Home | History | Annotate | Line # | Download | only in booke
booke_pmap.c revision 1.22
      1  1.22  nonaka /*	$NetBSD: booke_pmap.c,v 1.22 2015/01/26 04:47:53 nonaka Exp $	*/
      2   1.2    matt /*-
      3   1.2    matt  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4   1.2    matt  * All rights reserved.
      5   1.2    matt  *
      6   1.2    matt  * This code is derived from software contributed to The NetBSD Foundation
      7   1.2    matt  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8   1.2    matt  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9   1.2    matt  *
     10   1.2    matt  * This material is based upon work supported by the Defense Advanced Research
     11   1.2    matt  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12   1.2    matt  * Contract No. N66001-09-C-2073.
     13   1.2    matt  * Approved for Public Release, Distribution Unlimited
     14   1.2    matt  *
     15   1.2    matt  * Redistribution and use in source and binary forms, with or without
     16   1.2    matt  * modification, are permitted provided that the following conditions
     17   1.2    matt  * are met:
     18   1.2    matt  * 1. Redistributions of source code must retain the above copyright
     19   1.2    matt  *    notice, this list of conditions and the following disclaimer.
     20   1.2    matt  * 2. Redistributions in binary form must reproduce the above copyright
     21   1.2    matt  *    notice, this list of conditions and the following disclaimer in the
     22   1.2    matt  *    documentation and/or other materials provided with the distribution.
     23   1.2    matt  *
     24   1.2    matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25   1.2    matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26   1.2    matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27   1.2    matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28   1.2    matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29   1.2    matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30   1.2    matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31   1.2    matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32   1.2    matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33   1.2    matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34   1.2    matt  * POSSIBILITY OF SUCH DAMAGE.
     35   1.2    matt  */
     36   1.2    matt 
     37   1.4    matt #define __PMAP_PRIVATE
     38   1.3    matt 
     39   1.2    matt #include <sys/cdefs.h>
     40   1.2    matt 
     41  1.22  nonaka __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.22 2015/01/26 04:47:53 nonaka Exp $");
     42   1.2    matt 
     43   1.2    matt #include <sys/param.h>
     44   1.2    matt #include <sys/kcore.h>
     45   1.2    matt #include <sys/buf.h>
     46  1.22  nonaka #include <sys/mutex.h>
     47   1.2    matt 
     48   1.6    matt #include <uvm/uvm.h>
     49   1.2    matt 
     50   1.2    matt #include <machine/pmap.h>
     51   1.2    matt 
     52  1.22  nonaka #if defined(MULTIPROCESSOR)
     53  1.22  nonaka kmutex_t pmap_tlb_miss_lock;
     54  1.22  nonaka #endif
     55  1.22  nonaka 
     56   1.2    matt /*
     57   1.2    matt  * Initialize the kernel pmap.
     58   1.2    matt  */
     59   1.2    matt #ifdef MULTIPROCESSOR
     60  1.17    matt #define	PMAP_SIZE	offsetof(struct pmap, pm_pai[PMAP_TLB_MAX])
     61   1.2    matt #else
     62   1.2    matt #define	PMAP_SIZE	sizeof(struct pmap)
     63   1.2    matt #endif
     64   1.2    matt 
     65  1.15    matt CTASSERT(sizeof(pmap_segtab_t) == NBPG);
     66   1.2    matt 
     67  1.15    matt pmap_segtab_t pmap_kernel_segtab;
     68  1.13    matt 
     69   1.2    matt void
     70   1.2    matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
     71   1.2    matt {
     72   1.2    matt 	struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
     73   1.2    matt 	vsize_t off = va & PAGE_SIZE;
     74   1.2    matt 
     75   1.2    matt 	kpreempt_disable();
     76   1.2    matt 	for (const vaddr_t eva = va + len; va < eva; off = 0) {
     77   1.2    matt 		const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
     78   1.2    matt 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
     79   1.2    matt 		if (ptep == NULL) {
     80   1.2    matt 			va = segeva;
     81   1.2    matt 			continue;
     82   1.2    matt 		}
     83   1.2    matt 		pt_entry_t pt_entry = *ptep;
     84   1.2    matt 		if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
     85   1.2    matt 			va = segeva;
     86   1.2    matt 			continue;
     87   1.2    matt 		}
     88   1.2    matt 		kpreempt_enable();
     89   1.2    matt 		dcache_wb(pte_to_paddr(pt_entry), segeva - va);
     90   1.2    matt 		icache_inv(pte_to_paddr(pt_entry), segeva - va);
     91   1.2    matt 		kpreempt_disable();
     92   1.2    matt 		va = segeva;
     93   1.2    matt 	}
     94   1.2    matt 	kpreempt_enable();
     95   1.2    matt }
     96   1.2    matt 
     97   1.2    matt void
     98  1.17    matt pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
     99   1.2    matt {
    100   1.4    matt 	/*
    101   1.4    matt 	 * If onproc is empty, we could do a
    102   1.4    matt 	 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
    103   1.4    matt 	 * mappings of the page and clear its execness.  Then
    104   1.4    matt 	 * the next time page is faulted, it will get icache
    105   1.4    matt 	 * synched.  But this is easier. :)
    106   1.4    matt 	 */
    107   1.2    matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
    108   1.2    matt 	dcache_wb_page(pa);
    109   1.2    matt 	icache_inv_page(pa);
    110   1.2    matt }
    111   1.2    matt 
    112   1.2    matt vaddr_t
    113   1.2    matt pmap_md_direct_map_paddr(paddr_t pa)
    114   1.2    matt {
    115   1.2    matt 	return (vaddr_t) pa;
    116   1.2    matt }
    117   1.2    matt 
    118   1.2    matt bool
    119   1.2    matt pmap_md_direct_mapped_vaddr_p(vaddr_t va)
    120   1.2    matt {
    121   1.2    matt 	return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
    122   1.2    matt }
    123   1.2    matt 
    124   1.2    matt paddr_t
    125   1.2    matt pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
    126   1.2    matt {
    127   1.2    matt 	return (paddr_t) va;
    128   1.2    matt }
    129   1.2    matt 
    130  1.13    matt #ifdef PMAP_MINIMALTLB
    131  1.13    matt static pt_entry_t *
    132  1.15    matt kvtopte(const pmap_segtab_t *stp, vaddr_t va)
    133  1.13    matt {
    134  1.15    matt 	pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
    135  1.13    matt 	if (ptep == NULL)
    136  1.13    matt 		return NULL;
    137  1.13    matt 	return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
    138  1.13    matt }
    139  1.13    matt 
    140  1.13    matt vaddr_t
    141  1.13    matt pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
    142  1.13    matt {
    143  1.15    matt 	const pmap_segtab_t * const stp = pmap_kernel()->pm_segtab;
    144  1.13    matt 	KASSERT(sva == trunc_page(sva));
    145  1.13    matt 	pt_entry_t *ptep = kvtopte(stp, sva);
    146  1.13    matt 	for (; sva < eva; sva += NBPG) {
    147  1.13    matt 		*ptep++ = pt_entry ? (sva | pt_entry) : 0;
    148  1.13    matt 	}
    149  1.13    matt 	return sva;
    150  1.13    matt }
    151  1.13    matt #endif
    152  1.13    matt 
    153   1.2    matt /*
    154   1.2    matt  *	Bootstrap the system enough to run with virtual memory.
    155   1.2    matt  *	firstaddr is the first unused kseg0 address (not page aligned).
    156   1.2    matt  */
    157  1.13    matt vaddr_t
    158   1.2    matt pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
    159  1.13    matt 	phys_ram_seg_t *avail, size_t cnt)
    160   1.2    matt {
    161  1.15    matt 	pmap_segtab_t * const stp = &pmap_kernel_segtab;
    162  1.13    matt 
    163  1.13    matt 	/*
    164  1.13    matt 	 * Initialize the kernel segment table.
    165  1.13    matt 	 */
    166  1.13    matt 	pmap_kernel()->pm_segtab = stp;
    167  1.13    matt 	curcpu()->ci_pmap_kern_segtab = stp;
    168   1.2    matt 
    169  1.13    matt 	KASSERT(endkernel == trunc_page(endkernel));
    170   1.2    matt 
    171  1.19  nonaka 	/* init the lock */
    172  1.19  nonaka 	pmap_tlb_info_init(&pmap_tlb0_info);
    173  1.19  nonaka 
    174  1.22  nonaka #if defined(MULTIPROCESSOR)
    175  1.22  nonaka 	mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
    176  1.22  nonaka #endif
    177  1.22  nonaka 
    178   1.2    matt 	/*
    179  1.12    para 	 * Compute the number of pages kmem_arena will have.
    180  1.12    para 	 */
    181  1.12    para 	kmeminit_nkmempages();
    182  1.12    para 
    183  1.12    para 	/*
    184   1.2    matt 	 * Figure out how many PTE's are necessary to map the kernel.
    185   1.2    matt 	 * We also reserve space for kmem_alloc_pageable() for vm_fork().
    186   1.2    matt 	 */
    187   1.2    matt 
    188   1.2    matt 	/* Get size of buffer cache and set an upper limit */
    189   1.2    matt 	buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
    190   1.2    matt 	vsize_t bufsz = buf_memcalc();
    191   1.2    matt 	buf_setvalimit(bufsz);
    192   1.2    matt 
    193  1.13    matt 	vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
    194   1.2    matt 	    + (ubc_nwins << ubc_winshift)
    195   1.2    matt 	    + bufsz
    196   1.2    matt 	    + 16 * NCARGS
    197   1.2    matt 	    + pager_map_size
    198   1.2    matt 	    + maxproc * USPACE
    199   1.2    matt #ifdef SYSVSHM
    200   1.2    matt 	    + NBPG * shminfo.shmall
    201   1.2    matt #endif
    202  1.13    matt 	    + NBPG * nkmempages) >> SEGSHIFT;
    203   1.2    matt 
    204   1.2    matt 	/*
    205   1.2    matt 	 * Initialize `FYI' variables.	Note we're relying on
    206   1.2    matt 	 * the fact that BSEARCH sorts the vm_physmem[] array
    207   1.2    matt 	 * for us.  Must do this before uvm_pageboot_alloc()
    208   1.2    matt 	 * can be called.
    209   1.2    matt 	 */
    210   1.2    matt 	pmap_limits.avail_start = vm_physmem[0].start << PGSHIFT;
    211   1.2    matt 	pmap_limits.avail_end = vm_physmem[vm_nphysseg - 1].end << PGSHIFT;
    212  1.13    matt 	const size_t max_nsegtabs =
    213   1.2    matt 	    (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
    214   1.2    matt 		- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
    215  1.13    matt 	if (kv_nsegtabs >= max_nsegtabs) {
    216   1.2    matt 		pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
    217  1.13    matt 		kv_nsegtabs = max_nsegtabs;
    218   1.2    matt 	} else {
    219   1.2    matt 		pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
    220  1.13    matt 		    + kv_nsegtabs * NBSEG;
    221   1.2    matt 	}
    222   1.2    matt 
    223   1.2    matt 	/*
    224   1.2    matt 	 * Now actually allocate the kernel PTE array (must be done
    225   1.2    matt 	 * after virtual_end is initialized).
    226   1.2    matt 	 */
    227  1.13    matt 	const vaddr_t kv_segtabs = avail[0].start;
    228  1.13    matt 	KASSERT(kv_segtabs == endkernel);
    229  1.13    matt 	KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
    230  1.13    matt 	printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
    231  1.13    matt 	printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
    232  1.13    matt 	avail[0].start += NBPG * kv_nsegtabs;
    233  1.13    matt 	avail[0].size -= NBPG * kv_nsegtabs;
    234  1.13    matt 	endkernel += NBPG * kv_nsegtabs;
    235   1.2    matt 
    236   1.2    matt 	/*
    237   1.2    matt 	 * Initialize the kernel's two-level page level.  This only wastes
    238   1.2    matt 	 * an extra page for the segment table and allows the user/kernel
    239   1.2    matt 	 * access to be common.
    240   1.2    matt 	 */
    241  1.15    matt 	pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
    242  1.13    matt 	pt_entry_t *ptep = (void *)kv_segtabs;
    243  1.13    matt 	memset(ptep, 0, NBPG * kv_nsegtabs);
    244  1.13    matt 	for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
    245  1.13    matt 		*ptp++ = ptep;
    246   1.2    matt 	}
    247   1.2    matt 
    248  1.13    matt #if PMAP_MINIMALTLB
    249  1.13    matt 	const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
    250  1.13    matt 	const vaddr_t dm_segtabs = avail[0].start;
    251  1.13    matt 	printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
    252  1.13    matt 	printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
    253  1.13    matt 	KASSERT(dm_segtabs == endkernel);
    254  1.13    matt 	KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
    255  1.13    matt 	avail[0].start += NBPG * dm_nsegtabs;
    256  1.13    matt 	avail[0].size -= NBPG * dm_nsegtabs;
    257  1.13    matt 	endkernel += NBPG * dm_nsegtabs;
    258  1.13    matt 
    259  1.15    matt 	ptp = stp->seg_tab;
    260  1.13    matt 	ptep = (void *)dm_segtabs;
    261  1.13    matt 	memset(ptep, 0, NBPG * dm_nsegtabs);
    262  1.13    matt 	for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
    263   1.2    matt 		*ptp = ptep;
    264   1.2    matt 	}
    265   1.2    matt 
    266   1.2    matt 	/*
    267   1.2    matt 	 */
    268  1.13    matt 	extern uint32_t _fdata[], _etext[];
    269  1.13    matt 	vaddr_t va;
    270  1.13    matt 
    271  1.13    matt 	/* Now make everything before the kernel inaccessible. */
    272  1.13    matt 	va = pmap_kvptefill(NBPG, startkernel, 0);
    273  1.13    matt 
    274  1.13    matt 	/* Kernel text is readonly & executable */
    275  1.13    matt 	va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
    276  1.13    matt 	    PTE_M | PTE_xR | PTE_xX);
    277  1.13    matt 
    278  1.13    matt 	/* Kernel .rdata is readonly */
    279  1.13    matt 	va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
    280  1.13    matt 
    281  1.13    matt 	/* Kernel .data/.bss + page tables are read-write */
    282  1.13    matt 	va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
    283  1.13    matt 
    284  1.13    matt 	/* message buffer page table pages are read-write */
    285  1.13    matt 	(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
    286  1.13    matt 	    PTE_M | PTE_xR | PTE_xW);
    287  1.13    matt #endif
    288  1.13    matt 
    289  1.13    matt 	for (size_t i = 0; i < cnt; i++) {
    290  1.13    matt 		printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
    291  1.13    matt 		    atop(avail[i].start),
    292  1.13    matt 		    atop(avail[i].start + avail[i].size) - 1,
    293  1.13    matt 		    atop(avail[i].start),
    294  1.13    matt 		    atop(avail[i].start + avail[i].size) - 1,
    295  1.13    matt 		    VM_FREELIST_DEFAULT);
    296  1.13    matt 		uvm_page_physload(
    297  1.13    matt 		    atop(avail[i].start),
    298  1.13    matt 		    atop(avail[i].start + avail[i].size) - 1,
    299  1.13    matt 		    atop(avail[i].start),
    300  1.13    matt 		    atop(avail[i].start + avail[i].size) - 1,
    301  1.13    matt 		    VM_FREELIST_DEFAULT);
    302   1.2    matt 	}
    303  1.13    matt 
    304  1.13    matt 	pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
    305   1.2    matt 
    306   1.2    matt 	/*
    307   1.2    matt 	 * Initialize the pools.
    308   1.2    matt 	 */
    309   1.2    matt 	pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
    310   1.2    matt 	    &pool_allocator_nointr, IPL_NONE);
    311   1.2    matt 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
    312   1.2    matt 	    &pmap_pv_page_allocator, IPL_NONE);
    313   1.2    matt 
    314   1.2    matt 	tlb_set_asid(0);
    315  1.13    matt 
    316  1.13    matt 	return endkernel;
    317   1.2    matt }
    318   1.2    matt 
    319   1.2    matt struct vm_page *
    320   1.2    matt pmap_md_alloc_poolpage(int flags)
    321   1.2    matt {
    322   1.2    matt 	/*
    323   1.2    matt 	 * Any managed page works for us.
    324   1.2    matt 	 */
    325   1.2    matt 	return uvm_pagealloc(NULL, 0, NULL, flags);
    326   1.2    matt }
    327   1.2    matt 
    328  1.13    matt vaddr_t
    329  1.13    matt pmap_md_map_poolpage(paddr_t pa, vsize_t size)
    330  1.13    matt {
    331  1.13    matt 	const vaddr_t sva = (vaddr_t) pa;
    332  1.13    matt #ifdef PMAP_MINIMALTLB
    333  1.13    matt 	const vaddr_t eva = sva + size;
    334  1.13    matt 	pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
    335  1.13    matt #endif
    336  1.13    matt 	return sva;
    337  1.13    matt }
    338  1.13    matt 
    339  1.13    matt void
    340  1.13    matt pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
    341  1.13    matt {
    342  1.13    matt #ifdef PMAP_MINIMALTLB
    343  1.13    matt 	struct pmap * const pm = pmap_kernel();
    344  1.13    matt 	const vaddr_t eva = va + size;
    345  1.13    matt 	pmap_kvptefill(va, eva, 0);
    346  1.13    matt 	for (;va < eva; va += NBPG) {
    347  1.13    matt 		pmap_tlb_invalidate_addr(pm, va);
    348  1.13    matt 	}
    349  1.13    matt 	pmap_update(pm);
    350  1.13    matt #endif
    351  1.13    matt }
    352  1.13    matt 
    353   1.2    matt void
    354   1.2    matt pmap_zero_page(paddr_t pa)
    355   1.2    matt {
    356  1.13    matt 	vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
    357  1.13    matt 	dcache_zero_page(va);
    358   1.5    matt 
    359  1.13    matt 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
    360  1.13    matt 	pmap_md_unmap_poolpage(va, NBPG);
    361   1.2    matt }
    362   1.2    matt 
    363   1.2    matt void
    364   1.2    matt pmap_copy_page(paddr_t src, paddr_t dst)
    365   1.2    matt {
    366   1.2    matt 	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
    367  1.13    matt 	vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
    368  1.13    matt 	vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
    369  1.13    matt 	const vaddr_t end = src_va + PAGE_SIZE;
    370   1.2    matt 
    371  1.13    matt 	while (src_va < end) {
    372  1.20  nonaka 		__asm __volatile(
    373  1.20  nonaka 			"dcbt	%2,%0"	"\n\t"	/* touch next src cacheline */
    374   1.2    matt 			"dcba	0,%1"	"\n\t" 	/* don't fetch dst cacheline */
    375  1.13    matt 		    :: "b"(src_va), "b"(dst_va), "b"(line_size));
    376   1.2    matt 		for (u_int i = 0;
    377   1.2    matt 		     i < line_size;
    378  1.13    matt 		     src_va += 32, dst_va += 32, i += 32) {
    379  1.16    matt 			register_t tmp;
    380  1.16    matt 			__asm __volatile(
    381  1.16    matt 				"mr	%[tmp],31"	"\n\t"
    382  1.16    matt 				"lmw	24,0(%[src])"	"\n\t"
    383  1.16    matt 				"stmw	24,0(%[dst])"	"\n\t"
    384  1.16    matt 				"mr	31,%[tmp]"	"\n\t"
    385  1.16    matt 			    : [tmp] "=&r"(tmp)
    386  1.16    matt 			    : [src] "b"(src_va), [dst] "b"(dst_va)
    387   1.2    matt 			    : "r24", "r25", "r26", "r27",
    388  1.16    matt 			      "r28", "r29", "r30", "memory");
    389   1.2    matt 		}
    390   1.2    matt 	}
    391  1.13    matt 	pmap_md_unmap_poolpage(src_va, NBPG);
    392  1.13    matt 	pmap_md_unmap_poolpage(dst_va, NBPG);
    393   1.5    matt 
    394  1.13    matt 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
    395   1.2    matt }
    396   1.2    matt 
    397   1.2    matt void
    398   1.2    matt pmap_md_init(void)
    399   1.2    matt {
    400   1.2    matt 
    401   1.2    matt 	/* nothing for now */
    402   1.2    matt }
    403   1.2    matt 
    404   1.2    matt bool
    405   1.2    matt pmap_md_io_vaddr_p(vaddr_t va)
    406   1.2    matt {
    407   1.2    matt 	return va >= pmap_limits.avail_end
    408   1.2    matt 	    && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
    409   1.2    matt }
    410   1.2    matt 
    411   1.7    matt bool
    412   1.7    matt pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
    413   1.7    matt {
    414   1.7    matt 	pmap_t pm = ctx;
    415   1.7    matt         struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
    416   1.7    matt 
    417   1.7    matt 	if (asid != pai->pai_asid)
    418   1.7    matt 		return true;
    419   1.7    matt 
    420   1.7    matt 	const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
    421   1.7    matt 	KASSERT(ptep != NULL);
    422   1.7    matt 	pt_entry_t xpte = *ptep;
    423   1.7    matt 	xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
    424   1.7    matt 	xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
    425   1.7    matt 
    426   1.7    matt 	KASSERTMSG(pte == xpte,
    427  1.10     jym 	    "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
    428  1.10     jym 	    pm, va, asid, pte, xpte, *ptep);
    429   1.7    matt 
    430   1.7    matt 	return true;
    431   1.7    matt }
    432   1.8    matt 
    433   1.8    matt #ifdef MULTIPROCESSOR
    434   1.8    matt void
    435   1.8    matt pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
    436   1.8    matt {
    437   1.8    matt 	/* nothing */
    438   1.8    matt }
    439  1.22  nonaka 
    440  1.22  nonaka void
    441  1.22  nonaka pmap_md_tlb_miss_lock_enter(void)
    442  1.22  nonaka {
    443  1.22  nonaka 
    444  1.22  nonaka 	mutex_spin_enter(&pmap_tlb_miss_lock);
    445  1.22  nonaka }
    446  1.22  nonaka 
    447  1.22  nonaka void
    448  1.22  nonaka pmap_md_tlb_miss_lock_exit(void)
    449  1.22  nonaka {
    450  1.22  nonaka 
    451  1.22  nonaka 	mutex_spin_exit(&pmap_tlb_miss_lock);
    452  1.22  nonaka }
    453   1.8    matt #endif /* MULTIPROCESSOR */
    454