booke_machdep.c revision 1.27 1 /* $NetBSD: booke_machdep.c,v 1.27 2019/12/21 13:00:22 ad Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #define __INTR_PRIVATE
38 #define _POWERPC_BUS_DMA_PRIVATE
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: booke_machdep.c,v 1.27 2019/12/21 13:00:22 ad Exp $");
42
43 #include "opt_modular.h"
44
45 #include <sys/param.h>
46 #include <sys/cpu.h>
47 #include <sys/device.h>
48 #include <sys/intr.h>
49 #include <sys/mount.h>
50 #include <sys/msgbuf.h>
51 #include <sys/kernel.h>
52 #include <sys/reboot.h>
53 #include <sys/bus.h>
54 #include <sys/cpu.h>
55
56 #include <uvm/uvm_extern.h>
57
58 #include <dev/cons.h>
59
60 #include <powerpc/pcb.h>
61 #include <powerpc/spr.h>
62 #include <powerpc/booke/spr.h>
63 #include <powerpc/booke/cpuvar.h>
64
65 /*
66 * Global variables used here and there
67 */
68 paddr_t msgbuf_paddr;
69 psize_t pmemsize;
70 struct vm_map *phys_map;
71
72 #ifdef MODULAR
73 register_t cpu_psluserset = PSL_USERSET;
74 register_t cpu_pslusermod = PSL_USERMOD;
75 register_t cpu_pslusermask = PSL_USERMASK;
76 #endif
77
78 static bus_addr_t booke_dma_phys_to_bus_mem(bus_dma_tag_t, bus_addr_t);
79 static bus_addr_t booke_dma_bus_mem_to_phys(bus_dma_tag_t, bus_addr_t);
80
81
82 struct powerpc_bus_dma_tag booke_bus_dma_tag = {
83 ._dmamap_create = _bus_dmamap_create,
84 ._dmamap_destroy = _bus_dmamap_destroy,
85 ._dmamap_load = _bus_dmamap_load,
86 ._dmamap_load_mbuf = _bus_dmamap_load_mbuf,
87 ._dmamap_load_uio = _bus_dmamap_load_uio,
88 ._dmamap_load_raw = _bus_dmamap_load_raw,
89 ._dmamap_unload = _bus_dmamap_unload,
90 /*
91 * The caches on BookE are coherent so we don't need to do any special
92 * cache synchronization.
93 */
94 //._dmamap_sync = _bus_dmamap_sync,
95 ._dmamem_alloc = _bus_dmamem_alloc,
96 ._dmamem_free = _bus_dmamem_free,
97 ._dmamem_map = _bus_dmamem_map,
98 ._dmamem_unmap = _bus_dmamem_unmap,
99 ._dmamem_mmap = _bus_dmamem_mmap,
100 ._dma_phys_to_bus_mem = booke_dma_phys_to_bus_mem,
101 ._dma_bus_mem_to_phys = booke_dma_bus_mem_to_phys,
102 };
103
104 static bus_addr_t
105 booke_dma_phys_to_bus_mem(bus_dma_tag_t t, bus_addr_t a)
106 {
107 return a;
108 }
109
110 static bus_addr_t
111 booke_dma_bus_mem_to_phys(bus_dma_tag_t t, bus_addr_t a)
112 {
113 return a;
114 }
115
116 struct cpu_md_ops cpu_md_ops;
117
118 struct cpu_softc cpu_softc[] = {
119 [0] = {
120 .cpu_ci = &cpu_info[0],
121 },
122 #ifdef MULTIPROCESSOR
123 [CPU_MAXNUM-1] = {
124 .cpu_ci = &cpu_info[CPU_MAXNUM-1],
125 },
126 #endif
127 };
128 struct cpu_info cpu_info[] = {
129 [0] = {
130 .ci_curlwp = &lwp0,
131 .ci_tlb_info = &pmap_tlb0_info,
132 .ci_softc = &cpu_softc[0],
133 .ci_cpl = IPL_HIGH,
134 .ci_idepth = -1,
135 .ci_pmap_kern_segtab = &pmap_kern_segtab,
136 },
137 #ifdef MULTIPROCESSOR
138 [CPU_MAXNUM-1] = {
139 .ci_curlwp = NULL,
140 .ci_tlb_info = &pmap_tlb0_info,
141 .ci_softc = &cpu_softc[CPU_MAXNUM-1],
142 .ci_cpl = IPL_HIGH,
143 .ci_idepth = -1,
144 .ci_pmap_kern_segtab = &pmap_kern_segtab,
145 },
146 #endif
147 };
148 __CTASSERT(__arraycount(cpu_info) == __arraycount(cpu_softc));
149
150 /*
151 * This should probably be in autoconf! XXX
152 */
153 char machine[] = MACHINE; /* from <machine/param.h> */
154 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
155
156 char bootpath[256];
157
158 #if NKSYMS || defined(DDB) || defined(MODULAR)
159 void *startsym, *endsym;
160 #endif
161
162 #if defined(MULTIPROCESSOR)
163 volatile struct cpu_hatch_data cpu_hatch_data __cacheline_aligned;
164 #endif
165
166 int fake_mapiodev = 1;
167
168 void
169 booke_cpu_startup(const char *model)
170 {
171 vaddr_t minaddr, maxaddr;
172 char pbuf[9];
173
174 cpu_setmodel("%s", model);
175
176 printf("%s%s", copyright, version);
177
178 format_bytes(pbuf, sizeof(pbuf), ctob((uint64_t)physmem));
179 printf("total memory = %s\n", pbuf);
180
181 minaddr = 0;
182 /*
183 * Allocate a submap for physio
184 */
185 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
186 VM_PHYS_SIZE, 0, false, NULL);
187
188 /*
189 * No need to allocate an mbuf cluster submap. Mbuf clusters
190 * are allocated via the pool allocator, and we use direct-mapped
191 * pool pages.
192 */
193
194 format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_free()));
195 printf("avail memory = %s\n", pbuf);
196
197 /*
198 * Register the tlb's evcnts
199 */
200 pmap_tlb_info_evcnt_attach(curcpu()->ci_tlb_info);
201
202 /*
203 * Set up the board properties database.
204 */
205 board_info_init();
206
207 /*
208 * Now that we have VM, malloc()s are OK in bus_space.
209 */
210 bus_space_mallocok();
211 fake_mapiodev = 0;
212
213 #ifdef MULTIPROCESSOR
214 pmap_kernel()->pm_active = kcpuset_running;
215 pmap_kernel()->pm_onproc = kcpuset_running;
216
217 for (size_t i = 1; i < __arraycount(cpu_info); i++) {
218 struct cpu_info * const ci = &cpu_info[i];
219 struct cpu_softc * const cpu = &cpu_softc[i];
220 cpu->cpu_ci = ci;
221 cpu->cpu_bst = cpu_softc[0].cpu_bst;
222 cpu->cpu_le_bst = cpu_softc[0].cpu_le_bst;
223 cpu->cpu_bsh = cpu_softc[0].cpu_bsh;
224 cpu->cpu_highmem = cpu_softc[0].cpu_highmem;
225 ci->ci_softc = cpu;
226 ci->ci_tlb_info = &pmap_tlb0_info;
227 ci->ci_cpl = IPL_HIGH;
228 ci->ci_idepth = -1;
229 ci->ci_pmap_kern_segtab = curcpu()->ci_pmap_kern_segtab;
230 }
231
232 kcpuset_create(&cpuset_info.cpus_running, true);
233 kcpuset_create(&cpuset_info.cpus_hatched, true);
234 kcpuset_create(&cpuset_info.cpus_paused, true);
235 kcpuset_create(&cpuset_info.cpus_resumed, true);
236 kcpuset_create(&cpuset_info.cpus_halted, true);
237
238 kcpuset_set(cpuset_info.cpus_running, cpu_number());
239 #endif /* MULTIPROCESSOR */
240 }
241
242 static void
243 dumpsys(void)
244 {
245
246 printf("dumpsys: TBD\n");
247 }
248
249 /*
250 * Halt or reboot the machine after syncing/dumping according to howto.
251 */
252 void
253 cpu_reboot(int howto, char *what)
254 {
255 static int syncing;
256 static char str[256];
257 char *ap = str, *ap1 = ap;
258
259 boothowto = howto;
260 if (!cold && !(howto & RB_NOSYNC) && !syncing) {
261 syncing = 1;
262 vfs_shutdown(); /* sync */
263 resettodr(); /* set wall clock */
264 }
265
266 splhigh();
267
268 if (!cold && (howto & RB_DUMP))
269 dumpsys();
270
271 doshutdownhooks();
272
273 pmf_system_shutdown(boothowto);
274
275 if ((howto & RB_POWERDOWN) == RB_POWERDOWN) {
276 /* Power off here if we know how...*/
277 }
278
279 if (howto & RB_HALT) {
280 printf("The operating system has halted.\n"
281 "Press any key to reboot.\n\n");
282 cnpollc(1); /* For proper keyboard command handling */
283 cngetc();
284 cnpollc(0);
285
286 printf("rebooting...\n\n");
287 goto reboot; /* XXX for now... */
288
289 #ifdef DDB
290 printf("dropping to debugger\n");
291 while(1)
292 Debugger();
293 #endif
294 }
295
296 printf("rebooting\n\n");
297 if (what && *what) {
298 if (strlen(what) > sizeof str - 5)
299 printf("boot string too large, ignored\n");
300 else {
301 strcpy(str, what);
302 ap1 = ap = str + strlen(str);
303 *ap++ = ' ';
304 }
305 }
306 *ap++ = '-';
307 if (howto & RB_SINGLE)
308 *ap++ = 's';
309 if (howto & RB_KDB)
310 *ap++ = 'd';
311 *ap++ = 0;
312 if (ap[-2] == '-')
313 *ap1 = 0;
314
315 /* flush cache for msgbuf */
316 dcache_wb(msgbuf_paddr, round_page(MSGBUFSIZE));
317
318 reboot:
319 __asm volatile("msync; isync");
320 (*cpu_md_ops.md_cpu_reset)();
321
322 printf("%s: md_cpu_reset() failed!\n", __func__);
323 #ifdef DDB
324 for (;;)
325 Debugger();
326 #else
327 for (;;)
328 /* nothing */;
329 #endif
330 }
331
332 /*
333 * mapiodev:
334 *
335 * Allocate vm space and mapin the I/O address. Use reserved TLB
336 * mapping if one is found.
337 */
338 void *
339 mapiodev(paddr_t pa, psize_t len, bool prefetchable)
340 {
341 const vsize_t off = pa & PAGE_MASK;
342
343 /*
344 * See if we have reserved TLB entry for the pa. This needs to be
345 * true for console as we can't use uvm during early bootstrap.
346 */
347 void * const p = tlb_mapiodev(pa, len, prefetchable);
348 if (p != NULL)
349 return p;
350
351 if (fake_mapiodev)
352 panic("mapiodev: no TLB entry reserved for %llx+%llx",
353 (long long)pa, (long long)len);
354
355 const paddr_t orig_pa = pa;
356 const psize_t orig_len = len;
357 vsize_t align = 0;
358 pa = trunc_page(pa);
359 len = round_page(off + len);
360 /*
361 * If we are allocating a large amount (>= 1MB) try to get an
362 * aligned VA region for it so try to do a large mapping for it.
363 */
364 if ((len & (len - 1)) == 0 && len >= 0x100000)
365 align = len;
366
367 vaddr_t va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY);
368
369 if (va == 0 && align > 0) {
370 /*
371 * Large aligned request failed. Let's just get anything.
372 */
373 align = 0;
374 va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY);
375 }
376 if (va == 0)
377 return NULL;
378
379 if (align) {
380 /*
381 * Now try to map that via one big TLB entry.
382 */
383 pt_entry_t pte = pte_make_kenter_pa(pa, NULL,
384 VM_PROT_READ|VM_PROT_WRITE,
385 prefetchable ? 0 : PMAP_NOCACHE);
386 if (!tlb_ioreserve(va, len, pte)) {
387 void * const p0 = tlb_mapiodev(orig_pa, orig_len,
388 prefetchable);
389 KASSERT(p0 != NULL);
390 return p0;
391 }
392 }
393
394 for (va += len, pa += len; len > 0; len -= PAGE_SIZE) {
395 va -= PAGE_SIZE;
396 pa -= PAGE_SIZE;
397 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE,
398 prefetchable ? 0 : PMAP_NOCACHE);
399 }
400 pmap_update(pmap_kernel());
401 return (void *)(va + off);
402 }
403
404 void
405 unmapiodev(vaddr_t va, vsize_t len)
406 {
407 /* Nothing to do for reserved (ie. not uvm_km_alloc'd) mappings. */
408 if (va < VM_MIN_KERNEL_ADDRESS || va > VM_MAX_KERNEL_ADDRESS) {
409 tlb_unmapiodev(va, len);
410 return;
411 }
412
413 len = round_page((va & PAGE_MASK) + len);
414 va = trunc_page(va);
415
416 pmap_kremove(va, len);
417 uvm_km_free(kernel_map, va, len, UVM_KMF_VAONLY);
418 }
419
420 void
421 cpu_evcnt_attach(struct cpu_info *ci)
422 {
423 struct cpu_softc * const cpu = ci->ci_softc;
424 const char * const xname = ci->ci_data.cpu_name;
425
426 evcnt_attach_dynamic_nozero(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
427 NULL, xname, "clock");
428 evcnt_attach_dynamic_nozero(&cpu->cpu_ev_late_clock, EVCNT_TYPE_INTR,
429 NULL, xname, "late clock");
430 evcnt_attach_dynamic_nozero(&cpu->cpu_ev_exec_trap_sync, EVCNT_TYPE_TRAP,
431 NULL, xname, "exec pages synced (trap)");
432 evcnt_attach_dynamic_nozero(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
433 NULL, xname, "traps");
434 evcnt_attach_dynamic_nozero(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
435 &ci->ci_ev_traps, xname, "kernel DSI traps");
436 evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
437 &ci->ci_ev_traps, xname, "user DSI traps");
438 evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
439 &ci->ci_ev_udsi, xname, "user DSI failures");
440 evcnt_attach_dynamic_nozero(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
441 &ci->ci_ev_traps, xname, "kernel ISI traps");
442 evcnt_attach_dynamic_nozero(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
443 &ci->ci_ev_traps, xname, "user ISI traps");
444 evcnt_attach_dynamic_nozero(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
445 &ci->ci_ev_isi, xname, "user ISI failures");
446 evcnt_attach_dynamic_nozero(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
447 &ci->ci_ev_traps, xname, "system call traps");
448 evcnt_attach_dynamic_nozero(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
449 &ci->ci_ev_traps, xname, "PGM traps");
450 evcnt_attach_dynamic_nozero(&ci->ci_ev_debug, EVCNT_TYPE_TRAP,
451 &ci->ci_ev_traps, xname, "debug traps");
452 evcnt_attach_dynamic_nozero(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
453 &ci->ci_ev_traps, xname, "FPU unavailable traps");
454 evcnt_attach_dynamic_nozero(&ci->ci_ev_fpusw, EVCNT_TYPE_MISC,
455 &ci->ci_ev_fpu, xname, "FPU context switches");
456 evcnt_attach_dynamic_nozero(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
457 &ci->ci_ev_traps, xname, "user alignment traps");
458 evcnt_attach_dynamic_nozero(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
459 &ci->ci_ev_ali, xname, "user alignment traps");
460 evcnt_attach_dynamic_nozero(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
461 &ci->ci_ev_umchk, xname, "user MCHK failures");
462 evcnt_attach_dynamic_nozero(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
463 &ci->ci_ev_traps, xname, "SPE unavailable");
464 evcnt_attach_dynamic_nozero(&ci->ci_ev_vecsw, EVCNT_TYPE_MISC,
465 &ci->ci_ev_vec, xname, "SPE context switches");
466 evcnt_attach_dynamic_nozero(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
467 NULL, xname, "IPIs");
468 evcnt_attach_dynamic_nozero(&ci->ci_ev_tlbmiss_soft, EVCNT_TYPE_TRAP,
469 &ci->ci_ev_traps, xname, "soft tlb misses");
470 evcnt_attach_dynamic_nozero(&ci->ci_ev_dtlbmiss_hard, EVCNT_TYPE_TRAP,
471 &ci->ci_ev_traps, xname, "data tlb misses");
472 evcnt_attach_dynamic_nozero(&ci->ci_ev_itlbmiss_hard, EVCNT_TYPE_TRAP,
473 &ci->ci_ev_traps, xname, "inst tlb misses");
474 }
475
476 #ifdef MULTIPROCESSOR
477 register_t
478 cpu_hatch(void)
479 {
480 struct cpuset_info * const csi = &cpuset_info;
481 const size_t id = cpu_number();
482
483 /*
484 * We've hatched so tell the spinup code.
485 */
486 kcpuset_set(csi->cpus_hatched, id);
487
488 /*
489 * Loop until running bit for this cpu is set.
490 */
491 while (!kcpuset_isset(csi->cpus_running, id)) {
492 continue;
493 }
494
495 /*
496 * Now that we are active, start the clocks.
497 */
498 cpu_initclocks();
499
500 /*
501 * Return sp of the idlelwp. Which we should be already using but ...
502 */
503 return curcpu()->ci_curpcb->pcb_sp;
504 }
505
506 void
507 cpu_boot_secondary_processors(void)
508 {
509 volatile struct cpuset_info * const csi = &cpuset_info;
510 CPU_INFO_ITERATOR cii;
511 struct cpu_info *ci;
512 kcpuset_t *running;
513
514 kcpuset_create(&running, true);
515
516 for (CPU_INFO_FOREACH(cii, ci)) {
517 /*
518 * Skip this CPU if it didn't sucessfully hatch.
519 */
520 if (!kcpuset_isset(csi->cpus_hatched, cpu_index(ci)))
521 continue;
522
523 KASSERT(!CPU_IS_PRIMARY(ci));
524 KASSERT(ci->ci_data.cpu_idlelwp);
525
526 kcpuset_set(running, cpu_index(ci));
527 }
528 KASSERT(kcpuset_match(csi->cpus_hatched, running));
529 if (!kcpuset_iszero(running)) {
530 kcpuset_merge(csi->cpus_running, running);
531 }
532 kcpuset_destroy(running);
533 }
534 #endif
535
536 uint32_t
537 cpu_read_4(bus_addr_t a)
538 {
539 struct cpu_softc * const cpu = curcpu()->ci_softc;
540 // printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a);
541 return bus_space_read_4(cpu->cpu_bst, cpu->cpu_bsh, a);
542 }
543
544 uint8_t
545 cpu_read_1(bus_addr_t a)
546 {
547 struct cpu_softc * const cpu = curcpu()->ci_softc;
548 // printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a);
549 return bus_space_read_1(cpu->cpu_bst, cpu->cpu_bsh, a);
550 }
551
552 void
553 cpu_write_4(bus_addr_t a, uint32_t v)
554 {
555 struct cpu_softc * const cpu = curcpu()->ci_softc;
556 bus_space_write_4(cpu->cpu_bst, cpu->cpu_bsh, a, v);
557 }
558
559 void
560 cpu_write_1(bus_addr_t a, uint8_t v)
561 {
562 struct cpu_softc * const cpu = curcpu()->ci_softc;
563 bus_space_write_1(cpu->cpu_bst, cpu->cpu_bsh, a, v);
564 }
565
566 void
567 booke_sstep(struct trapframe *tf)
568 {
569 uint32_t insn;
570
571 KASSERT(tf->tf_srr1 & PSL_DE);
572 if (ufetch_32((const void *)tf->tf_srr0, &insn) != 0)
573 return;
574
575 register_t dbcr0 = DBCR0_IAC1 | DBCR0_IDM;
576 register_t dbcr1 = DBCR1_IAC1US_USER | DBCR1_IAC1ER_DS1;
577 if ((insn >> 28) == 4) {
578 uint32_t iac2 = 0;
579 if ((insn >> 26) == 0x12) {
580 const int32_t off = (((int32_t)insn << 6) >> 6) & ~3;
581 iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off;
582 dbcr0 |= DBCR0_IAC2;
583 } else if ((insn >> 26) == 0x10) {
584 const int16_t off = insn & ~3;
585 iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off;
586 dbcr0 |= DBCR0_IAC2;
587 } else if ((insn & 0xfc00fffe) == 0x4c000420) {
588 iac2 = tf->tf_ctr;
589 dbcr0 |= DBCR0_IAC2;
590 } else if ((insn & 0xfc00fffe) == 0x4c000020) {
591 iac2 = tf->tf_lr;
592 dbcr0 |= DBCR0_IAC2;
593 }
594 if (dbcr0 & DBCR0_IAC2) {
595 dbcr1 |= DBCR1_IAC2US_USER | DBCR1_IAC2ER_DS1;
596 mtspr(SPR_IAC2, iac2);
597 }
598 }
599 mtspr(SPR_IAC1, tf->tf_srr0 + 4);
600 mtspr(SPR_DBCR1, dbcr1);
601 mtspr(SPR_DBCR0, dbcr0);
602 }
603
604 #ifdef DIAGNOSTIC
605 static inline void
606 swap_data(uint64_t *data, size_t a, size_t b)
607 {
608 uint64_t swap = data[a];
609 data[a] = data[b];
610 data[b] = swap;
611 }
612
613 static void
614 sort_data(uint64_t *data, size_t count)
615 {
616 #if 0
617 /*
618 * Mostly classic bubble sort
619 */
620 do {
621 size_t new_count = 0;
622 for (size_t i = 1; i < count; i++) {
623 if (tbs[i - 1] > tbs[i]) {
624 swap_tbs(tbs, i - 1, i);
625 new_count = i;
626 }
627 }
628 count = new_count;
629 } while (count > 0);
630 #else
631 /*
632 * Comb sort
633 */
634 size_t gap = count;
635 bool swapped = false;
636 while (gap > 1 || swapped) {
637 if (gap > 1) {
638 /*
639 * phi = (1 + sqrt(5)) / 2 [golden ratio]
640 * N = 1 / (1 - e^-phi)) = 1.247330950103979
641 *
642 * We want to but can't use floating point to calculate
643 * gap = (size_t)((double)gap / N)
644 *
645 * So we will use the multicative inverse of N
646 * (module 65536) to achieve the division.
647 *
648 * iN = 2^16 / 1.24733... = 52540
649 * x / N == (x * iN) / 65536
650 */
651 gap = (gap * 52540) / 65536;
652 }
653
654 swapped = false;
655
656 for (size_t i = 0; gap + i < count; i++) {
657 if (data[i] > data[i + gap]) {
658 swap_data(data, i, i + gap);
659 swapped = true;
660 }
661 }
662 }
663 #endif
664 }
665 #endif
666
667 void
668 dump_splhist(struct cpu_info *ci, void (*pr)(const char *, ...))
669 {
670 #ifdef DIAGNOSTIC
671 struct cpu_softc * const cpu = ci->ci_softc;
672 uint64_t tbs[NIPL*NIPL];
673 size_t ntbs = 0;
674 for (size_t to = 0; to < NIPL; to++) {
675 for (size_t from = 0; from < NIPL; from++) {
676 uint64_t tb = cpu->cpu_spl_tb[to][from];
677 if (tb == 0)
678 continue;
679 tbs[ntbs++] = (tb << 8) | (to << 4) | from;
680 }
681 }
682 sort_data(tbs, ntbs);
683
684 if (pr == NULL)
685 pr = printf;
686 uint64_t last_tb = 0;
687 for (size_t i = 0; i < ntbs; i++) {
688 uint64_t tb = tbs[i];
689 size_t from = tb & 15;
690 size_t to = (tb >> 4) & 15;
691 tb >>= 8;
692 (*pr)("%s(%zu) from %zu at %"PRId64"",
693 from < to ? "splraise" : "splx",
694 to, from, tb);
695 if (last_tb && from != IPL_NONE)
696 (*pr)(" (+%"PRId64")", tb - last_tb);
697 (*pr)("\n");
698 last_tb = tb;
699 }
700 #endif
701 }
702