Home | History | Annotate | Line # | Download | only in booke
booke_pmap.c revision 1.25.14.1
      1  1.25.14.1  pgoyette /*	$NetBSD: booke_pmap.c,v 1.25.14.1 2018/09/06 06:55:39 pgoyette Exp $	*/
      2        1.2      matt /*-
      3        1.2      matt  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4        1.2      matt  * All rights reserved.
      5        1.2      matt  *
      6        1.2      matt  * This code is derived from software contributed to The NetBSD Foundation
      7        1.2      matt  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8        1.2      matt  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9        1.2      matt  *
     10        1.2      matt  * This material is based upon work supported by the Defense Advanced Research
     11        1.2      matt  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12        1.2      matt  * Contract No. N66001-09-C-2073.
     13        1.2      matt  * Approved for Public Release, Distribution Unlimited
     14        1.2      matt  *
     15        1.2      matt  * Redistribution and use in source and binary forms, with or without
     16        1.2      matt  * modification, are permitted provided that the following conditions
     17        1.2      matt  * are met:
     18        1.2      matt  * 1. Redistributions of source code must retain the above copyright
     19        1.2      matt  *    notice, this list of conditions and the following disclaimer.
     20        1.2      matt  * 2. Redistributions in binary form must reproduce the above copyright
     21        1.2      matt  *    notice, this list of conditions and the following disclaimer in the
     22        1.2      matt  *    documentation and/or other materials provided with the distribution.
     23        1.2      matt  *
     24        1.2      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25        1.2      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26        1.2      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27        1.2      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28        1.2      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29        1.2      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30        1.2      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31        1.2      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32        1.2      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33        1.2      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34        1.2      matt  * POSSIBILITY OF SUCH DAMAGE.
     35        1.2      matt  */
     36        1.2      matt 
     37        1.4      matt #define __PMAP_PRIVATE
     38        1.3      matt 
     39        1.2      matt #include <sys/cdefs.h>
     40        1.2      matt 
     41  1.25.14.1  pgoyette __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.25.14.1 2018/09/06 06:55:39 pgoyette Exp $");
     42        1.2      matt 
     43        1.2      matt #include <sys/param.h>
     44        1.2      matt #include <sys/kcore.h>
     45        1.2      matt #include <sys/buf.h>
     46       1.22    nonaka #include <sys/mutex.h>
     47        1.2      matt 
     48        1.6      matt #include <uvm/uvm.h>
     49        1.2      matt 
     50        1.2      matt #include <machine/pmap.h>
     51        1.2      matt 
     52       1.22    nonaka #if defined(MULTIPROCESSOR)
     53       1.22    nonaka kmutex_t pmap_tlb_miss_lock;
     54       1.22    nonaka #endif
     55       1.22    nonaka 
     56       1.24      matt PMAP_COUNTER(zeroed_pages, "pages zeroed");
     57       1.24      matt PMAP_COUNTER(copied_pages, "pages copied");
     58        1.2      matt 
     59       1.15      matt CTASSERT(sizeof(pmap_segtab_t) == NBPG);
     60        1.2      matt 
     61        1.2      matt void
     62        1.2      matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
     63        1.2      matt {
     64        1.2      matt 	struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
     65        1.2      matt 	vsize_t off = va & PAGE_SIZE;
     66        1.2      matt 
     67        1.2      matt 	kpreempt_disable();
     68        1.2      matt 	for (const vaddr_t eva = va + len; va < eva; off = 0) {
     69  1.25.14.1  pgoyette 		const vaddr_t segeva = uimin(va + len, va - off + PAGE_SIZE);
     70        1.2      matt 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
     71        1.2      matt 		if (ptep == NULL) {
     72        1.2      matt 			va = segeva;
     73        1.2      matt 			continue;
     74        1.2      matt 		}
     75        1.2      matt 		pt_entry_t pt_entry = *ptep;
     76        1.2      matt 		if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
     77        1.2      matt 			va = segeva;
     78        1.2      matt 			continue;
     79        1.2      matt 		}
     80        1.2      matt 		kpreempt_enable();
     81        1.2      matt 		dcache_wb(pte_to_paddr(pt_entry), segeva - va);
     82        1.2      matt 		icache_inv(pte_to_paddr(pt_entry), segeva - va);
     83        1.2      matt 		kpreempt_disable();
     84        1.2      matt 		va = segeva;
     85        1.2      matt 	}
     86        1.2      matt 	kpreempt_enable();
     87        1.2      matt }
     88        1.2      matt 
     89        1.2      matt void
     90       1.17      matt pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
     91        1.2      matt {
     92        1.4      matt 	/*
     93        1.4      matt 	 * If onproc is empty, we could do a
     94        1.4      matt 	 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
     95        1.4      matt 	 * mappings of the page and clear its execness.  Then
     96        1.4      matt 	 * the next time page is faulted, it will get icache
     97        1.4      matt 	 * synched.  But this is easier. :)
     98        1.4      matt 	 */
     99        1.2      matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
    100        1.2      matt 	dcache_wb_page(pa);
    101        1.2      matt 	icache_inv_page(pa);
    102        1.2      matt }
    103        1.2      matt 
    104        1.2      matt vaddr_t
    105        1.2      matt pmap_md_direct_map_paddr(paddr_t pa)
    106        1.2      matt {
    107        1.2      matt 	return (vaddr_t) pa;
    108        1.2      matt }
    109        1.2      matt 
    110        1.2      matt bool
    111        1.2      matt pmap_md_direct_mapped_vaddr_p(vaddr_t va)
    112        1.2      matt {
    113        1.2      matt 	return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
    114        1.2      matt }
    115        1.2      matt 
    116        1.2      matt paddr_t
    117        1.2      matt pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
    118        1.2      matt {
    119        1.2      matt 	return (paddr_t) va;
    120        1.2      matt }
    121        1.2      matt 
    122       1.13      matt #ifdef PMAP_MINIMALTLB
    123       1.13      matt static pt_entry_t *
    124       1.15      matt kvtopte(const pmap_segtab_t *stp, vaddr_t va)
    125       1.13      matt {
    126       1.15      matt 	pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
    127       1.13      matt 	if (ptep == NULL)
    128       1.13      matt 		return NULL;
    129       1.13      matt 	return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
    130       1.13      matt }
    131       1.13      matt 
    132       1.13      matt vaddr_t
    133       1.13      matt pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
    134       1.13      matt {
    135       1.24      matt 	pmap_segtab_t * const stp = &pmap_kern_segtab;
    136       1.13      matt 	KASSERT(sva == trunc_page(sva));
    137       1.13      matt 	pt_entry_t *ptep = kvtopte(stp, sva);
    138       1.13      matt 	for (; sva < eva; sva += NBPG) {
    139       1.13      matt 		*ptep++ = pt_entry ? (sva | pt_entry) : 0;
    140       1.13      matt 	}
    141       1.13      matt 	return sva;
    142       1.13      matt }
    143       1.13      matt #endif
    144       1.13      matt 
    145        1.2      matt /*
    146        1.2      matt  *	Bootstrap the system enough to run with virtual memory.
    147        1.2      matt  *	firstaddr is the first unused kseg0 address (not page aligned).
    148        1.2      matt  */
    149       1.13      matt vaddr_t
    150        1.2      matt pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
    151       1.13      matt 	phys_ram_seg_t *avail, size_t cnt)
    152        1.2      matt {
    153       1.24      matt 	pmap_segtab_t * const stp = &pmap_kern_segtab;
    154        1.2      matt 
    155       1.13      matt 	KASSERT(endkernel == trunc_page(endkernel));
    156        1.2      matt 
    157       1.19    nonaka 	/* init the lock */
    158       1.19    nonaka 	pmap_tlb_info_init(&pmap_tlb0_info);
    159       1.19    nonaka 
    160       1.22    nonaka #if defined(MULTIPROCESSOR)
    161       1.22    nonaka 	mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
    162       1.22    nonaka #endif
    163       1.22    nonaka 
    164        1.2      matt 	/*
    165       1.12      para 	 * Compute the number of pages kmem_arena will have.
    166       1.12      para 	 */
    167       1.12      para 	kmeminit_nkmempages();
    168       1.12      para 
    169       1.12      para 	/*
    170        1.2      matt 	 * Figure out how many PTE's are necessary to map the kernel.
    171        1.2      matt 	 * We also reserve space for kmem_alloc_pageable() for vm_fork().
    172        1.2      matt 	 */
    173        1.2      matt 
    174        1.2      matt 	/* Get size of buffer cache and set an upper limit */
    175        1.2      matt 	buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
    176        1.2      matt 	vsize_t bufsz = buf_memcalc();
    177        1.2      matt 	buf_setvalimit(bufsz);
    178        1.2      matt 
    179       1.13      matt 	vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
    180        1.2      matt 	    + (ubc_nwins << ubc_winshift)
    181        1.2      matt 	    + bufsz
    182        1.2      matt 	    + 16 * NCARGS
    183        1.2      matt 	    + pager_map_size
    184        1.2      matt 	    + maxproc * USPACE
    185       1.13      matt 	    + NBPG * nkmempages) >> SEGSHIFT;
    186        1.2      matt 
    187        1.2      matt 	/*
    188        1.2      matt 	 * Initialize `FYI' variables.	Note we're relying on
    189        1.2      matt 	 * the fact that BSEARCH sorts the vm_physmem[] array
    190        1.2      matt 	 * for us.  Must do this before uvm_pageboot_alloc()
    191        1.2      matt 	 * can be called.
    192        1.2      matt 	 */
    193       1.25    cherry 	pmap_limits.avail_start = uvm_physseg_get_start(uvm_physseg_get_first()) << PGSHIFT;
    194       1.25    cherry 	pmap_limits.avail_end = uvm_physseg_get_end(uvm_physseg_get_last()) << PGSHIFT;
    195       1.13      matt 	const size_t max_nsegtabs =
    196        1.2      matt 	    (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
    197        1.2      matt 		- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
    198       1.13      matt 	if (kv_nsegtabs >= max_nsegtabs) {
    199        1.2      matt 		pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
    200       1.13      matt 		kv_nsegtabs = max_nsegtabs;
    201        1.2      matt 	} else {
    202        1.2      matt 		pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
    203       1.13      matt 		    + kv_nsegtabs * NBSEG;
    204        1.2      matt 	}
    205        1.2      matt 
    206        1.2      matt 	/*
    207        1.2      matt 	 * Now actually allocate the kernel PTE array (must be done
    208        1.2      matt 	 * after virtual_end is initialized).
    209        1.2      matt 	 */
    210       1.13      matt 	const vaddr_t kv_segtabs = avail[0].start;
    211       1.13      matt 	KASSERT(kv_segtabs == endkernel);
    212       1.13      matt 	KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
    213       1.13      matt 	printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
    214       1.13      matt 	printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
    215       1.13      matt 	avail[0].start += NBPG * kv_nsegtabs;
    216       1.13      matt 	avail[0].size -= NBPG * kv_nsegtabs;
    217       1.13      matt 	endkernel += NBPG * kv_nsegtabs;
    218        1.2      matt 
    219        1.2      matt 	/*
    220        1.2      matt 	 * Initialize the kernel's two-level page level.  This only wastes
    221        1.2      matt 	 * an extra page for the segment table and allows the user/kernel
    222        1.2      matt 	 * access to be common.
    223        1.2      matt 	 */
    224       1.15      matt 	pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
    225       1.13      matt 	pt_entry_t *ptep = (void *)kv_segtabs;
    226       1.13      matt 	memset(ptep, 0, NBPG * kv_nsegtabs);
    227       1.13      matt 	for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
    228       1.13      matt 		*ptp++ = ptep;
    229        1.2      matt 	}
    230        1.2      matt 
    231       1.13      matt #if PMAP_MINIMALTLB
    232       1.13      matt 	const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
    233       1.13      matt 	const vaddr_t dm_segtabs = avail[0].start;
    234       1.13      matt 	printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
    235       1.13      matt 	printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
    236       1.13      matt 	KASSERT(dm_segtabs == endkernel);
    237       1.13      matt 	KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
    238       1.13      matt 	avail[0].start += NBPG * dm_nsegtabs;
    239       1.13      matt 	avail[0].size -= NBPG * dm_nsegtabs;
    240       1.13      matt 	endkernel += NBPG * dm_nsegtabs;
    241       1.13      matt 
    242       1.15      matt 	ptp = stp->seg_tab;
    243       1.13      matt 	ptep = (void *)dm_segtabs;
    244       1.13      matt 	memset(ptep, 0, NBPG * dm_nsegtabs);
    245       1.13      matt 	for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
    246        1.2      matt 		*ptp = ptep;
    247        1.2      matt 	}
    248        1.2      matt 
    249        1.2      matt 	/*
    250        1.2      matt 	 */
    251       1.13      matt 	extern uint32_t _fdata[], _etext[];
    252       1.13      matt 	vaddr_t va;
    253       1.13      matt 
    254       1.13      matt 	/* Now make everything before the kernel inaccessible. */
    255       1.13      matt 	va = pmap_kvptefill(NBPG, startkernel, 0);
    256       1.13      matt 
    257       1.13      matt 	/* Kernel text is readonly & executable */
    258       1.13      matt 	va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
    259       1.13      matt 	    PTE_M | PTE_xR | PTE_xX);
    260       1.13      matt 
    261       1.13      matt 	/* Kernel .rdata is readonly */
    262       1.13      matt 	va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
    263       1.13      matt 
    264       1.13      matt 	/* Kernel .data/.bss + page tables are read-write */
    265       1.13      matt 	va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
    266       1.13      matt 
    267       1.13      matt 	/* message buffer page table pages are read-write */
    268       1.13      matt 	(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
    269       1.13      matt 	    PTE_M | PTE_xR | PTE_xW);
    270       1.13      matt #endif
    271       1.13      matt 
    272       1.13      matt 	for (size_t i = 0; i < cnt; i++) {
    273       1.13      matt 		printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
    274       1.13      matt 		    atop(avail[i].start),
    275       1.13      matt 		    atop(avail[i].start + avail[i].size) - 1,
    276       1.13      matt 		    atop(avail[i].start),
    277       1.13      matt 		    atop(avail[i].start + avail[i].size) - 1,
    278       1.13      matt 		    VM_FREELIST_DEFAULT);
    279       1.13      matt 		uvm_page_physload(
    280       1.13      matt 		    atop(avail[i].start),
    281       1.13      matt 		    atop(avail[i].start + avail[i].size) - 1,
    282       1.13      matt 		    atop(avail[i].start),
    283       1.13      matt 		    atop(avail[i].start + avail[i].size) - 1,
    284       1.13      matt 		    VM_FREELIST_DEFAULT);
    285        1.2      matt 	}
    286       1.13      matt 
    287       1.13      matt 	pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
    288        1.2      matt 
    289        1.2      matt 	/*
    290        1.2      matt 	 * Initialize the pools.
    291        1.2      matt 	 */
    292        1.2      matt 	pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
    293        1.2      matt 	    &pool_allocator_nointr, IPL_NONE);
    294        1.2      matt 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
    295        1.2      matt 	    &pmap_pv_page_allocator, IPL_NONE);
    296        1.2      matt 
    297        1.2      matt 	tlb_set_asid(0);
    298       1.13      matt 
    299       1.13      matt 	return endkernel;
    300        1.2      matt }
    301        1.2      matt 
    302        1.2      matt struct vm_page *
    303        1.2      matt pmap_md_alloc_poolpage(int flags)
    304        1.2      matt {
    305        1.2      matt 	/*
    306        1.2      matt 	 * Any managed page works for us.
    307        1.2      matt 	 */
    308        1.2      matt 	return uvm_pagealloc(NULL, 0, NULL, flags);
    309        1.2      matt }
    310        1.2      matt 
    311       1.13      matt vaddr_t
    312       1.13      matt pmap_md_map_poolpage(paddr_t pa, vsize_t size)
    313       1.13      matt {
    314       1.13      matt 	const vaddr_t sva = (vaddr_t) pa;
    315       1.13      matt #ifdef PMAP_MINIMALTLB
    316       1.13      matt 	const vaddr_t eva = sva + size;
    317       1.13      matt 	pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
    318       1.13      matt #endif
    319       1.13      matt 	return sva;
    320       1.13      matt }
    321       1.13      matt 
    322       1.13      matt void
    323       1.13      matt pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
    324       1.13      matt {
    325       1.13      matt #ifdef PMAP_MINIMALTLB
    326       1.13      matt 	struct pmap * const pm = pmap_kernel();
    327       1.13      matt 	const vaddr_t eva = va + size;
    328       1.13      matt 	pmap_kvptefill(va, eva, 0);
    329       1.13      matt 	for (;va < eva; va += NBPG) {
    330       1.13      matt 		pmap_tlb_invalidate_addr(pm, va);
    331       1.13      matt 	}
    332       1.13      matt 	pmap_update(pm);
    333       1.13      matt #endif
    334       1.13      matt }
    335       1.13      matt 
    336        1.2      matt void
    337        1.2      matt pmap_zero_page(paddr_t pa)
    338        1.2      matt {
    339       1.24      matt 	PMAP_COUNT(zeroed_pages);
    340       1.13      matt 	vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
    341       1.13      matt 	dcache_zero_page(va);
    342        1.5      matt 
    343       1.13      matt 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
    344       1.13      matt 	pmap_md_unmap_poolpage(va, NBPG);
    345        1.2      matt }
    346        1.2      matt 
    347        1.2      matt void
    348        1.2      matt pmap_copy_page(paddr_t src, paddr_t dst)
    349        1.2      matt {
    350        1.2      matt 	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
    351       1.13      matt 	vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
    352       1.13      matt 	vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
    353       1.13      matt 	const vaddr_t end = src_va + PAGE_SIZE;
    354        1.2      matt 
    355       1.24      matt 	PMAP_COUNT(copied_pages);
    356       1.24      matt 
    357       1.13      matt 	while (src_va < end) {
    358       1.20    nonaka 		__asm __volatile(
    359       1.20    nonaka 			"dcbt	%2,%0"	"\n\t"	/* touch next src cacheline */
    360        1.2      matt 			"dcba	0,%1"	"\n\t" 	/* don't fetch dst cacheline */
    361       1.13      matt 		    :: "b"(src_va), "b"(dst_va), "b"(line_size));
    362        1.2      matt 		for (u_int i = 0;
    363        1.2      matt 		     i < line_size;
    364       1.13      matt 		     src_va += 32, dst_va += 32, i += 32) {
    365       1.16      matt 			register_t tmp;
    366       1.16      matt 			__asm __volatile(
    367       1.16      matt 				"mr	%[tmp],31"	"\n\t"
    368       1.16      matt 				"lmw	24,0(%[src])"	"\n\t"
    369       1.16      matt 				"stmw	24,0(%[dst])"	"\n\t"
    370       1.16      matt 				"mr	31,%[tmp]"	"\n\t"
    371       1.16      matt 			    : [tmp] "=&r"(tmp)
    372       1.16      matt 			    : [src] "b"(src_va), [dst] "b"(dst_va)
    373        1.2      matt 			    : "r24", "r25", "r26", "r27",
    374       1.16      matt 			      "r28", "r29", "r30", "memory");
    375        1.2      matt 		}
    376        1.2      matt 	}
    377       1.13      matt 	pmap_md_unmap_poolpage(src_va, NBPG);
    378       1.13      matt 	pmap_md_unmap_poolpage(dst_va, NBPG);
    379        1.5      matt 
    380       1.13      matt 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
    381        1.2      matt }
    382        1.2      matt 
    383        1.2      matt void
    384        1.2      matt pmap_md_init(void)
    385        1.2      matt {
    386        1.2      matt 
    387        1.2      matt 	/* nothing for now */
    388        1.2      matt }
    389        1.2      matt 
    390        1.2      matt bool
    391        1.2      matt pmap_md_io_vaddr_p(vaddr_t va)
    392        1.2      matt {
    393        1.2      matt 	return va >= pmap_limits.avail_end
    394        1.2      matt 	    && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
    395        1.2      matt }
    396        1.2      matt 
    397        1.7      matt bool
    398        1.7      matt pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
    399        1.7      matt {
    400        1.7      matt 	pmap_t pm = ctx;
    401        1.7      matt         struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
    402        1.7      matt 
    403        1.7      matt 	if (asid != pai->pai_asid)
    404        1.7      matt 		return true;
    405        1.7      matt 
    406        1.7      matt 	const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
    407        1.7      matt 	KASSERT(ptep != NULL);
    408        1.7      matt 	pt_entry_t xpte = *ptep;
    409        1.7      matt 	xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
    410        1.7      matt 	xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
    411        1.7      matt 
    412        1.7      matt 	KASSERTMSG(pte == xpte,
    413       1.10       jym 	    "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
    414       1.10       jym 	    pm, va, asid, pte, xpte, *ptep);
    415        1.7      matt 
    416        1.7      matt 	return true;
    417        1.7      matt }
    418        1.8      matt 
    419        1.8      matt #ifdef MULTIPROCESSOR
    420        1.8      matt void
    421        1.8      matt pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
    422        1.8      matt {
    423        1.8      matt 	/* nothing */
    424        1.8      matt }
    425       1.22    nonaka 
    426       1.22    nonaka void
    427       1.22    nonaka pmap_md_tlb_miss_lock_enter(void)
    428       1.22    nonaka {
    429       1.22    nonaka 
    430       1.22    nonaka 	mutex_spin_enter(&pmap_tlb_miss_lock);
    431       1.22    nonaka }
    432       1.22    nonaka 
    433       1.22    nonaka void
    434       1.22    nonaka pmap_md_tlb_miss_lock_exit(void)
    435       1.22    nonaka {
    436       1.22    nonaka 
    437       1.22    nonaka 	mutex_spin_exit(&pmap_tlb_miss_lock);
    438       1.22    nonaka }
    439        1.8      matt #endif /* MULTIPROCESSOR */
    440