Home | History | Annotate | Line # | Download | only in booke
booke_pmap.c revision 1.29
      1  1.29       rin /*	$NetBSD: booke_pmap.c,v 1.29 2020/07/06 10:09:23 rin Exp $	*/
      2   1.2      matt /*-
      3   1.2      matt  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4   1.2      matt  * All rights reserved.
      5   1.2      matt  *
      6   1.2      matt  * This code is derived from software contributed to The NetBSD Foundation
      7   1.2      matt  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8   1.2      matt  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9   1.2      matt  *
     10   1.2      matt  * This material is based upon work supported by the Defense Advanced Research
     11   1.2      matt  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12   1.2      matt  * Contract No. N66001-09-C-2073.
     13   1.2      matt  * Approved for Public Release, Distribution Unlimited
     14   1.2      matt  *
     15   1.2      matt  * Redistribution and use in source and binary forms, with or without
     16   1.2      matt  * modification, are permitted provided that the following conditions
     17   1.2      matt  * are met:
     18   1.2      matt  * 1. Redistributions of source code must retain the above copyright
     19   1.2      matt  *    notice, this list of conditions and the following disclaimer.
     20   1.2      matt  * 2. Redistributions in binary form must reproduce the above copyright
     21   1.2      matt  *    notice, this list of conditions and the following disclaimer in the
     22   1.2      matt  *    documentation and/or other materials provided with the distribution.
     23   1.2      matt  *
     24   1.2      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25   1.2      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26   1.2      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27   1.2      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28   1.2      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29   1.2      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30   1.2      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31   1.2      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32   1.2      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33   1.2      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34   1.2      matt  * POSSIBILITY OF SUCH DAMAGE.
     35   1.2      matt  */
     36   1.2      matt 
     37   1.4      matt #define __PMAP_PRIVATE
     38   1.3      matt 
     39   1.2      matt #include <sys/cdefs.h>
     40  1.28       rin __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.29 2020/07/06 10:09:23 rin Exp $");
     41   1.2      matt 
     42  1.29       rin #ifdef _KERNEL_OPT
     43  1.29       rin #include "opt_multiprocessor.h"
     44  1.29       rin #include "opt_pmap.h"
     45  1.29       rin #endif
     46  1.29       rin 
     47   1.2      matt #include <sys/param.h>
     48   1.2      matt #include <sys/kcore.h>
     49   1.2      matt #include <sys/buf.h>
     50  1.22    nonaka #include <sys/mutex.h>
     51   1.2      matt 
     52   1.6      matt #include <uvm/uvm.h>
     53   1.2      matt 
     54   1.2      matt #include <machine/pmap.h>
     55   1.2      matt 
     56  1.24      matt PMAP_COUNTER(zeroed_pages, "pages zeroed");
     57  1.24      matt PMAP_COUNTER(copied_pages, "pages copied");
     58   1.2      matt 
     59  1.15      matt CTASSERT(sizeof(pmap_segtab_t) == NBPG);
     60   1.2      matt 
     61   1.2      matt void
     62   1.2      matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
     63   1.2      matt {
     64   1.2      matt 	struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
     65   1.2      matt 	vsize_t off = va & PAGE_SIZE;
     66   1.2      matt 
     67   1.2      matt 	kpreempt_disable();
     68   1.2      matt 	for (const vaddr_t eva = va + len; va < eva; off = 0) {
     69  1.26  riastrad 		const vaddr_t segeva = uimin(va + len, va - off + PAGE_SIZE);
     70   1.2      matt 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
     71   1.2      matt 		if (ptep == NULL) {
     72   1.2      matt 			va = segeva;
     73   1.2      matt 			continue;
     74   1.2      matt 		}
     75   1.2      matt 		pt_entry_t pt_entry = *ptep;
     76   1.2      matt 		if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
     77   1.2      matt 			va = segeva;
     78   1.2      matt 			continue;
     79   1.2      matt 		}
     80   1.2      matt 		kpreempt_enable();
     81   1.2      matt 		dcache_wb(pte_to_paddr(pt_entry), segeva - va);
     82   1.2      matt 		icache_inv(pte_to_paddr(pt_entry), segeva - va);
     83   1.2      matt 		kpreempt_disable();
     84   1.2      matt 		va = segeva;
     85   1.2      matt 	}
     86   1.2      matt 	kpreempt_enable();
     87   1.2      matt }
     88   1.2      matt 
     89   1.2      matt void
     90  1.17      matt pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
     91   1.2      matt {
     92   1.4      matt 	/*
     93   1.4      matt 	 * If onproc is empty, we could do a
     94   1.4      matt 	 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
     95   1.4      matt 	 * mappings of the page and clear its execness.  Then
     96   1.4      matt 	 * the next time page is faulted, it will get icache
     97   1.4      matt 	 * synched.  But this is easier. :)
     98   1.4      matt 	 */
     99   1.2      matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
    100   1.2      matt 	dcache_wb_page(pa);
    101   1.2      matt 	icache_inv_page(pa);
    102   1.2      matt }
    103   1.2      matt 
    104   1.2      matt vaddr_t
    105   1.2      matt pmap_md_direct_map_paddr(paddr_t pa)
    106   1.2      matt {
    107   1.2      matt 	return (vaddr_t) pa;
    108   1.2      matt }
    109   1.2      matt 
    110   1.2      matt bool
    111   1.2      matt pmap_md_direct_mapped_vaddr_p(vaddr_t va)
    112   1.2      matt {
    113   1.2      matt 	return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
    114   1.2      matt }
    115   1.2      matt 
    116   1.2      matt paddr_t
    117   1.2      matt pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
    118   1.2      matt {
    119   1.2      matt 	return (paddr_t) va;
    120   1.2      matt }
    121   1.2      matt 
    122  1.13      matt #ifdef PMAP_MINIMALTLB
    123  1.13      matt static pt_entry_t *
    124  1.15      matt kvtopte(const pmap_segtab_t *stp, vaddr_t va)
    125  1.13      matt {
    126  1.15      matt 	pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
    127  1.13      matt 	if (ptep == NULL)
    128  1.13      matt 		return NULL;
    129  1.13      matt 	return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
    130  1.13      matt }
    131  1.13      matt 
    132  1.13      matt vaddr_t
    133  1.13      matt pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
    134  1.13      matt {
    135  1.24      matt 	pmap_segtab_t * const stp = &pmap_kern_segtab;
    136  1.13      matt 	KASSERT(sva == trunc_page(sva));
    137  1.13      matt 	pt_entry_t *ptep = kvtopte(stp, sva);
    138  1.13      matt 	for (; sva < eva; sva += NBPG) {
    139  1.13      matt 		*ptep++ = pt_entry ? (sva | pt_entry) : 0;
    140  1.13      matt 	}
    141  1.13      matt 	return sva;
    142  1.13      matt }
    143  1.13      matt #endif
    144  1.13      matt 
    145   1.2      matt /*
    146   1.2      matt  *	Bootstrap the system enough to run with virtual memory.
    147   1.2      matt  *	firstaddr is the first unused kseg0 address (not page aligned).
    148   1.2      matt  */
    149  1.13      matt vaddr_t
    150   1.2      matt pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
    151  1.13      matt 	phys_ram_seg_t *avail, size_t cnt)
    152   1.2      matt {
    153  1.24      matt 	pmap_segtab_t * const stp = &pmap_kern_segtab;
    154   1.2      matt 
    155  1.13      matt 	KASSERT(endkernel == trunc_page(endkernel));
    156   1.2      matt 
    157  1.27   thorpej 	/* common initialization */
    158  1.27   thorpej 	pmap_bootstrap_common();
    159  1.27   thorpej 
    160  1.19    nonaka 	/* init the lock */
    161  1.19    nonaka 	pmap_tlb_info_init(&pmap_tlb0_info);
    162  1.19    nonaka 
    163   1.2      matt 	/*
    164  1.12      para 	 * Compute the number of pages kmem_arena will have.
    165  1.12      para 	 */
    166  1.12      para 	kmeminit_nkmempages();
    167  1.12      para 
    168  1.12      para 	/*
    169   1.2      matt 	 * Figure out how many PTE's are necessary to map the kernel.
    170   1.2      matt 	 * We also reserve space for kmem_alloc_pageable() for vm_fork().
    171   1.2      matt 	 */
    172   1.2      matt 
    173   1.2      matt 	/* Get size of buffer cache and set an upper limit */
    174   1.2      matt 	buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
    175   1.2      matt 	vsize_t bufsz = buf_memcalc();
    176   1.2      matt 	buf_setvalimit(bufsz);
    177   1.2      matt 
    178  1.13      matt 	vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
    179   1.2      matt 	    + (ubc_nwins << ubc_winshift)
    180   1.2      matt 	    + bufsz
    181   1.2      matt 	    + 16 * NCARGS
    182   1.2      matt 	    + pager_map_size
    183   1.2      matt 	    + maxproc * USPACE
    184  1.13      matt 	    + NBPG * nkmempages) >> SEGSHIFT;
    185   1.2      matt 
    186   1.2      matt 	/*
    187   1.2      matt 	 * Initialize `FYI' variables.	Note we're relying on
    188   1.2      matt 	 * the fact that BSEARCH sorts the vm_physmem[] array
    189   1.2      matt 	 * for us.  Must do this before uvm_pageboot_alloc()
    190   1.2      matt 	 * can be called.
    191   1.2      matt 	 */
    192  1.25    cherry 	pmap_limits.avail_start = uvm_physseg_get_start(uvm_physseg_get_first()) << PGSHIFT;
    193  1.25    cherry 	pmap_limits.avail_end = uvm_physseg_get_end(uvm_physseg_get_last()) << PGSHIFT;
    194  1.13      matt 	const size_t max_nsegtabs =
    195   1.2      matt 	    (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
    196   1.2      matt 		- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
    197  1.13      matt 	if (kv_nsegtabs >= max_nsegtabs) {
    198   1.2      matt 		pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
    199  1.13      matt 		kv_nsegtabs = max_nsegtabs;
    200   1.2      matt 	} else {
    201   1.2      matt 		pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
    202  1.13      matt 		    + kv_nsegtabs * NBSEG;
    203   1.2      matt 	}
    204   1.2      matt 
    205   1.2      matt 	/*
    206   1.2      matt 	 * Now actually allocate the kernel PTE array (must be done
    207   1.2      matt 	 * after virtual_end is initialized).
    208   1.2      matt 	 */
    209  1.13      matt 	const vaddr_t kv_segtabs = avail[0].start;
    210  1.13      matt 	KASSERT(kv_segtabs == endkernel);
    211  1.13      matt 	KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
    212  1.13      matt 	printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
    213  1.13      matt 	printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
    214  1.13      matt 	avail[0].start += NBPG * kv_nsegtabs;
    215  1.13      matt 	avail[0].size -= NBPG * kv_nsegtabs;
    216  1.13      matt 	endkernel += NBPG * kv_nsegtabs;
    217   1.2      matt 
    218   1.2      matt 	/*
    219   1.2      matt 	 * Initialize the kernel's two-level page level.  This only wastes
    220   1.2      matt 	 * an extra page for the segment table and allows the user/kernel
    221   1.2      matt 	 * access to be common.
    222   1.2      matt 	 */
    223  1.15      matt 	pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
    224  1.13      matt 	pt_entry_t *ptep = (void *)kv_segtabs;
    225  1.13      matt 	memset(ptep, 0, NBPG * kv_nsegtabs);
    226  1.13      matt 	for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
    227  1.13      matt 		*ptp++ = ptep;
    228   1.2      matt 	}
    229   1.2      matt 
    230  1.13      matt #if PMAP_MINIMALTLB
    231  1.13      matt 	const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
    232  1.13      matt 	const vaddr_t dm_segtabs = avail[0].start;
    233  1.13      matt 	printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
    234  1.13      matt 	printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
    235  1.13      matt 	KASSERT(dm_segtabs == endkernel);
    236  1.13      matt 	KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
    237  1.13      matt 	avail[0].start += NBPG * dm_nsegtabs;
    238  1.13      matt 	avail[0].size -= NBPG * dm_nsegtabs;
    239  1.13      matt 	endkernel += NBPG * dm_nsegtabs;
    240  1.13      matt 
    241  1.15      matt 	ptp = stp->seg_tab;
    242  1.13      matt 	ptep = (void *)dm_segtabs;
    243  1.13      matt 	memset(ptep, 0, NBPG * dm_nsegtabs);
    244  1.13      matt 	for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
    245   1.2      matt 		*ptp = ptep;
    246   1.2      matt 	}
    247   1.2      matt 
    248   1.2      matt 	/*
    249   1.2      matt 	 */
    250  1.13      matt 	extern uint32_t _fdata[], _etext[];
    251  1.13      matt 	vaddr_t va;
    252  1.13      matt 
    253  1.13      matt 	/* Now make everything before the kernel inaccessible. */
    254  1.13      matt 	va = pmap_kvptefill(NBPG, startkernel, 0);
    255  1.13      matt 
    256  1.13      matt 	/* Kernel text is readonly & executable */
    257  1.13      matt 	va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
    258  1.13      matt 	    PTE_M | PTE_xR | PTE_xX);
    259  1.13      matt 
    260  1.13      matt 	/* Kernel .rdata is readonly */
    261  1.13      matt 	va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
    262  1.13      matt 
    263  1.13      matt 	/* Kernel .data/.bss + page tables are read-write */
    264  1.13      matt 	va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
    265  1.13      matt 
    266  1.13      matt 	/* message buffer page table pages are read-write */
    267  1.13      matt 	(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
    268  1.13      matt 	    PTE_M | PTE_xR | PTE_xW);
    269  1.13      matt #endif
    270  1.13      matt 
    271  1.13      matt 	for (size_t i = 0; i < cnt; i++) {
    272  1.13      matt 		printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
    273  1.13      matt 		    atop(avail[i].start),
    274  1.13      matt 		    atop(avail[i].start + avail[i].size) - 1,
    275  1.13      matt 		    atop(avail[i].start),
    276  1.13      matt 		    atop(avail[i].start + avail[i].size) - 1,
    277  1.13      matt 		    VM_FREELIST_DEFAULT);
    278  1.13      matt 		uvm_page_physload(
    279  1.13      matt 		    atop(avail[i].start),
    280  1.13      matt 		    atop(avail[i].start + avail[i].size) - 1,
    281  1.13      matt 		    atop(avail[i].start),
    282  1.13      matt 		    atop(avail[i].start + avail[i].size) - 1,
    283  1.13      matt 		    VM_FREELIST_DEFAULT);
    284   1.2      matt 	}
    285  1.13      matt 
    286  1.13      matt 	pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
    287   1.2      matt 
    288   1.2      matt 	/*
    289   1.2      matt 	 * Initialize the pools.
    290   1.2      matt 	 */
    291   1.2      matt 	pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
    292   1.2      matt 	    &pool_allocator_nointr, IPL_NONE);
    293   1.2      matt 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
    294   1.2      matt 	    &pmap_pv_page_allocator, IPL_NONE);
    295   1.2      matt 
    296   1.2      matt 	tlb_set_asid(0);
    297  1.13      matt 
    298  1.13      matt 	return endkernel;
    299   1.2      matt }
    300   1.2      matt 
    301   1.2      matt struct vm_page *
    302   1.2      matt pmap_md_alloc_poolpage(int flags)
    303   1.2      matt {
    304   1.2      matt 	/*
    305   1.2      matt 	 * Any managed page works for us.
    306   1.2      matt 	 */
    307   1.2      matt 	return uvm_pagealloc(NULL, 0, NULL, flags);
    308   1.2      matt }
    309   1.2      matt 
    310  1.13      matt vaddr_t
    311  1.13      matt pmap_md_map_poolpage(paddr_t pa, vsize_t size)
    312  1.13      matt {
    313  1.13      matt 	const vaddr_t sva = (vaddr_t) pa;
    314  1.13      matt #ifdef PMAP_MINIMALTLB
    315  1.13      matt 	const vaddr_t eva = sva + size;
    316  1.13      matt 	pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
    317  1.13      matt #endif
    318  1.13      matt 	return sva;
    319  1.13      matt }
    320  1.13      matt 
    321  1.13      matt void
    322  1.13      matt pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
    323  1.13      matt {
    324  1.13      matt #ifdef PMAP_MINIMALTLB
    325  1.13      matt 	struct pmap * const pm = pmap_kernel();
    326  1.13      matt 	const vaddr_t eva = va + size;
    327  1.13      matt 	pmap_kvptefill(va, eva, 0);
    328  1.13      matt 	for (;va < eva; va += NBPG) {
    329  1.13      matt 		pmap_tlb_invalidate_addr(pm, va);
    330  1.13      matt 	}
    331  1.13      matt 	pmap_update(pm);
    332  1.13      matt #endif
    333  1.13      matt }
    334  1.13      matt 
    335   1.2      matt void
    336   1.2      matt pmap_zero_page(paddr_t pa)
    337   1.2      matt {
    338  1.24      matt 	PMAP_COUNT(zeroed_pages);
    339  1.13      matt 	vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
    340  1.13      matt 	dcache_zero_page(va);
    341   1.5      matt 
    342  1.13      matt 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
    343  1.13      matt 	pmap_md_unmap_poolpage(va, NBPG);
    344   1.2      matt }
    345   1.2      matt 
    346   1.2      matt void
    347   1.2      matt pmap_copy_page(paddr_t src, paddr_t dst)
    348   1.2      matt {
    349   1.2      matt 	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
    350  1.13      matt 	vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
    351  1.13      matt 	vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
    352  1.13      matt 	const vaddr_t end = src_va + PAGE_SIZE;
    353   1.2      matt 
    354  1.24      matt 	PMAP_COUNT(copied_pages);
    355  1.24      matt 
    356  1.13      matt 	while (src_va < end) {
    357  1.20    nonaka 		__asm __volatile(
    358  1.20    nonaka 			"dcbt	%2,%0"	"\n\t"	/* touch next src cacheline */
    359   1.2      matt 			"dcba	0,%1"	"\n\t" 	/* don't fetch dst cacheline */
    360  1.13      matt 		    :: "b"(src_va), "b"(dst_va), "b"(line_size));
    361   1.2      matt 		for (u_int i = 0;
    362   1.2      matt 		     i < line_size;
    363  1.13      matt 		     src_va += 32, dst_va += 32, i += 32) {
    364  1.16      matt 			register_t tmp;
    365  1.16      matt 			__asm __volatile(
    366  1.16      matt 				"mr	%[tmp],31"	"\n\t"
    367  1.16      matt 				"lmw	24,0(%[src])"	"\n\t"
    368  1.16      matt 				"stmw	24,0(%[dst])"	"\n\t"
    369  1.16      matt 				"mr	31,%[tmp]"	"\n\t"
    370  1.16      matt 			    : [tmp] "=&r"(tmp)
    371  1.16      matt 			    : [src] "b"(src_va), [dst] "b"(dst_va)
    372   1.2      matt 			    : "r24", "r25", "r26", "r27",
    373  1.16      matt 			      "r28", "r29", "r30", "memory");
    374   1.2      matt 		}
    375   1.2      matt 	}
    376  1.13      matt 	pmap_md_unmap_poolpage(src_va, NBPG);
    377  1.13      matt 	pmap_md_unmap_poolpage(dst_va, NBPG);
    378   1.5      matt 
    379  1.13      matt 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
    380   1.2      matt }
    381   1.2      matt 
    382   1.2      matt void
    383   1.2      matt pmap_md_init(void)
    384   1.2      matt {
    385   1.2      matt 
    386   1.2      matt 	/* nothing for now */
    387   1.2      matt }
    388   1.2      matt 
    389   1.2      matt bool
    390   1.2      matt pmap_md_io_vaddr_p(vaddr_t va)
    391   1.2      matt {
    392   1.2      matt 	return va >= pmap_limits.avail_end
    393   1.2      matt 	    && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
    394   1.2      matt }
    395   1.2      matt 
    396   1.7      matt bool
    397   1.7      matt pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
    398   1.7      matt {
    399   1.7      matt 	pmap_t pm = ctx;
    400   1.7      matt         struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
    401   1.7      matt 
    402   1.7      matt 	if (asid != pai->pai_asid)
    403   1.7      matt 		return true;
    404   1.7      matt 
    405   1.7      matt 	const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
    406   1.7      matt 	KASSERT(ptep != NULL);
    407   1.7      matt 	pt_entry_t xpte = *ptep;
    408   1.7      matt 	xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
    409   1.7      matt 	xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
    410   1.7      matt 
    411   1.7      matt 	KASSERTMSG(pte == xpte,
    412  1.10       jym 	    "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
    413  1.10       jym 	    pm, va, asid, pte, xpte, *ptep);
    414   1.7      matt 
    415   1.7      matt 	return true;
    416   1.7      matt }
    417   1.8      matt 
    418   1.8      matt #ifdef MULTIPROCESSOR
    419   1.8      matt void
    420   1.8      matt pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
    421   1.8      matt {
    422   1.8      matt 	/* nothing */
    423   1.8      matt }
    424   1.8      matt #endif /* MULTIPROCESSOR */
    425