booke_machdep.c revision 1.17 1 /* $NetBSD: booke_machdep.c,v 1.17 2012/10/29 05:23:44 matt Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #define __INTR_PRIVATE
38 #define _POWERPC_BUS_DMA_PRIVATE
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: booke_machdep.c,v 1.17 2012/10/29 05:23:44 matt Exp $");
42
43 #include "opt_modular.h"
44
45 #include <sys/param.h>
46 #include <sys/cpu.h>
47 #include <sys/device.h>
48 #include <sys/intr.h>
49 #include <sys/mount.h>
50 #include <sys/msgbuf.h>
51 #include <sys/kernel.h>
52 #include <sys/reboot.h>
53 #include <sys/bus.h>
54
55 #include <uvm/uvm_extern.h>
56
57 #include <powerpc/cpuset.h>
58 #include <powerpc/pcb.h>
59 #include <powerpc/spr.h>
60 #include <powerpc/booke/spr.h>
61 #include <powerpc/booke/cpuvar.h>
62
63 /*
64 * Global variables used here and there
65 */
66 paddr_t msgbuf_paddr;
67 psize_t pmemsize;
68 struct vm_map *phys_map;
69
70 #ifdef MODULAR
71 register_t cpu_psluserset = PSL_USERSET;
72 register_t cpu_pslusermod = PSL_USERMOD;
73 register_t cpu_pslusermask = PSL_USERMASK;
74 #endif
75
76 static bus_addr_t booke_dma_phys_to_bus_mem(bus_dma_tag_t, bus_addr_t);
77 static bus_addr_t booke_dma_bus_mem_to_phys(bus_dma_tag_t, bus_addr_t);
78
79
80 struct powerpc_bus_dma_tag booke_bus_dma_tag = {
81 ._dmamap_create = _bus_dmamap_create,
82 ._dmamap_destroy = _bus_dmamap_destroy,
83 ._dmamap_load = _bus_dmamap_load,
84 ._dmamap_load_mbuf = _bus_dmamap_load_mbuf,
85 ._dmamap_load_uio = _bus_dmamap_load_uio,
86 ._dmamap_load_raw = _bus_dmamap_load_raw,
87 ._dmamap_unload = _bus_dmamap_unload,
88 /*
89 * The caches on BookE are coherent so we don't need to do any special
90 * cache synchronization.
91 */
92 //._dmamap_sync = _bus_dmamap_sync,
93 ._dmamem_alloc = _bus_dmamem_alloc,
94 ._dmamem_free = _bus_dmamem_free,
95 ._dmamem_map = _bus_dmamem_map,
96 ._dmamem_unmap = _bus_dmamem_unmap,
97 ._dmamem_mmap = _bus_dmamem_mmap,
98 ._dma_phys_to_bus_mem = booke_dma_phys_to_bus_mem,
99 ._dma_bus_mem_to_phys = booke_dma_bus_mem_to_phys,
100 };
101
102 static bus_addr_t
103 booke_dma_phys_to_bus_mem(bus_dma_tag_t t, bus_addr_t a)
104 {
105 return a;
106 }
107
108 static bus_addr_t
109 booke_dma_bus_mem_to_phys(bus_dma_tag_t t, bus_addr_t a)
110 {
111 return a;
112 }
113
114 struct cpu_md_ops cpu_md_ops;
115
116 struct cpu_softc cpu_softc[] = {
117 [0] = {
118 .cpu_ci = &cpu_info[0],
119 },
120 #ifdef MULTIPROCESSOR
121 [CPU_MAXNUM-1] = {
122 .cpu_ci = &cpu_info[CPU_MAXNUM-1],
123 },
124 #endif
125 };
126 struct cpu_info cpu_info[] = {
127 [0] = {
128 .ci_curlwp = &lwp0,
129 .ci_tlb_info = &pmap_tlb0_info,
130 .ci_softc = &cpu_softc[0],
131 .ci_cpl = IPL_HIGH,
132 .ci_idepth = -1,
133 },
134 #ifdef MULTIPROCESSOR
135 [CPU_MAXNUM-1] = {
136 .ci_curlwp = NULL,
137 .ci_tlb_info = &pmap_tlb0_info,
138 .ci_softc = &cpu_softc[CPU_MAXNUM-1],
139 .ci_cpl = IPL_HIGH,
140 .ci_idepth = -1,
141 },
142 #endif
143 };
144 __CTASSERT(__arraycount(cpu_info) == __arraycount(cpu_softc));
145
146 /*
147 * This should probably be in autoconf! XXX
148 */
149 char cpu_model[80];
150 char machine[] = MACHINE; /* from <machine/param.h> */
151 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
152
153 char bootpath[256];
154
155 #if NKSYMS || defined(DDB) || defined(MODULAR)
156 void *startsym, *endsym;
157 #endif
158
159 #if defined(MULTIPROCESSOR)
160 volatile struct cpu_hatch_data cpu_hatch_data __cacheline_aligned;
161 #endif
162
163 int fake_mapiodev = 1;
164
165 void
166 booke_cpu_startup(const char *model)
167 {
168 vaddr_t minaddr, maxaddr;
169 char pbuf[9];
170
171 strlcpy(cpu_model, model, sizeof(cpu_model));
172
173 printf("%s%s", copyright, version);
174
175 format_bytes(pbuf, sizeof(pbuf), ctob((uint64_t)physmem));
176 printf("total memory = %s\n", pbuf);
177
178 minaddr = 0;
179 /*
180 * Allocate a submap for physio
181 */
182 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
183 VM_PHYS_SIZE, 0, false, NULL);
184
185 /*
186 * No need to allocate an mbuf cluster submap. Mbuf clusters
187 * are allocated via the pool allocator, and we use direct-mapped
188 * pool pages.
189 */
190
191 format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
192 printf("avail memory = %s\n", pbuf);
193
194 /*
195 * Register the tlb's evcnts
196 */
197 pmap_tlb_info_evcnt_attach(curcpu()->ci_tlb_info);
198
199 /*
200 * Set up the board properties database.
201 */
202 board_info_init();
203
204 /*
205 * Now that we have VM, malloc()s are OK in bus_space.
206 */
207 bus_space_mallocok();
208 fake_mapiodev = 0;
209
210 #ifdef MULTIPROCESSOR
211 for (size_t i = 1; i < __arraycount(cpu_info); i++) {
212 struct cpu_info * const ci = &cpu_info[i];
213 struct cpu_softc * const cpu = &cpu_softc[i];
214 cpu->cpu_ci = ci;
215 cpu->cpu_bst = cpu_softc[0].cpu_bst;
216 cpu->cpu_le_bst = cpu_softc[0].cpu_le_bst;
217 cpu->cpu_bsh = cpu_softc[0].cpu_bsh;
218 cpu->cpu_highmem = cpu_softc[0].cpu_highmem;
219 ci->ci_softc = cpu;
220 ci->ci_tlb_info = &pmap_tlb0_info;
221 ci->ci_cpl = IPL_HIGH;
222 ci->ci_idepth = -1;
223 ci->ci_pmap_kern_segtab = curcpu()->ci_pmap_kern_segtab;
224 }
225 #endif /* MULTIPROCESSOR */
226 }
227
228 static void
229 dumpsys(void)
230 {
231
232 printf("dumpsys: TBD\n");
233 }
234
235 /*
236 * Halt or reboot the machine after syncing/dumping according to howto.
237 */
238 void
239 cpu_reboot(int howto, char *what)
240 {
241 static int syncing;
242 static char str[256];
243 char *ap = str, *ap1 = ap;
244
245 boothowto = howto;
246 if (!cold && !(howto & RB_NOSYNC) && !syncing) {
247 syncing = 1;
248 vfs_shutdown(); /* sync */
249 resettodr(); /* set wall clock */
250 }
251
252 splhigh();
253
254 if (!cold && (howto & RB_DUMP))
255 dumpsys();
256
257 doshutdownhooks();
258
259 pmf_system_shutdown(boothowto);
260
261 if ((howto & RB_POWERDOWN) == RB_POWERDOWN) {
262 /* Power off here if we know how...*/
263 }
264
265 if (howto & RB_HALT) {
266 printf("halted\n\n");
267
268 goto reboot; /* XXX for now... */
269
270 #ifdef DDB
271 printf("dropping to debugger\n");
272 while(1)
273 Debugger();
274 #endif
275 }
276
277 printf("rebooting\n\n");
278 if (what && *what) {
279 if (strlen(what) > sizeof str - 5)
280 printf("boot string too large, ignored\n");
281 else {
282 strcpy(str, what);
283 ap1 = ap = str + strlen(str);
284 *ap++ = ' ';
285 }
286 }
287 *ap++ = '-';
288 if (howto & RB_SINGLE)
289 *ap++ = 's';
290 if (howto & RB_KDB)
291 *ap++ = 'd';
292 *ap++ = 0;
293 if (ap[-2] == '-')
294 *ap1 = 0;
295
296 /* flush cache for msgbuf */
297 dcache_wb(msgbuf_paddr, round_page(MSGBUFSIZE));
298
299 reboot:
300 __asm volatile("msync; isync");
301 (*cpu_md_ops.md_cpu_reset)();
302
303 printf("%s: md_cpu_reset() failed!\n", __func__);
304 #ifdef DDB
305 for (;;)
306 Debugger();
307 #else
308 for (;;)
309 /* nothing */;
310 #endif
311 }
312
313 /*
314 * mapiodev:
315 *
316 * Allocate vm space and mapin the I/O address. Use reserved TLB
317 * mapping if one is found.
318 */
319 void *
320 mapiodev(paddr_t pa, psize_t len, bool prefetchable)
321 {
322 const vsize_t off = pa & PAGE_MASK;
323
324 /*
325 * See if we have reserved TLB entry for the pa. This needs to be
326 * true for console as we can't use uvm during early bootstrap.
327 */
328 void * const p = tlb_mapiodev(pa, len, prefetchable);
329 if (p != NULL)
330 return p;
331
332 if (fake_mapiodev)
333 panic("mapiodev: no TLB entry reserved for %llx+%llx",
334 (long long)pa, (long long)len);
335
336 const paddr_t orig_pa = pa;
337 const psize_t orig_len = len;
338 vsize_t align = 0;
339 pa = trunc_page(pa);
340 len = round_page(off + len);
341 /*
342 * If we are allocating a large amount (>= 1MB) try to get an
343 * aligned VA region for it so try to do a large mapping for it.
344 */
345 if ((len & (len - 1)) == 0 && len >= 0x100000)
346 align = len;
347
348 vaddr_t va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY);
349
350 if (va == 0 && align > 0) {
351 /*
352 * Large aligned request failed. Let's just get anything.
353 */
354 align = 0;
355 va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY);
356 }
357 if (va == 0)
358 return NULL;
359
360 if (align) {
361 /*
362 * Now try to map that via one big TLB entry.
363 */
364 pt_entry_t pte = pte_make_kenter_pa(pa, NULL,
365 VM_PROT_READ|VM_PROT_WRITE,
366 prefetchable ? 0 : PMAP_NOCACHE);
367 if (!tlb_ioreserve(va, len, pte)) {
368 void * const p0 = tlb_mapiodev(orig_pa, orig_len,
369 prefetchable);
370 KASSERT(p0 != NULL);
371 return p0;
372 }
373 }
374
375 for (va += len, pa += len; len > 0; len -= PAGE_SIZE) {
376 va -= PAGE_SIZE;
377 pa -= PAGE_SIZE;
378 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE,
379 prefetchable ? 0 : PMAP_NOCACHE);
380 }
381 pmap_update(pmap_kernel());
382 return (void *)(va + off);
383 }
384
385 void
386 unmapiodev(vaddr_t va, vsize_t len)
387 {
388 /* Nothing to do for reserved (ie. not uvm_km_alloc'd) mappings. */
389 if (va < VM_MIN_KERNEL_ADDRESS || va > VM_MAX_KERNEL_ADDRESS) {
390 tlb_unmapiodev(va, len);
391 return;
392 }
393
394 len = round_page((va & PAGE_MASK) + len);
395 va = trunc_page(va);
396
397 pmap_kremove(va, len);
398 uvm_km_free(kernel_map, va, len, UVM_KMF_VAONLY);
399 }
400
401 void
402 cpu_evcnt_attach(struct cpu_info *ci)
403 {
404 struct cpu_softc * const cpu = ci->ci_softc;
405 const char * const xname = ci->ci_data.cpu_name;
406
407 evcnt_attach_dynamic_nozero(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
408 NULL, xname, "clock");
409 evcnt_attach_dynamic_nozero(&cpu->cpu_ev_late_clock, EVCNT_TYPE_INTR,
410 NULL, xname, "late clock");
411 evcnt_attach_dynamic_nozero(&cpu->cpu_ev_exec_trap_sync, EVCNT_TYPE_TRAP,
412 NULL, xname, "exec pages synced (trap)");
413 evcnt_attach_dynamic_nozero(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
414 NULL, xname, "traps");
415 evcnt_attach_dynamic_nozero(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
416 &ci->ci_ev_traps, xname, "kernel DSI traps");
417 evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
418 &ci->ci_ev_traps, xname, "user DSI traps");
419 evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
420 &ci->ci_ev_udsi, xname, "user DSI failures");
421 evcnt_attach_dynamic_nozero(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
422 &ci->ci_ev_traps, xname, "kernel ISI traps");
423 evcnt_attach_dynamic_nozero(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
424 &ci->ci_ev_traps, xname, "user ISI traps");
425 evcnt_attach_dynamic_nozero(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
426 &ci->ci_ev_isi, xname, "user ISI failures");
427 evcnt_attach_dynamic_nozero(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
428 &ci->ci_ev_traps, xname, "system call traps");
429 evcnt_attach_dynamic_nozero(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
430 &ci->ci_ev_traps, xname, "PGM traps");
431 evcnt_attach_dynamic_nozero(&ci->ci_ev_debug, EVCNT_TYPE_TRAP,
432 &ci->ci_ev_traps, xname, "debug traps");
433 evcnt_attach_dynamic_nozero(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
434 &ci->ci_ev_traps, xname, "FPU unavailable traps");
435 evcnt_attach_dynamic_nozero(&ci->ci_ev_fpusw, EVCNT_TYPE_MISC,
436 &ci->ci_ev_fpu, xname, "FPU context switches");
437 evcnt_attach_dynamic_nozero(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
438 &ci->ci_ev_traps, xname, "user alignment traps");
439 evcnt_attach_dynamic_nozero(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
440 &ci->ci_ev_ali, xname, "user alignment traps");
441 evcnt_attach_dynamic_nozero(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
442 &ci->ci_ev_umchk, xname, "user MCHK failures");
443 evcnt_attach_dynamic_nozero(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
444 &ci->ci_ev_traps, xname, "SPE unavailable");
445 evcnt_attach_dynamic_nozero(&ci->ci_ev_vecsw, EVCNT_TYPE_MISC,
446 &ci->ci_ev_vec, xname, "SPE context switches");
447 evcnt_attach_dynamic_nozero(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
448 NULL, xname, "IPIs");
449 evcnt_attach_dynamic_nozero(&ci->ci_ev_tlbmiss_soft, EVCNT_TYPE_TRAP,
450 &ci->ci_ev_traps, xname, "soft tlb misses");
451 evcnt_attach_dynamic_nozero(&ci->ci_ev_dtlbmiss_hard, EVCNT_TYPE_TRAP,
452 &ci->ci_ev_traps, xname, "data tlb misses");
453 evcnt_attach_dynamic_nozero(&ci->ci_ev_itlbmiss_hard, EVCNT_TYPE_TRAP,
454 &ci->ci_ev_traps, xname, "inst tlb misses");
455 }
456
457 #ifdef MULTIPROCESSOR
458 register_t
459 cpu_hatch(void)
460 {
461 volatile struct cpuset_info * const csi = &cpuset_info;
462 const size_t id = cpu_number();
463
464 /*
465 * We've hatched so tell the spinup code.
466 */
467 CPUSET_ADD(csi->cpus_hatched, id);
468
469 /*
470 * Loop until running bit for this cpu is set.
471 */
472 while (!CPUSET_HAS_P(csi->cpus_running, id)) {
473 continue;
474 }
475
476 /*
477 * Now that we are active, start the clocks.
478 */
479 cpu_initclocks();
480
481 /*
482 * Return sp of the idlelwp. Which we should be already using but ...
483 */
484 return curcpu()->ci_curpcb->pcb_sp;
485 }
486
487 void
488 cpu_boot_secondary_processors(void)
489 {
490 volatile struct cpuset_info * const csi = &cpuset_info;
491 CPU_INFO_ITERATOR cii;
492 struct cpu_info *ci;
493 __cpuset_t running = CPUSET_NULLSET;
494
495 for (CPU_INFO_FOREACH(cii, ci)) {
496 /*
497 * Skip this CPU if it didn't sucessfully hatch.
498 */
499 if (! CPUSET_HAS_P(csi->cpus_hatched, cpu_index(ci)))
500 continue;
501
502 KASSERT(!CPU_IS_PRIMARY(ci));
503 KASSERT(ci->ci_data.cpu_idlelwp);
504
505 CPUSET_ADD(running, cpu_index(ci));
506 }
507 KASSERT(CPUSET_EQUAL_P(csi->cpus_hatched, running));
508 if (!CPUSET_EMPTY_P(running)) {
509 CPUSET_ADDSET(csi->cpus_running, running);
510 }
511 }
512 #endif
513
514 uint32_t
515 cpu_read_4(bus_addr_t a)
516 {
517 struct cpu_softc * const cpu = curcpu()->ci_softc;
518 // printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a);
519 return bus_space_read_4(cpu->cpu_bst, cpu->cpu_bsh, a);
520 }
521
522 uint8_t
523 cpu_read_1(bus_addr_t a)
524 {
525 struct cpu_softc * const cpu = curcpu()->ci_softc;
526 // printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a);
527 return bus_space_read_1(cpu->cpu_bst, cpu->cpu_bsh, a);
528 }
529
530 void
531 cpu_write_4(bus_addr_t a, uint32_t v)
532 {
533 struct cpu_softc * const cpu = curcpu()->ci_softc;
534 bus_space_write_4(cpu->cpu_bst, cpu->cpu_bsh, a, v);
535 }
536
537 void
538 cpu_write_1(bus_addr_t a, uint8_t v)
539 {
540 struct cpu_softc * const cpu = curcpu()->ci_softc;
541 bus_space_write_1(cpu->cpu_bst, cpu->cpu_bsh, a, v);
542 }
543
544 void
545 booke_sstep(struct trapframe *tf)
546 {
547 KASSERT(tf->tf_srr1 & PSL_DE);
548 const uint32_t insn = ufetch_32((const void *)tf->tf_srr0);
549 register_t dbcr0 = DBCR0_IAC1 | DBCR0_IDM;
550 register_t dbcr1 = DBCR1_IAC1US_USER | DBCR1_IAC1ER_DS1;
551 if ((insn >> 28) == 4) {
552 uint32_t iac2 = 0;
553 if ((insn >> 26) == 0x12) {
554 const int32_t off = (((int32_t)insn << 6) >> 6) & ~3;
555 iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off;
556 dbcr0 |= DBCR0_IAC2;
557 } else if ((insn >> 26) == 0x10) {
558 const int16_t off = insn & ~3;
559 iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off;
560 dbcr0 |= DBCR0_IAC2;
561 } else if ((insn & 0xfc00ffde) == 0x4c000420) {
562 iac2 = tf->tf_ctr;
563 dbcr0 |= DBCR0_IAC2;
564 } else if ((insn & 0xfc00ffde) == 0x4c000020) {
565 iac2 = tf->tf_lr;
566 dbcr0 |= DBCR0_IAC2;
567 }
568 if (dbcr0 & DBCR0_IAC2) {
569 dbcr1 |= DBCR1_IAC2US_USER | DBCR1_IAC2ER_DS1;
570 mtspr(SPR_IAC2, iac2);
571 }
572 }
573 mtspr(SPR_IAC1, tf->tf_srr0 + 4);
574 mtspr(SPR_DBCR1, dbcr1);
575 mtspr(SPR_DBCR0, dbcr0);
576 }
577
578 #ifdef DIAGNOSTIC
579 static inline void
580 swap_data(uint64_t *data, size_t a, size_t b)
581 {
582 uint64_t swap = data[a];
583 data[a] = data[b];
584 data[b] = swap;
585 }
586
587 static void
588 sort_data(uint64_t *data, size_t count)
589 {
590 #if 0
591 /*
592 * Mostly classic bubble sort
593 */
594 do {
595 size_t new_count = 0;
596 for (size_t i = 1; i < count; i++) {
597 if (tbs[i - 1] > tbs[i]) {
598 swap_tbs(tbs, i - 1, i);
599 new_count = i;
600 }
601 }
602 count = new_count;
603 } while (count > 0);
604 #else
605 /*
606 * Comb sort
607 */
608 size_t gap = count;
609 bool swapped = false;
610 while (gap > 1 || swapped) {
611 if (gap > 1) {
612 /*
613 * phi = (1 + sqrt(5)) / 2 [golden ratio]
614 * N = 1 / (1 - e^-phi)) = 1.247330950103979
615 *
616 * We want to but can't use floating point to calculate
617 * gap = (size_t)((double)gap / N)
618 *
619 * So we will use the multicative inverse of N
620 * (module 65536) to achieve the division.
621 *
622 * iN = 2^16 / 1.24733... = 52540
623 * x / N == (x * iN) / 65536
624 */
625 gap = (gap * 52540) / 65536;
626 }
627
628 swapped = false;
629
630 for (size_t i = 0; gap + i < count; i++) {
631 if (data[i] > data[i + gap]) {
632 swap_data(data, i, i + gap);
633 swapped = true;
634 }
635 }
636 }
637 #endif
638 }
639 #endif
640
641 void
642 dump_splhist(struct cpu_info *ci, void (*pr)(const char *, ...))
643 {
644 #ifdef DIAGNOSTIC
645 struct cpu_softc * const cpu = ci->ci_softc;
646 uint64_t tbs[NIPL*NIPL];
647 size_t ntbs = 0;
648 for (size_t to = 0; to < NIPL; to++) {
649 for (size_t from = 0; from < NIPL; from++) {
650 uint64_t tb = cpu->cpu_spl_tb[to][from];
651 if (tb == 0)
652 continue;
653 tbs[ntbs++] = (tb << 8) | (to << 4) | from;
654 }
655 }
656 sort_data(tbs, ntbs);
657
658 if (pr == NULL)
659 pr = printf;
660 uint64_t last_tb = 0;
661 for (size_t i = 0; i < ntbs; i++) {
662 uint64_t tb = tbs[i];
663 size_t from = tb & 15;
664 size_t to = (tb >> 4) & 15;
665 tb >>= 8;
666 (*pr)("%s(%zu) from %zu at %"PRId64"",
667 from < to ? "splraise" : "splx",
668 to, from, tb);
669 if (last_tb && from != IPL_NONE)
670 (*pr)(" (+%"PRId64")", tb - last_tb);
671 (*pr)("\n");
672 last_tb = tb;
673 }
674 #endif
675 }
676