Home | History | Annotate | Line # | Download | only in booke
booke_pmap.c revision 1.15
      1  1.15  matt /*	$NetBSD: booke_pmap.c,v 1.15 2012/07/09 17:45:22 matt Exp $	*/
      2   1.2  matt /*-
      3   1.2  matt  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4   1.2  matt  * All rights reserved.
      5   1.2  matt  *
      6   1.2  matt  * This code is derived from software contributed to The NetBSD Foundation
      7   1.2  matt  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8   1.2  matt  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9   1.2  matt  *
     10   1.2  matt  * This material is based upon work supported by the Defense Advanced Research
     11   1.2  matt  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12   1.2  matt  * Contract No. N66001-09-C-2073.
     13   1.2  matt  * Approved for Public Release, Distribution Unlimited
     14   1.2  matt  *
     15   1.2  matt  * Redistribution and use in source and binary forms, with or without
     16   1.2  matt  * modification, are permitted provided that the following conditions
     17   1.2  matt  * are met:
     18   1.2  matt  * 1. Redistributions of source code must retain the above copyright
     19   1.2  matt  *    notice, this list of conditions and the following disclaimer.
     20   1.2  matt  * 2. Redistributions in binary form must reproduce the above copyright
     21   1.2  matt  *    notice, this list of conditions and the following disclaimer in the
     22   1.2  matt  *    documentation and/or other materials provided with the distribution.
     23   1.2  matt  *
     24   1.2  matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25   1.2  matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26   1.2  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27   1.2  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28   1.2  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29   1.2  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30   1.2  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31   1.2  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32   1.2  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33   1.2  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34   1.2  matt  * POSSIBILITY OF SUCH DAMAGE.
     35   1.2  matt  */
     36   1.2  matt 
     37   1.4  matt #define __PMAP_PRIVATE
     38   1.3  matt 
     39   1.2  matt #include <sys/cdefs.h>
     40   1.2  matt 
     41  1.15  matt __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.15 2012/07/09 17:45:22 matt Exp $");
     42   1.2  matt 
     43   1.2  matt #include <sys/param.h>
     44   1.2  matt #include <sys/kcore.h>
     45   1.2  matt #include <sys/buf.h>
     46   1.2  matt 
     47   1.6  matt #include <uvm/uvm.h>
     48   1.2  matt 
     49   1.2  matt #include <machine/pmap.h>
     50   1.2  matt 
     51   1.2  matt /*
     52   1.2  matt  * Initialize the kernel pmap.
     53   1.2  matt  */
     54   1.2  matt #ifdef MULTIPROCESSOR
     55   1.2  matt #define	PMAP_SIZE	offsetof(struct pmap, pm_pai[MAXCPUS])
     56   1.2  matt #else
     57   1.2  matt #define	PMAP_SIZE	sizeof(struct pmap)
     58   1.2  matt #endif
     59   1.2  matt 
     60  1.15  matt CTASSERT(sizeof(pmap_segtab_t) == NBPG);
     61   1.2  matt 
     62  1.15  matt pmap_segtab_t pmap_kernel_segtab;
     63  1.13  matt 
     64   1.2  matt void
     65   1.2  matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
     66   1.2  matt {
     67   1.2  matt 	struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
     68   1.2  matt 	vsize_t off = va & PAGE_SIZE;
     69   1.2  matt 
     70   1.2  matt 	kpreempt_disable();
     71   1.2  matt 	for (const vaddr_t eva = va + len; va < eva; off = 0) {
     72   1.2  matt 		const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
     73   1.2  matt 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
     74   1.2  matt 		if (ptep == NULL) {
     75   1.2  matt 			va = segeva;
     76   1.2  matt 			continue;
     77   1.2  matt 		}
     78   1.2  matt 		pt_entry_t pt_entry = *ptep;
     79   1.2  matt 		if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
     80   1.2  matt 			va = segeva;
     81   1.2  matt 			continue;
     82   1.2  matt 		}
     83   1.2  matt 		kpreempt_enable();
     84   1.2  matt 		dcache_wb(pte_to_paddr(pt_entry), segeva - va);
     85   1.2  matt 		icache_inv(pte_to_paddr(pt_entry), segeva - va);
     86   1.2  matt 		kpreempt_disable();
     87   1.2  matt 		va = segeva;
     88   1.2  matt 	}
     89   1.2  matt 	kpreempt_enable();
     90   1.2  matt }
     91   1.2  matt 
     92   1.2  matt void
     93   1.4  matt pmap_md_page_syncicache(struct vm_page *pg, __cpuset_t onproc)
     94   1.2  matt {
     95   1.4  matt 	/*
     96   1.4  matt 	 * If onproc is empty, we could do a
     97   1.4  matt 	 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
     98   1.4  matt 	 * mappings of the page and clear its execness.  Then
     99   1.4  matt 	 * the next time page is faulted, it will get icache
    100   1.4  matt 	 * synched.  But this is easier. :)
    101   1.4  matt 	 */
    102   1.2  matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
    103   1.2  matt 	dcache_wb_page(pa);
    104   1.2  matt 	icache_inv_page(pa);
    105   1.2  matt }
    106   1.2  matt 
    107   1.2  matt vaddr_t
    108   1.2  matt pmap_md_direct_map_paddr(paddr_t pa)
    109   1.2  matt {
    110   1.2  matt 	return (vaddr_t) pa;
    111   1.2  matt }
    112   1.2  matt 
    113   1.2  matt bool
    114   1.2  matt pmap_md_direct_mapped_vaddr_p(vaddr_t va)
    115   1.2  matt {
    116   1.2  matt 	return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
    117   1.2  matt }
    118   1.2  matt 
    119   1.2  matt paddr_t
    120   1.2  matt pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
    121   1.2  matt {
    122   1.2  matt 	return (paddr_t) va;
    123   1.2  matt }
    124   1.2  matt 
    125  1.13  matt #ifdef PMAP_MINIMALTLB
    126  1.13  matt static pt_entry_t *
    127  1.15  matt kvtopte(const pmap_segtab_t *stp, vaddr_t va)
    128  1.13  matt {
    129  1.15  matt 	pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
    130  1.13  matt 	if (ptep == NULL)
    131  1.13  matt 		return NULL;
    132  1.13  matt 	return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
    133  1.13  matt }
    134  1.13  matt 
    135  1.13  matt vaddr_t
    136  1.13  matt pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
    137  1.13  matt {
    138  1.15  matt 	const pmap_segtab_t * const stp = pmap_kernel()->pm_segtab;
    139  1.13  matt 	KASSERT(sva == trunc_page(sva));
    140  1.13  matt 	pt_entry_t *ptep = kvtopte(stp, sva);
    141  1.13  matt 	for (; sva < eva; sva += NBPG) {
    142  1.13  matt 		*ptep++ = pt_entry ? (sva | pt_entry) : 0;
    143  1.13  matt 	}
    144  1.13  matt 	return sva;
    145  1.13  matt }
    146  1.13  matt #endif
    147  1.13  matt 
    148   1.2  matt /*
    149   1.2  matt  *	Bootstrap the system enough to run with virtual memory.
    150   1.2  matt  *	firstaddr is the first unused kseg0 address (not page aligned).
    151   1.2  matt  */
    152  1.13  matt vaddr_t
    153   1.2  matt pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
    154  1.13  matt 	phys_ram_seg_t *avail, size_t cnt)
    155   1.2  matt {
    156  1.15  matt 	pmap_segtab_t * const stp = &pmap_kernel_segtab;
    157  1.13  matt 
    158  1.13  matt 	/*
    159  1.13  matt 	 * Initialize the kernel segment table.
    160  1.13  matt 	 */
    161  1.13  matt 	pmap_kernel()->pm_segtab = stp;
    162  1.13  matt 	curcpu()->ci_pmap_kern_segtab = stp;
    163   1.2  matt 
    164  1.13  matt 	KASSERT(endkernel == trunc_page(endkernel));
    165   1.2  matt 
    166   1.2  matt 	/*
    167  1.12  para 	 * Compute the number of pages kmem_arena will have.
    168  1.12  para 	 */
    169  1.12  para 	kmeminit_nkmempages();
    170  1.12  para 
    171  1.12  para 	/*
    172   1.2  matt 	 * Figure out how many PTE's are necessary to map the kernel.
    173   1.2  matt 	 * We also reserve space for kmem_alloc_pageable() for vm_fork().
    174   1.2  matt 	 */
    175   1.2  matt 
    176   1.2  matt 	/* Get size of buffer cache and set an upper limit */
    177   1.2  matt 	buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
    178   1.2  matt 	vsize_t bufsz = buf_memcalc();
    179   1.2  matt 	buf_setvalimit(bufsz);
    180   1.2  matt 
    181  1.13  matt 	vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
    182   1.2  matt 	    + (ubc_nwins << ubc_winshift)
    183   1.2  matt 	    + bufsz
    184   1.2  matt 	    + 16 * NCARGS
    185   1.2  matt 	    + pager_map_size
    186   1.2  matt 	    + maxproc * USPACE
    187   1.2  matt #ifdef SYSVSHM
    188   1.2  matt 	    + NBPG * shminfo.shmall
    189   1.2  matt #endif
    190  1.13  matt 	    + NBPG * nkmempages) >> SEGSHIFT;
    191   1.2  matt 
    192   1.2  matt 	/*
    193   1.2  matt 	 * Initialize `FYI' variables.	Note we're relying on
    194   1.2  matt 	 * the fact that BSEARCH sorts the vm_physmem[] array
    195   1.2  matt 	 * for us.  Must do this before uvm_pageboot_alloc()
    196   1.2  matt 	 * can be called.
    197   1.2  matt 	 */
    198   1.2  matt 	pmap_limits.avail_start = vm_physmem[0].start << PGSHIFT;
    199   1.2  matt 	pmap_limits.avail_end = vm_physmem[vm_nphysseg - 1].end << PGSHIFT;
    200  1.13  matt 	const size_t max_nsegtabs =
    201   1.2  matt 	    (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
    202   1.2  matt 		- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
    203  1.13  matt 	if (kv_nsegtabs >= max_nsegtabs) {
    204   1.2  matt 		pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
    205  1.13  matt 		kv_nsegtabs = max_nsegtabs;
    206   1.2  matt 	} else {
    207   1.2  matt 		pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
    208  1.13  matt 		    + kv_nsegtabs * NBSEG;
    209   1.2  matt 	}
    210   1.2  matt 
    211   1.2  matt 	/*
    212   1.2  matt 	 * Now actually allocate the kernel PTE array (must be done
    213   1.2  matt 	 * after virtual_end is initialized).
    214   1.2  matt 	 */
    215  1.13  matt 	const vaddr_t kv_segtabs = avail[0].start;
    216  1.13  matt 	KASSERT(kv_segtabs == endkernel);
    217  1.13  matt 	KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
    218  1.13  matt 	printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
    219  1.13  matt 	printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
    220  1.13  matt 	avail[0].start += NBPG * kv_nsegtabs;
    221  1.13  matt 	avail[0].size -= NBPG * kv_nsegtabs;
    222  1.13  matt 	endkernel += NBPG * kv_nsegtabs;
    223   1.2  matt 
    224   1.2  matt 	/*
    225   1.2  matt 	 * Initialize the kernel's two-level page level.  This only wastes
    226   1.2  matt 	 * an extra page for the segment table and allows the user/kernel
    227   1.2  matt 	 * access to be common.
    228   1.2  matt 	 */
    229  1.15  matt 	pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
    230  1.13  matt 	pt_entry_t *ptep = (void *)kv_segtabs;
    231  1.13  matt 	memset(ptep, 0, NBPG * kv_nsegtabs);
    232  1.13  matt 	for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
    233  1.13  matt 		*ptp++ = ptep;
    234   1.2  matt 	}
    235   1.2  matt 
    236  1.13  matt #if PMAP_MINIMALTLB
    237  1.13  matt 	const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
    238  1.13  matt 	const vaddr_t dm_segtabs = avail[0].start;
    239  1.13  matt 	printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
    240  1.13  matt 	printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
    241  1.13  matt 	KASSERT(dm_segtabs == endkernel);
    242  1.13  matt 	KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
    243  1.13  matt 	avail[0].start += NBPG * dm_nsegtabs;
    244  1.13  matt 	avail[0].size -= NBPG * dm_nsegtabs;
    245  1.13  matt 	endkernel += NBPG * dm_nsegtabs;
    246  1.13  matt 
    247  1.15  matt 	ptp = stp->seg_tab;
    248  1.13  matt 	ptep = (void *)dm_segtabs;
    249  1.13  matt 	memset(ptep, 0, NBPG * dm_nsegtabs);
    250  1.13  matt 	for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
    251   1.2  matt 		*ptp = ptep;
    252   1.2  matt 	}
    253   1.2  matt 
    254   1.2  matt 	/*
    255   1.2  matt 	 */
    256  1.13  matt 	extern uint32_t _fdata[], _etext[];
    257  1.13  matt 	vaddr_t va;
    258  1.13  matt 
    259  1.13  matt 	/* Now make everything before the kernel inaccessible. */
    260  1.13  matt 	va = pmap_kvptefill(NBPG, startkernel, 0);
    261  1.13  matt 
    262  1.13  matt 	/* Kernel text is readonly & executable */
    263  1.13  matt 	va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
    264  1.13  matt 	    PTE_M | PTE_xR | PTE_xX);
    265  1.13  matt 
    266  1.13  matt 	/* Kernel .rdata is readonly */
    267  1.13  matt 	va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
    268  1.13  matt 
    269  1.13  matt 	/* Kernel .data/.bss + page tables are read-write */
    270  1.13  matt 	va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
    271  1.13  matt 
    272  1.13  matt 	/* message buffer page table pages are read-write */
    273  1.13  matt 	(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
    274  1.13  matt 	    PTE_M | PTE_xR | PTE_xW);
    275  1.13  matt #endif
    276  1.13  matt 
    277  1.13  matt 	for (size_t i = 0; i < cnt; i++) {
    278  1.13  matt 		printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
    279  1.13  matt 		    atop(avail[i].start),
    280  1.13  matt 		    atop(avail[i].start + avail[i].size) - 1,
    281  1.13  matt 		    atop(avail[i].start),
    282  1.13  matt 		    atop(avail[i].start + avail[i].size) - 1,
    283  1.13  matt 		    VM_FREELIST_DEFAULT);
    284  1.13  matt 		uvm_page_physload(
    285  1.13  matt 		    atop(avail[i].start),
    286  1.13  matt 		    atop(avail[i].start + avail[i].size) - 1,
    287  1.13  matt 		    atop(avail[i].start),
    288  1.13  matt 		    atop(avail[i].start + avail[i].size) - 1,
    289  1.13  matt 		    VM_FREELIST_DEFAULT);
    290   1.2  matt 	}
    291  1.13  matt 
    292  1.13  matt 	pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
    293   1.2  matt 
    294   1.2  matt 	/*
    295   1.2  matt 	 * Initialize the pools.
    296   1.2  matt 	 */
    297   1.2  matt 	pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
    298   1.2  matt 	    &pool_allocator_nointr, IPL_NONE);
    299   1.2  matt 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
    300   1.2  matt 	    &pmap_pv_page_allocator, IPL_NONE);
    301   1.2  matt 
    302   1.2  matt 	tlb_set_asid(0);
    303  1.13  matt 
    304  1.13  matt 	return endkernel;
    305   1.2  matt }
    306   1.2  matt 
    307   1.2  matt struct vm_page *
    308   1.2  matt pmap_md_alloc_poolpage(int flags)
    309   1.2  matt {
    310   1.2  matt 	/*
    311   1.2  matt 	 * Any managed page works for us.
    312   1.2  matt 	 */
    313   1.2  matt 	return uvm_pagealloc(NULL, 0, NULL, flags);
    314   1.2  matt }
    315   1.2  matt 
    316  1.13  matt vaddr_t
    317  1.13  matt pmap_md_map_poolpage(paddr_t pa, vsize_t size)
    318  1.13  matt {
    319  1.13  matt 	const vaddr_t sva = (vaddr_t) pa;
    320  1.13  matt #ifdef PMAP_MINIMALTLB
    321  1.13  matt 	const vaddr_t eva = sva + size;
    322  1.13  matt 	pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
    323  1.13  matt #endif
    324  1.13  matt 	return sva;
    325  1.13  matt }
    326  1.13  matt 
    327  1.13  matt void
    328  1.13  matt pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
    329  1.13  matt {
    330  1.13  matt #ifdef PMAP_MINIMALTLB
    331  1.13  matt 	struct pmap * const pm = pmap_kernel();
    332  1.13  matt 	const vaddr_t eva = va + size;
    333  1.13  matt 	pmap_kvptefill(va, eva, 0);
    334  1.13  matt 	for (;va < eva; va += NBPG) {
    335  1.13  matt 		pmap_tlb_invalidate_addr(pm, va);
    336  1.13  matt 	}
    337  1.13  matt 	pmap_update(pm);
    338  1.13  matt #endif
    339  1.13  matt }
    340  1.13  matt 
    341   1.2  matt void
    342   1.2  matt pmap_zero_page(paddr_t pa)
    343   1.2  matt {
    344  1.13  matt 	vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
    345  1.13  matt 	dcache_zero_page(va);
    346   1.5  matt 
    347  1.13  matt 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
    348  1.13  matt 	pmap_md_unmap_poolpage(va, NBPG);
    349   1.2  matt }
    350   1.2  matt 
    351   1.2  matt void
    352   1.2  matt pmap_copy_page(paddr_t src, paddr_t dst)
    353   1.2  matt {
    354   1.2  matt 	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
    355  1.13  matt 	vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
    356  1.13  matt 	vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
    357  1.13  matt 	const vaddr_t end = src_va + PAGE_SIZE;
    358   1.2  matt 
    359  1.13  matt 	while (src_va < end) {
    360   1.2  matt 		__asm(
    361   1.2  matt 			"dcbt	%2,%1"	"\n\t"	/* touch next src cachline */
    362   1.2  matt 			"dcba	0,%1"	"\n\t" 	/* don't fetch dst cacheline */
    363  1.13  matt 		    :: "b"(src_va), "b"(dst_va), "b"(line_size));
    364   1.2  matt 		for (u_int i = 0;
    365   1.2  matt 		     i < line_size;
    366  1.13  matt 		     src_va += 32, dst_va += 32, i += 32) {
    367   1.2  matt 			__asm(
    368   1.2  matt 				"lmw	24,0(%0)" "\n\t"
    369   1.2  matt 				"stmw	24,0(%1)"
    370  1.13  matt 			    :: "b"(src_va), "b"(dst_va)
    371   1.2  matt 			    : "r24", "r25", "r26", "r27",
    372   1.2  matt 			      "r28", "r29", "r30", "r31");
    373   1.2  matt 		}
    374   1.2  matt 	}
    375  1.13  matt 	pmap_md_unmap_poolpage(src_va, NBPG);
    376  1.13  matt 	pmap_md_unmap_poolpage(dst_va, NBPG);
    377   1.5  matt 
    378  1.13  matt 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
    379   1.2  matt }
    380   1.2  matt 
    381   1.2  matt void
    382   1.2  matt pmap_md_init(void)
    383   1.2  matt {
    384   1.2  matt 
    385   1.2  matt 	/* nothing for now */
    386   1.2  matt }
    387   1.2  matt 
    388   1.2  matt bool
    389   1.2  matt pmap_md_io_vaddr_p(vaddr_t va)
    390   1.2  matt {
    391   1.2  matt 	return va >= pmap_limits.avail_end
    392   1.2  matt 	    && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
    393   1.2  matt }
    394   1.2  matt 
    395   1.7  matt bool
    396   1.7  matt pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
    397   1.7  matt {
    398   1.7  matt 	pmap_t pm = ctx;
    399   1.7  matt         struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
    400   1.7  matt 
    401   1.7  matt 	if (asid != pai->pai_asid)
    402   1.7  matt 		return true;
    403   1.7  matt 
    404   1.7  matt 	const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
    405   1.7  matt 	KASSERT(ptep != NULL);
    406   1.7  matt 	pt_entry_t xpte = *ptep;
    407   1.7  matt 	xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
    408   1.7  matt 	xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
    409   1.7  matt 
    410   1.7  matt 	KASSERTMSG(pte == xpte,
    411  1.10   jym 	    "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
    412  1.10   jym 	    pm, va, asid, pte, xpte, *ptep);
    413   1.7  matt 
    414   1.7  matt 	return true;
    415   1.7  matt }
    416   1.8  matt 
    417   1.8  matt #ifdef MULTIPROCESSOR
    418   1.8  matt void
    419   1.8  matt pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
    420   1.8  matt {
    421   1.8  matt 	/* nothing */
    422   1.8  matt }
    423   1.8  matt #endif /* MULTIPROCESSOR */
    424