Home | History | Annotate | Line # | Download | only in booke
booke_pmap.c revision 1.27
      1  1.27   thorpej /*	$NetBSD: booke_pmap.c,v 1.27 2020/03/11 13:30:31 thorpej Exp $	*/
      2   1.2      matt /*-
      3   1.2      matt  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4   1.2      matt  * All rights reserved.
      5   1.2      matt  *
      6   1.2      matt  * This code is derived from software contributed to The NetBSD Foundation
      7   1.2      matt  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8   1.2      matt  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9   1.2      matt  *
     10   1.2      matt  * This material is based upon work supported by the Defense Advanced Research
     11   1.2      matt  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12   1.2      matt  * Contract No. N66001-09-C-2073.
     13   1.2      matt  * Approved for Public Release, Distribution Unlimited
     14   1.2      matt  *
     15   1.2      matt  * Redistribution and use in source and binary forms, with or without
     16   1.2      matt  * modification, are permitted provided that the following conditions
     17   1.2      matt  * are met:
     18   1.2      matt  * 1. Redistributions of source code must retain the above copyright
     19   1.2      matt  *    notice, this list of conditions and the following disclaimer.
     20   1.2      matt  * 2. Redistributions in binary form must reproduce the above copyright
     21   1.2      matt  *    notice, this list of conditions and the following disclaimer in the
     22   1.2      matt  *    documentation and/or other materials provided with the distribution.
     23   1.2      matt  *
     24   1.2      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25   1.2      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26   1.2      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27   1.2      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28   1.2      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29   1.2      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30   1.2      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31   1.2      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32   1.2      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33   1.2      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34   1.2      matt  * POSSIBILITY OF SUCH DAMAGE.
     35   1.2      matt  */
     36   1.2      matt 
     37   1.4      matt #define __PMAP_PRIVATE
     38   1.3      matt 
     39   1.2      matt #include <sys/cdefs.h>
     40   1.2      matt 
     41  1.27   thorpej __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.27 2020/03/11 13:30:31 thorpej Exp $");
     42   1.2      matt 
     43   1.2      matt #include <sys/param.h>
     44   1.2      matt #include <sys/kcore.h>
     45   1.2      matt #include <sys/buf.h>
     46  1.22    nonaka #include <sys/mutex.h>
     47   1.2      matt 
     48   1.6      matt #include <uvm/uvm.h>
     49   1.2      matt 
     50   1.2      matt #include <machine/pmap.h>
     51   1.2      matt 
     52  1.24      matt PMAP_COUNTER(zeroed_pages, "pages zeroed");
     53  1.24      matt PMAP_COUNTER(copied_pages, "pages copied");
     54   1.2      matt 
     55  1.15      matt CTASSERT(sizeof(pmap_segtab_t) == NBPG);
     56   1.2      matt 
     57   1.2      matt void
     58   1.2      matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
     59   1.2      matt {
     60   1.2      matt 	struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
     61   1.2      matt 	vsize_t off = va & PAGE_SIZE;
     62   1.2      matt 
     63   1.2      matt 	kpreempt_disable();
     64   1.2      matt 	for (const vaddr_t eva = va + len; va < eva; off = 0) {
     65  1.26  riastrad 		const vaddr_t segeva = uimin(va + len, va - off + PAGE_SIZE);
     66   1.2      matt 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
     67   1.2      matt 		if (ptep == NULL) {
     68   1.2      matt 			va = segeva;
     69   1.2      matt 			continue;
     70   1.2      matt 		}
     71   1.2      matt 		pt_entry_t pt_entry = *ptep;
     72   1.2      matt 		if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
     73   1.2      matt 			va = segeva;
     74   1.2      matt 			continue;
     75   1.2      matt 		}
     76   1.2      matt 		kpreempt_enable();
     77   1.2      matt 		dcache_wb(pte_to_paddr(pt_entry), segeva - va);
     78   1.2      matt 		icache_inv(pte_to_paddr(pt_entry), segeva - va);
     79   1.2      matt 		kpreempt_disable();
     80   1.2      matt 		va = segeva;
     81   1.2      matt 	}
     82   1.2      matt 	kpreempt_enable();
     83   1.2      matt }
     84   1.2      matt 
     85   1.2      matt void
     86  1.17      matt pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
     87   1.2      matt {
     88   1.4      matt 	/*
     89   1.4      matt 	 * If onproc is empty, we could do a
     90   1.4      matt 	 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
     91   1.4      matt 	 * mappings of the page and clear its execness.  Then
     92   1.4      matt 	 * the next time page is faulted, it will get icache
     93   1.4      matt 	 * synched.  But this is easier. :)
     94   1.4      matt 	 */
     95   1.2      matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
     96   1.2      matt 	dcache_wb_page(pa);
     97   1.2      matt 	icache_inv_page(pa);
     98   1.2      matt }
     99   1.2      matt 
    100   1.2      matt vaddr_t
    101   1.2      matt pmap_md_direct_map_paddr(paddr_t pa)
    102   1.2      matt {
    103   1.2      matt 	return (vaddr_t) pa;
    104   1.2      matt }
    105   1.2      matt 
    106   1.2      matt bool
    107   1.2      matt pmap_md_direct_mapped_vaddr_p(vaddr_t va)
    108   1.2      matt {
    109   1.2      matt 	return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
    110   1.2      matt }
    111   1.2      matt 
    112   1.2      matt paddr_t
    113   1.2      matt pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
    114   1.2      matt {
    115   1.2      matt 	return (paddr_t) va;
    116   1.2      matt }
    117   1.2      matt 
    118  1.13      matt #ifdef PMAP_MINIMALTLB
    119  1.13      matt static pt_entry_t *
    120  1.15      matt kvtopte(const pmap_segtab_t *stp, vaddr_t va)
    121  1.13      matt {
    122  1.15      matt 	pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
    123  1.13      matt 	if (ptep == NULL)
    124  1.13      matt 		return NULL;
    125  1.13      matt 	return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
    126  1.13      matt }
    127  1.13      matt 
    128  1.13      matt vaddr_t
    129  1.13      matt pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
    130  1.13      matt {
    131  1.24      matt 	pmap_segtab_t * const stp = &pmap_kern_segtab;
    132  1.13      matt 	KASSERT(sva == trunc_page(sva));
    133  1.13      matt 	pt_entry_t *ptep = kvtopte(stp, sva);
    134  1.13      matt 	for (; sva < eva; sva += NBPG) {
    135  1.13      matt 		*ptep++ = pt_entry ? (sva | pt_entry) : 0;
    136  1.13      matt 	}
    137  1.13      matt 	return sva;
    138  1.13      matt }
    139  1.13      matt #endif
    140  1.13      matt 
    141   1.2      matt /*
    142   1.2      matt  *	Bootstrap the system enough to run with virtual memory.
    143   1.2      matt  *	firstaddr is the first unused kseg0 address (not page aligned).
    144   1.2      matt  */
    145  1.13      matt vaddr_t
    146   1.2      matt pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
    147  1.13      matt 	phys_ram_seg_t *avail, size_t cnt)
    148   1.2      matt {
    149  1.24      matt 	pmap_segtab_t * const stp = &pmap_kern_segtab;
    150   1.2      matt 
    151  1.13      matt 	KASSERT(endkernel == trunc_page(endkernel));
    152   1.2      matt 
    153  1.27   thorpej 	/* common initialization */
    154  1.27   thorpej 	pmap_bootstrap_common();
    155  1.27   thorpej 
    156  1.19    nonaka 	/* init the lock */
    157  1.19    nonaka 	pmap_tlb_info_init(&pmap_tlb0_info);
    158  1.19    nonaka 
    159   1.2      matt 	/*
    160  1.12      para 	 * Compute the number of pages kmem_arena will have.
    161  1.12      para 	 */
    162  1.12      para 	kmeminit_nkmempages();
    163  1.12      para 
    164  1.12      para 	/*
    165   1.2      matt 	 * Figure out how many PTE's are necessary to map the kernel.
    166   1.2      matt 	 * We also reserve space for kmem_alloc_pageable() for vm_fork().
    167   1.2      matt 	 */
    168   1.2      matt 
    169   1.2      matt 	/* Get size of buffer cache and set an upper limit */
    170   1.2      matt 	buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
    171   1.2      matt 	vsize_t bufsz = buf_memcalc();
    172   1.2      matt 	buf_setvalimit(bufsz);
    173   1.2      matt 
    174  1.13      matt 	vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
    175   1.2      matt 	    + (ubc_nwins << ubc_winshift)
    176   1.2      matt 	    + bufsz
    177   1.2      matt 	    + 16 * NCARGS
    178   1.2      matt 	    + pager_map_size
    179   1.2      matt 	    + maxproc * USPACE
    180  1.13      matt 	    + NBPG * nkmempages) >> SEGSHIFT;
    181   1.2      matt 
    182   1.2      matt 	/*
    183   1.2      matt 	 * Initialize `FYI' variables.	Note we're relying on
    184   1.2      matt 	 * the fact that BSEARCH sorts the vm_physmem[] array
    185   1.2      matt 	 * for us.  Must do this before uvm_pageboot_alloc()
    186   1.2      matt 	 * can be called.
    187   1.2      matt 	 */
    188  1.25    cherry 	pmap_limits.avail_start = uvm_physseg_get_start(uvm_physseg_get_first()) << PGSHIFT;
    189  1.25    cherry 	pmap_limits.avail_end = uvm_physseg_get_end(uvm_physseg_get_last()) << PGSHIFT;
    190  1.13      matt 	const size_t max_nsegtabs =
    191   1.2      matt 	    (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
    192   1.2      matt 		- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
    193  1.13      matt 	if (kv_nsegtabs >= max_nsegtabs) {
    194   1.2      matt 		pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
    195  1.13      matt 		kv_nsegtabs = max_nsegtabs;
    196   1.2      matt 	} else {
    197   1.2      matt 		pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
    198  1.13      matt 		    + kv_nsegtabs * NBSEG;
    199   1.2      matt 	}
    200   1.2      matt 
    201   1.2      matt 	/*
    202   1.2      matt 	 * Now actually allocate the kernel PTE array (must be done
    203   1.2      matt 	 * after virtual_end is initialized).
    204   1.2      matt 	 */
    205  1.13      matt 	const vaddr_t kv_segtabs = avail[0].start;
    206  1.13      matt 	KASSERT(kv_segtabs == endkernel);
    207  1.13      matt 	KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
    208  1.13      matt 	printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
    209  1.13      matt 	printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
    210  1.13      matt 	avail[0].start += NBPG * kv_nsegtabs;
    211  1.13      matt 	avail[0].size -= NBPG * kv_nsegtabs;
    212  1.13      matt 	endkernel += NBPG * kv_nsegtabs;
    213   1.2      matt 
    214   1.2      matt 	/*
    215   1.2      matt 	 * Initialize the kernel's two-level page level.  This only wastes
    216   1.2      matt 	 * an extra page for the segment table and allows the user/kernel
    217   1.2      matt 	 * access to be common.
    218   1.2      matt 	 */
    219  1.15      matt 	pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
    220  1.13      matt 	pt_entry_t *ptep = (void *)kv_segtabs;
    221  1.13      matt 	memset(ptep, 0, NBPG * kv_nsegtabs);
    222  1.13      matt 	for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
    223  1.13      matt 		*ptp++ = ptep;
    224   1.2      matt 	}
    225   1.2      matt 
    226  1.13      matt #if PMAP_MINIMALTLB
    227  1.13      matt 	const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
    228  1.13      matt 	const vaddr_t dm_segtabs = avail[0].start;
    229  1.13      matt 	printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
    230  1.13      matt 	printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
    231  1.13      matt 	KASSERT(dm_segtabs == endkernel);
    232  1.13      matt 	KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
    233  1.13      matt 	avail[0].start += NBPG * dm_nsegtabs;
    234  1.13      matt 	avail[0].size -= NBPG * dm_nsegtabs;
    235  1.13      matt 	endkernel += NBPG * dm_nsegtabs;
    236  1.13      matt 
    237  1.15      matt 	ptp = stp->seg_tab;
    238  1.13      matt 	ptep = (void *)dm_segtabs;
    239  1.13      matt 	memset(ptep, 0, NBPG * dm_nsegtabs);
    240  1.13      matt 	for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
    241   1.2      matt 		*ptp = ptep;
    242   1.2      matt 	}
    243   1.2      matt 
    244   1.2      matt 	/*
    245   1.2      matt 	 */
    246  1.13      matt 	extern uint32_t _fdata[], _etext[];
    247  1.13      matt 	vaddr_t va;
    248  1.13      matt 
    249  1.13      matt 	/* Now make everything before the kernel inaccessible. */
    250  1.13      matt 	va = pmap_kvptefill(NBPG, startkernel, 0);
    251  1.13      matt 
    252  1.13      matt 	/* Kernel text is readonly & executable */
    253  1.13      matt 	va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
    254  1.13      matt 	    PTE_M | PTE_xR | PTE_xX);
    255  1.13      matt 
    256  1.13      matt 	/* Kernel .rdata is readonly */
    257  1.13      matt 	va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
    258  1.13      matt 
    259  1.13      matt 	/* Kernel .data/.bss + page tables are read-write */
    260  1.13      matt 	va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
    261  1.13      matt 
    262  1.13      matt 	/* message buffer page table pages are read-write */
    263  1.13      matt 	(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
    264  1.13      matt 	    PTE_M | PTE_xR | PTE_xW);
    265  1.13      matt #endif
    266  1.13      matt 
    267  1.13      matt 	for (size_t i = 0; i < cnt; i++) {
    268  1.13      matt 		printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
    269  1.13      matt 		    atop(avail[i].start),
    270  1.13      matt 		    atop(avail[i].start + avail[i].size) - 1,
    271  1.13      matt 		    atop(avail[i].start),
    272  1.13      matt 		    atop(avail[i].start + avail[i].size) - 1,
    273  1.13      matt 		    VM_FREELIST_DEFAULT);
    274  1.13      matt 		uvm_page_physload(
    275  1.13      matt 		    atop(avail[i].start),
    276  1.13      matt 		    atop(avail[i].start + avail[i].size) - 1,
    277  1.13      matt 		    atop(avail[i].start),
    278  1.13      matt 		    atop(avail[i].start + avail[i].size) - 1,
    279  1.13      matt 		    VM_FREELIST_DEFAULT);
    280   1.2      matt 	}
    281  1.13      matt 
    282  1.13      matt 	pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
    283   1.2      matt 
    284   1.2      matt 	/*
    285   1.2      matt 	 * Initialize the pools.
    286   1.2      matt 	 */
    287   1.2      matt 	pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
    288   1.2      matt 	    &pool_allocator_nointr, IPL_NONE);
    289   1.2      matt 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
    290   1.2      matt 	    &pmap_pv_page_allocator, IPL_NONE);
    291   1.2      matt 
    292   1.2      matt 	tlb_set_asid(0);
    293  1.13      matt 
    294  1.13      matt 	return endkernel;
    295   1.2      matt }
    296   1.2      matt 
    297   1.2      matt struct vm_page *
    298   1.2      matt pmap_md_alloc_poolpage(int flags)
    299   1.2      matt {
    300   1.2      matt 	/*
    301   1.2      matt 	 * Any managed page works for us.
    302   1.2      matt 	 */
    303   1.2      matt 	return uvm_pagealloc(NULL, 0, NULL, flags);
    304   1.2      matt }
    305   1.2      matt 
    306  1.13      matt vaddr_t
    307  1.13      matt pmap_md_map_poolpage(paddr_t pa, vsize_t size)
    308  1.13      matt {
    309  1.13      matt 	const vaddr_t sva = (vaddr_t) pa;
    310  1.13      matt #ifdef PMAP_MINIMALTLB
    311  1.13      matt 	const vaddr_t eva = sva + size;
    312  1.13      matt 	pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
    313  1.13      matt #endif
    314  1.13      matt 	return sva;
    315  1.13      matt }
    316  1.13      matt 
    317  1.13      matt void
    318  1.13      matt pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
    319  1.13      matt {
    320  1.13      matt #ifdef PMAP_MINIMALTLB
    321  1.13      matt 	struct pmap * const pm = pmap_kernel();
    322  1.13      matt 	const vaddr_t eva = va + size;
    323  1.13      matt 	pmap_kvptefill(va, eva, 0);
    324  1.13      matt 	for (;va < eva; va += NBPG) {
    325  1.13      matt 		pmap_tlb_invalidate_addr(pm, va);
    326  1.13      matt 	}
    327  1.13      matt 	pmap_update(pm);
    328  1.13      matt #endif
    329  1.13      matt }
    330  1.13      matt 
    331   1.2      matt void
    332   1.2      matt pmap_zero_page(paddr_t pa)
    333   1.2      matt {
    334  1.24      matt 	PMAP_COUNT(zeroed_pages);
    335  1.13      matt 	vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
    336  1.13      matt 	dcache_zero_page(va);
    337   1.5      matt 
    338  1.13      matt 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
    339  1.13      matt 	pmap_md_unmap_poolpage(va, NBPG);
    340   1.2      matt }
    341   1.2      matt 
    342   1.2      matt void
    343   1.2      matt pmap_copy_page(paddr_t src, paddr_t dst)
    344   1.2      matt {
    345   1.2      matt 	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
    346  1.13      matt 	vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
    347  1.13      matt 	vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
    348  1.13      matt 	const vaddr_t end = src_va + PAGE_SIZE;
    349   1.2      matt 
    350  1.24      matt 	PMAP_COUNT(copied_pages);
    351  1.24      matt 
    352  1.13      matt 	while (src_va < end) {
    353  1.20    nonaka 		__asm __volatile(
    354  1.20    nonaka 			"dcbt	%2,%0"	"\n\t"	/* touch next src cacheline */
    355   1.2      matt 			"dcba	0,%1"	"\n\t" 	/* don't fetch dst cacheline */
    356  1.13      matt 		    :: "b"(src_va), "b"(dst_va), "b"(line_size));
    357   1.2      matt 		for (u_int i = 0;
    358   1.2      matt 		     i < line_size;
    359  1.13      matt 		     src_va += 32, dst_va += 32, i += 32) {
    360  1.16      matt 			register_t tmp;
    361  1.16      matt 			__asm __volatile(
    362  1.16      matt 				"mr	%[tmp],31"	"\n\t"
    363  1.16      matt 				"lmw	24,0(%[src])"	"\n\t"
    364  1.16      matt 				"stmw	24,0(%[dst])"	"\n\t"
    365  1.16      matt 				"mr	31,%[tmp]"	"\n\t"
    366  1.16      matt 			    : [tmp] "=&r"(tmp)
    367  1.16      matt 			    : [src] "b"(src_va), [dst] "b"(dst_va)
    368   1.2      matt 			    : "r24", "r25", "r26", "r27",
    369  1.16      matt 			      "r28", "r29", "r30", "memory");
    370   1.2      matt 		}
    371   1.2      matt 	}
    372  1.13      matt 	pmap_md_unmap_poolpage(src_va, NBPG);
    373  1.13      matt 	pmap_md_unmap_poolpage(dst_va, NBPG);
    374   1.5      matt 
    375  1.13      matt 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
    376   1.2      matt }
    377   1.2      matt 
    378   1.2      matt void
    379   1.2      matt pmap_md_init(void)
    380   1.2      matt {
    381   1.2      matt 
    382   1.2      matt 	/* nothing for now */
    383   1.2      matt }
    384   1.2      matt 
    385   1.2      matt bool
    386   1.2      matt pmap_md_io_vaddr_p(vaddr_t va)
    387   1.2      matt {
    388   1.2      matt 	return va >= pmap_limits.avail_end
    389   1.2      matt 	    && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
    390   1.2      matt }
    391   1.2      matt 
    392   1.7      matt bool
    393   1.7      matt pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
    394   1.7      matt {
    395   1.7      matt 	pmap_t pm = ctx;
    396   1.7      matt         struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
    397   1.7      matt 
    398   1.7      matt 	if (asid != pai->pai_asid)
    399   1.7      matt 		return true;
    400   1.7      matt 
    401   1.7      matt 	const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
    402   1.7      matt 	KASSERT(ptep != NULL);
    403   1.7      matt 	pt_entry_t xpte = *ptep;
    404   1.7      matt 	xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
    405   1.7      matt 	xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
    406   1.7      matt 
    407   1.7      matt 	KASSERTMSG(pte == xpte,
    408  1.10       jym 	    "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
    409  1.10       jym 	    pm, va, asid, pte, xpte, *ptep);
    410   1.7      matt 
    411   1.7      matt 	return true;
    412   1.7      matt }
    413   1.8      matt 
    414   1.8      matt #ifdef MULTIPROCESSOR
    415   1.8      matt void
    416   1.8      matt pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
    417   1.8      matt {
    418   1.8      matt 	/* nothing */
    419   1.8      matt }
    420   1.8      matt #endif /* MULTIPROCESSOR */
    421