Home | History | Annotate | Line # | Download | only in booke
booke_pmap.c revision 1.7
      1  1.2  matt /*-
      2  1.2  matt  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      3  1.2  matt  * All rights reserved.
      4  1.2  matt  *
      5  1.2  matt  * This code is derived from software contributed to The NetBSD Foundation
      6  1.2  matt  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      7  1.2  matt  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      8  1.2  matt  *
      9  1.2  matt  * This material is based upon work supported by the Defense Advanced Research
     10  1.2  matt  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     11  1.2  matt  * Contract No. N66001-09-C-2073.
     12  1.2  matt  * Approved for Public Release, Distribution Unlimited
     13  1.2  matt  *
     14  1.2  matt  * Redistribution and use in source and binary forms, with or without
     15  1.2  matt  * modification, are permitted provided that the following conditions
     16  1.2  matt  * are met:
     17  1.2  matt  * 1. Redistributions of source code must retain the above copyright
     18  1.2  matt  *    notice, this list of conditions and the following disclaimer.
     19  1.2  matt  * 2. Redistributions in binary form must reproduce the above copyright
     20  1.2  matt  *    notice, this list of conditions and the following disclaimer in the
     21  1.2  matt  *    documentation and/or other materials provided with the distribution.
     22  1.2  matt  *
     23  1.2  matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  1.2  matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  1.2  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  1.2  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  1.2  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  1.2  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  1.2  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  1.2  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  1.2  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  1.2  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  1.2  matt  * POSSIBILITY OF SUCH DAMAGE.
     34  1.2  matt  */
     35  1.2  matt 
     36  1.4  matt #define __PMAP_PRIVATE
     37  1.3  matt 
     38  1.2  matt #include <sys/cdefs.h>
     39  1.2  matt 
     40  1.7  matt __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.7 2011/06/23 02:33:44 matt Exp $");
     41  1.2  matt 
     42  1.2  matt #include <sys/param.h>
     43  1.2  matt #include <sys/kcore.h>
     44  1.2  matt #include <sys/buf.h>
     45  1.2  matt 
     46  1.6  matt #include <uvm/uvm.h>
     47  1.2  matt 
     48  1.2  matt #include <machine/pmap.h>
     49  1.2  matt 
     50  1.2  matt /*
     51  1.2  matt  * Initialize the kernel pmap.
     52  1.2  matt  */
     53  1.2  matt #ifdef MULTIPROCESSOR
     54  1.2  matt #define	PMAP_SIZE	offsetof(struct pmap, pm_pai[MAXCPUS])
     55  1.2  matt #else
     56  1.2  matt #define	PMAP_SIZE	sizeof(struct pmap)
     57  1.2  matt #endif
     58  1.2  matt 
     59  1.2  matt CTASSERT(sizeof(struct pmap_segtab) == NBPG);
     60  1.2  matt 
     61  1.2  matt void
     62  1.2  matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
     63  1.2  matt {
     64  1.2  matt 	struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
     65  1.2  matt 	vsize_t off = va & PAGE_SIZE;
     66  1.2  matt 
     67  1.2  matt 	kpreempt_disable();
     68  1.2  matt 	for (const vaddr_t eva = va + len; va < eva; off = 0) {
     69  1.2  matt 		const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
     70  1.2  matt 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
     71  1.2  matt 		if (ptep == NULL) {
     72  1.2  matt 			va = segeva;
     73  1.2  matt 			continue;
     74  1.2  matt 		}
     75  1.2  matt 		pt_entry_t pt_entry = *ptep;
     76  1.2  matt 		if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
     77  1.2  matt 			va = segeva;
     78  1.2  matt 			continue;
     79  1.2  matt 		}
     80  1.2  matt 		kpreempt_enable();
     81  1.2  matt 		dcache_wb(pte_to_paddr(pt_entry), segeva - va);
     82  1.2  matt 		icache_inv(pte_to_paddr(pt_entry), segeva - va);
     83  1.2  matt 		kpreempt_disable();
     84  1.2  matt 		va = segeva;
     85  1.2  matt 	}
     86  1.2  matt 	kpreempt_enable();
     87  1.2  matt }
     88  1.2  matt 
     89  1.2  matt void
     90  1.4  matt pmap_md_page_syncicache(struct vm_page *pg, __cpuset_t onproc)
     91  1.2  matt {
     92  1.4  matt 	/*
     93  1.4  matt 	 * If onproc is empty, we could do a
     94  1.4  matt 	 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
     95  1.4  matt 	 * mappings of the page and clear its execness.  Then
     96  1.4  matt 	 * the next time page is faulted, it will get icache
     97  1.4  matt 	 * synched.  But this is easier. :)
     98  1.4  matt 	 */
     99  1.2  matt 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
    100  1.2  matt 	dcache_wb_page(pa);
    101  1.2  matt 	icache_inv_page(pa);
    102  1.2  matt }
    103  1.2  matt 
    104  1.2  matt vaddr_t
    105  1.2  matt pmap_md_direct_map_paddr(paddr_t pa)
    106  1.2  matt {
    107  1.2  matt 	return (vaddr_t) pa;
    108  1.2  matt }
    109  1.2  matt 
    110  1.2  matt bool
    111  1.2  matt pmap_md_direct_mapped_vaddr_p(vaddr_t va)
    112  1.2  matt {
    113  1.2  matt 	return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
    114  1.2  matt }
    115  1.2  matt 
    116  1.2  matt paddr_t
    117  1.2  matt pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
    118  1.2  matt {
    119  1.2  matt 	return (paddr_t) va;
    120  1.2  matt }
    121  1.2  matt 
    122  1.2  matt /*
    123  1.2  matt  *	Bootstrap the system enough to run with virtual memory.
    124  1.2  matt  *	firstaddr is the first unused kseg0 address (not page aligned).
    125  1.2  matt  */
    126  1.2  matt void
    127  1.2  matt pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
    128  1.2  matt 	const phys_ram_seg_t *avail, size_t cnt)
    129  1.2  matt {
    130  1.2  matt 	for (size_t i = 0; i < cnt; i++) {
    131  1.2  matt 		printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
    132  1.2  matt 		    atop(avail[i].start),
    133  1.2  matt 		    atop(avail[i].start + avail[i].size) - 1,
    134  1.2  matt 		    atop(avail[i].start),
    135  1.2  matt 		    atop(avail[i].start + avail[i].size) - 1,
    136  1.2  matt 		    VM_FREELIST_DEFAULT);
    137  1.2  matt 		uvm_page_physload(
    138  1.2  matt 		    atop(avail[i].start),
    139  1.2  matt 		    atop(avail[i].start + avail[i].size) - 1,
    140  1.2  matt 		    atop(avail[i].start),
    141  1.2  matt 		    atop(avail[i].start + avail[i].size) - 1,
    142  1.2  matt 		    VM_FREELIST_DEFAULT);
    143  1.2  matt 	}
    144  1.2  matt 
    145  1.2  matt 	pmap_tlb_info_init(&pmap_tlb0_info);		/* init the lock */
    146  1.2  matt 
    147  1.2  matt 	/*
    148  1.2  matt 	 * Compute the number of pages kmem_map will have.
    149  1.2  matt 	 */
    150  1.2  matt 	kmeminit_nkmempages();
    151  1.2  matt 
    152  1.2  matt 	/*
    153  1.2  matt 	 * Figure out how many PTE's are necessary to map the kernel.
    154  1.2  matt 	 * We also reserve space for kmem_alloc_pageable() for vm_fork().
    155  1.2  matt 	 */
    156  1.2  matt 
    157  1.2  matt 	/* Get size of buffer cache and set an upper limit */
    158  1.2  matt 	buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
    159  1.2  matt 	vsize_t bufsz = buf_memcalc();
    160  1.2  matt 	buf_setvalimit(bufsz);
    161  1.2  matt 
    162  1.2  matt 	vsize_t nsegtabs = pmap_round_seg(VM_PHYS_SIZE
    163  1.2  matt 	    + (ubc_nwins << ubc_winshift)
    164  1.2  matt 	    + bufsz
    165  1.2  matt 	    + 16 * NCARGS
    166  1.2  matt 	    + pager_map_size
    167  1.2  matt 	    + maxproc * USPACE
    168  1.2  matt #ifdef SYSVSHM
    169  1.2  matt 	    + NBPG * shminfo.shmall
    170  1.2  matt #endif
    171  1.2  matt 	    + NBPG * nkmempages);
    172  1.2  matt 
    173  1.2  matt 	/*
    174  1.2  matt 	 * Initialize `FYI' variables.	Note we're relying on
    175  1.2  matt 	 * the fact that BSEARCH sorts the vm_physmem[] array
    176  1.2  matt 	 * for us.  Must do this before uvm_pageboot_alloc()
    177  1.2  matt 	 * can be called.
    178  1.2  matt 	 */
    179  1.2  matt 	pmap_limits.avail_start = vm_physmem[0].start << PGSHIFT;
    180  1.2  matt 	pmap_limits.avail_end = vm_physmem[vm_nphysseg - 1].end << PGSHIFT;
    181  1.2  matt 	const vsize_t max_nsegtabs =
    182  1.2  matt 	    (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
    183  1.2  matt 		- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
    184  1.2  matt 	if (nsegtabs >= max_nsegtabs) {
    185  1.2  matt 		pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
    186  1.2  matt 		nsegtabs = max_nsegtabs;
    187  1.2  matt 	} else {
    188  1.2  matt 		pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
    189  1.2  matt 		    + nsegtabs * NBSEG;
    190  1.2  matt 	}
    191  1.2  matt 
    192  1.2  matt 	pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
    193  1.2  matt 
    194  1.2  matt 	/*
    195  1.2  matt 	 * Now actually allocate the kernel PTE array (must be done
    196  1.2  matt 	 * after virtual_end is initialized).
    197  1.2  matt 	 */
    198  1.2  matt 	vaddr_t segtabs =
    199  1.2  matt 	    uvm_pageboot_alloc(NBPG * nsegtabs + sizeof(struct pmap_segtab));
    200  1.2  matt 
    201  1.2  matt 	/*
    202  1.2  matt 	 * Initialize the kernel's two-level page level.  This only wastes
    203  1.2  matt 	 * an extra page for the segment table and allows the user/kernel
    204  1.2  matt 	 * access to be common.
    205  1.2  matt 	 */
    206  1.2  matt 	struct pmap_segtab * const stp = (void *)segtabs;
    207  1.2  matt 	segtabs += round_page(sizeof(struct pmap_segtab));
    208  1.2  matt 	pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
    209  1.2  matt 	for (u_int i = 0; i < nsegtabs; i++, segtabs += NBPG) {
    210  1.2  matt 		*ptp++ = (void *)segtabs;
    211  1.2  matt 	}
    212  1.2  matt 	pmap_kernel()->pm_segtab = stp;
    213  1.2  matt 	curcpu()->ci_pmap_kern_segtab = stp;
    214  1.2  matt 	printf(" kern_segtab=%p", stp);
    215  1.2  matt 
    216  1.2  matt #if 0
    217  1.2  matt 	nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
    218  1.2  matt 	segtabs = uvm_pageboot_alloc(NBPG * nsegtabs);
    219  1.2  matt 	ptp = stp->seg_tab;
    220  1.2  matt 	pt_entry_t pt_entry = PTE_M|PTE_xX|PTE_xR;
    221  1.2  matt 	pt_entry_t *ptep = (void *)segtabs;
    222  1.2  matt 	printf("%s: allocated %lu page table pages for mapping %u pages\n",
    223  1.2  matt 	    __func__, nsegtabs, physmem);
    224  1.2  matt 	for (u_int i = 0; i < nsegtabs; i++, segtabs += NBPG, ptp++) {
    225  1.2  matt 		*ptp = ptep;
    226  1.2  matt 		for (u_int j = 0; j < NPTEPG; j++, ptep++) {
    227  1.2  matt 			*ptep = pt_entry;
    228  1.2  matt 			pt_entry += NBPG;
    229  1.2  matt 		}
    230  1.2  matt 		printf(" [%u]=%p (%#x)", i, *ptp, **ptp);
    231  1.2  matt 		pt_entry |= PTE_xW;
    232  1.2  matt 		pt_entry &= ~PTE_xX;
    233  1.2  matt 	}
    234  1.2  matt 
    235  1.2  matt 	/*
    236  1.2  matt 	 * Now make everything before the kernel inaccessible.
    237  1.2  matt 	 */
    238  1.2  matt 	for (u_int i = 0; i < startkernel / NBPG; i += NBPG) {
    239  1.2  matt 		stp->seg_tab[i >> SEGSHIFT][(i & SEGOFSET) >> PAGE_SHIFT] = 0;
    240  1.2  matt 	}
    241  1.2  matt #endif
    242  1.2  matt 
    243  1.2  matt 	/*
    244  1.2  matt 	 * Initialize the pools.
    245  1.2  matt 	 */
    246  1.2  matt 	pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
    247  1.2  matt 	    &pool_allocator_nointr, IPL_NONE);
    248  1.2  matt 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
    249  1.2  matt 	    &pmap_pv_page_allocator, IPL_NONE);
    250  1.2  matt 
    251  1.2  matt 	tlb_set_asid(0);
    252  1.2  matt }
    253  1.2  matt 
    254  1.2  matt struct vm_page *
    255  1.2  matt pmap_md_alloc_poolpage(int flags)
    256  1.2  matt {
    257  1.2  matt 	/*
    258  1.2  matt 	 * Any managed page works for us.
    259  1.2  matt 	 */
    260  1.2  matt 	return uvm_pagealloc(NULL, 0, NULL, flags);
    261  1.2  matt }
    262  1.2  matt 
    263  1.2  matt void
    264  1.2  matt pmap_zero_page(paddr_t pa)
    265  1.2  matt {
    266  1.2  matt 	dcache_zero_page(pa);
    267  1.5  matt 
    268  1.6  matt 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(pa))));
    269  1.2  matt }
    270  1.2  matt 
    271  1.2  matt void
    272  1.2  matt pmap_copy_page(paddr_t src, paddr_t dst)
    273  1.2  matt {
    274  1.2  matt 	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
    275  1.2  matt 	const paddr_t end = src + PAGE_SIZE;
    276  1.2  matt 
    277  1.2  matt 	while (src < end) {
    278  1.2  matt 		__asm(
    279  1.2  matt 			"dcbt	%2,%1"	"\n\t"	/* touch next src cachline */
    280  1.2  matt 			"dcba	0,%1"	"\n\t" 	/* don't fetch dst cacheline */
    281  1.2  matt 		    :: "b"(src), "b"(dst), "b"(line_size));
    282  1.2  matt 		for (u_int i = 0;
    283  1.2  matt 		     i < line_size;
    284  1.2  matt 		     src += 32, dst += 32, i += 32) {
    285  1.2  matt 			__asm(
    286  1.2  matt 				"lmw	24,0(%0)" "\n\t"
    287  1.2  matt 				"stmw	24,0(%1)"
    288  1.2  matt 			    :: "b"(src), "b"(dst)
    289  1.2  matt 			    : "r24", "r25", "r26", "r27",
    290  1.2  matt 			      "r28", "r29", "r30", "r31");
    291  1.2  matt 		}
    292  1.2  matt 	}
    293  1.5  matt 
    294  1.6  matt 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst - PAGE_SIZE))));
    295  1.2  matt }
    296  1.2  matt 
    297  1.2  matt void
    298  1.2  matt pmap_md_init(void)
    299  1.2  matt {
    300  1.2  matt 
    301  1.2  matt 	/* nothing for now */
    302  1.2  matt }
    303  1.2  matt 
    304  1.2  matt bool
    305  1.2  matt pmap_md_io_vaddr_p(vaddr_t va)
    306  1.2  matt {
    307  1.2  matt 	return va >= pmap_limits.avail_end
    308  1.2  matt 	    && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
    309  1.2  matt }
    310  1.2  matt 
    311  1.7  matt bool
    312  1.7  matt pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
    313  1.7  matt {
    314  1.7  matt 	pmap_t pm = ctx;
    315  1.7  matt         struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
    316  1.7  matt 
    317  1.7  matt 	if (asid != pai->pai_asid)
    318  1.7  matt 		return true;
    319  1.7  matt 
    320  1.7  matt 	const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
    321  1.7  matt 	KASSERT(ptep != NULL);
    322  1.7  matt 	pt_entry_t xpte = *ptep;
    323  1.7  matt 	xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
    324  1.7  matt 	xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
    325  1.7  matt 
    326  1.7  matt 	KASSERTMSG(pte == xpte,
    327  1.7  matt 	    ("pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
    328  1.7  matt 	    pm, va, asid, pte, xpte, *ptep));
    329  1.7  matt 
    330  1.7  matt 	return true;
    331  1.7  matt }
    332