
683 1.16 matt if (tb == 0)
684 1.16 matt continue;
685 1.16 matt tbs[ntbs++] = (tb << 8) | (to << 4) | from;
686 1.16 matt }
687 1.16 matt }
688 1.16 matt sort_data(tbs, ntbs);
689 1.16 matt
690 1.16 matt if (pr == NULL)
691 1.16 matt pr = printf;
692 1.16 matt uint64_t last_tb = 0;
693 1.16 matt for (size_t i = 0; i < ntbs; i++) {
694 1.16 matt uint64_t tb = tbs[i];
695 1.16 matt size_t from = tb & 15;
696 1.16 matt size_t to = (tb >> 4) & 15;
697 1.16 matt tb >>= 8;
698 1.16 matt (*pr)("%s(%zu) from %zu at %"PRId64"",
699 1.16 matt from < to ? "splraise" : "splx",
700 1.16 matt to, from, tb);
701 1.16 matt if (last_tb && from != IPL_NONE)
702 1.16 matt (*pr)(" (+%"PRId64")", tb - last_tb);
703 1.16 matt (*pr)("\n");
704 1.16 matt last_tb = tb;
705 1.16 matt }
706 1.16 matt #endif
707 1.16 matt }
708