booke_pmap.c revision 1.8 1 1.2 matt /*-
2 1.2 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
3 1.2 matt * All rights reserved.
4 1.2 matt *
5 1.2 matt * This code is derived from software contributed to The NetBSD Foundation
6 1.2 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
7 1.2 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry.
8 1.2 matt *
9 1.2 matt * This material is based upon work supported by the Defense Advanced Research
10 1.2 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
11 1.2 matt * Contract No. N66001-09-C-2073.
12 1.2 matt * Approved for Public Release, Distribution Unlimited
13 1.2 matt *
14 1.2 matt * Redistribution and use in source and binary forms, with or without
15 1.2 matt * modification, are permitted provided that the following conditions
16 1.2 matt * are met:
17 1.2 matt * 1. Redistributions of source code must retain the above copyright
18 1.2 matt * notice, this list of conditions and the following disclaimer.
19 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright
20 1.2 matt * notice, this list of conditions and the following disclaimer in the
21 1.2 matt * documentation and/or other materials provided with the distribution.
22 1.2 matt *
23 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 1.2 matt * POSSIBILITY OF SUCH DAMAGE.
34 1.2 matt */
35 1.2 matt
36 1.4 matt #define __PMAP_PRIVATE
37 1.3 matt
38 1.2 matt #include <sys/cdefs.h>
39 1.2 matt
40 1.8 matt __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.8 2011/06/29 06:05:38 matt Exp $");
41 1.2 matt
42 1.2 matt #include <sys/param.h>
43 1.2 matt #include <sys/kcore.h>
44 1.2 matt #include <sys/buf.h>
45 1.2 matt
46 1.6 matt #include <uvm/uvm.h>
47 1.2 matt
48 1.2 matt #include <machine/pmap.h>
49 1.2 matt
50 1.2 matt /*
51 1.2 matt * Initialize the kernel pmap.
52 1.2 matt */
53 1.2 matt #ifdef MULTIPROCESSOR
54 1.2 matt #define PMAP_SIZE offsetof(struct pmap, pm_pai[MAXCPUS])
55 1.2 matt #else
56 1.2 matt #define PMAP_SIZE sizeof(struct pmap)
57 1.2 matt #endif
58 1.2 matt
59 1.2 matt CTASSERT(sizeof(struct pmap_segtab) == NBPG);
60 1.2 matt
61 1.2 matt void
62 1.2 matt pmap_procwr(struct proc *p, vaddr_t va, size_t len)
63 1.2 matt {
64 1.2 matt struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
65 1.2 matt vsize_t off = va & PAGE_SIZE;
66 1.2 matt
67 1.2 matt kpreempt_disable();
68 1.2 matt for (const vaddr_t eva = va + len; va < eva; off = 0) {
69 1.2 matt const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
70 1.2 matt pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
71 1.2 matt if (ptep == NULL) {
72 1.2 matt va = segeva;
73 1.2 matt continue;
74 1.2 matt }
75 1.2 matt pt_entry_t pt_entry = *ptep;
76 1.2 matt if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
77 1.2 matt va = segeva;
78 1.2 matt continue;
79 1.2 matt }
80 1.2 matt kpreempt_enable();
81 1.2 matt dcache_wb(pte_to_paddr(pt_entry), segeva - va);
82 1.2 matt icache_inv(pte_to_paddr(pt_entry), segeva - va);
83 1.2 matt kpreempt_disable();
84 1.2 matt va = segeva;
85 1.2 matt }
86 1.2 matt kpreempt_enable();
87 1.2 matt }
88 1.2 matt
89 1.2 matt void
90 1.4 matt pmap_md_page_syncicache(struct vm_page *pg, __cpuset_t onproc)
91 1.2 matt {
92 1.4 matt /*
93 1.4 matt * If onproc is empty, we could do a
94 1.4 matt * pmap_page_protect(pg, VM_PROT_NONE) and remove all
95 1.4 matt * mappings of the page and clear its execness. Then
96 1.4 matt * the next time page is faulted, it will get icache
97 1.4 matt * synched. But this is easier. :)
98 1.4 matt */
99 1.2 matt paddr_t pa = VM_PAGE_TO_PHYS(pg);
100 1.2 matt dcache_wb_page(pa);
101 1.2 matt icache_inv_page(pa);
102 1.2 matt }
103 1.2 matt
104 1.2 matt vaddr_t
105 1.2 matt pmap_md_direct_map_paddr(paddr_t pa)
106 1.2 matt {
107 1.2 matt return (vaddr_t) pa;
108 1.2 matt }
109 1.2 matt
110 1.2 matt bool
111 1.2 matt pmap_md_direct_mapped_vaddr_p(vaddr_t va)
112 1.2 matt {
113 1.2 matt return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
114 1.2 matt }
115 1.2 matt
116 1.2 matt paddr_t
117 1.2 matt pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
118 1.2 matt {
119 1.2 matt return (paddr_t) va;
120 1.2 matt }
121 1.2 matt
122 1.2 matt /*
123 1.2 matt * Bootstrap the system enough to run with virtual memory.
124 1.2 matt * firstaddr is the first unused kseg0 address (not page aligned).
125 1.2 matt */
126 1.2 matt void
127 1.2 matt pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
128 1.2 matt const phys_ram_seg_t *avail, size_t cnt)
129 1.2 matt {
130 1.2 matt for (size_t i = 0; i < cnt; i++) {
131 1.2 matt printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
132 1.2 matt atop(avail[i].start),
133 1.2 matt atop(avail[i].start + avail[i].size) - 1,
134 1.2 matt atop(avail[i].start),
135 1.2 matt atop(avail[i].start + avail[i].size) - 1,
136 1.2 matt VM_FREELIST_DEFAULT);
137 1.2 matt uvm_page_physload(
138 1.2 matt atop(avail[i].start),
139 1.2 matt atop(avail[i].start + avail[i].size) - 1,
140 1.2 matt atop(avail[i].start),
141 1.2 matt atop(avail[i].start + avail[i].size) - 1,
142 1.2 matt VM_FREELIST_DEFAULT);
143 1.2 matt }
144 1.2 matt
145 1.2 matt pmap_tlb_info_init(&pmap_tlb0_info); /* init the lock */
146 1.2 matt
147 1.2 matt /*
148 1.2 matt * Compute the number of pages kmem_map will have.
149 1.2 matt */
150 1.2 matt kmeminit_nkmempages();
151 1.2 matt
152 1.2 matt /*
153 1.2 matt * Figure out how many PTE's are necessary to map the kernel.
154 1.2 matt * We also reserve space for kmem_alloc_pageable() for vm_fork().
155 1.2 matt */
156 1.2 matt
157 1.2 matt /* Get size of buffer cache and set an upper limit */
158 1.2 matt buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
159 1.2 matt vsize_t bufsz = buf_memcalc();
160 1.2 matt buf_setvalimit(bufsz);
161 1.2 matt
162 1.2 matt vsize_t nsegtabs = pmap_round_seg(VM_PHYS_SIZE
163 1.2 matt + (ubc_nwins << ubc_winshift)
164 1.2 matt + bufsz
165 1.2 matt + 16 * NCARGS
166 1.2 matt + pager_map_size
167 1.2 matt + maxproc * USPACE
168 1.2 matt #ifdef SYSVSHM
169 1.2 matt + NBPG * shminfo.shmall
170 1.2 matt #endif
171 1.2 matt + NBPG * nkmempages);
172 1.2 matt
173 1.2 matt /*
174 1.2 matt * Initialize `FYI' variables. Note we're relying on
175 1.2 matt * the fact that BSEARCH sorts the vm_physmem[] array
176 1.2 matt * for us. Must do this before uvm_pageboot_alloc()
177 1.2 matt * can be called.
178 1.2 matt */
179 1.2 matt pmap_limits.avail_start = vm_physmem[0].start << PGSHIFT;
180 1.2 matt pmap_limits.avail_end = vm_physmem[vm_nphysseg - 1].end << PGSHIFT;
181 1.2 matt const vsize_t max_nsegtabs =
182 1.2 matt (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
183 1.2 matt - pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
184 1.2 matt if (nsegtabs >= max_nsegtabs) {
185 1.2 matt pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
186 1.2 matt nsegtabs = max_nsegtabs;
187 1.2 matt } else {
188 1.2 matt pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
189 1.2 matt + nsegtabs * NBSEG;
190 1.2 matt }
191 1.2 matt
192 1.2 matt pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
193 1.2 matt
194 1.2 matt /*
195 1.2 matt * Now actually allocate the kernel PTE array (must be done
196 1.2 matt * after virtual_end is initialized).
197 1.2 matt */
198 1.2 matt vaddr_t segtabs =
199 1.2 matt uvm_pageboot_alloc(NBPG * nsegtabs + sizeof(struct pmap_segtab));
200 1.2 matt
201 1.2 matt /*
202 1.2 matt * Initialize the kernel's two-level page level. This only wastes
203 1.2 matt * an extra page for the segment table and allows the user/kernel
204 1.2 matt * access to be common.
205 1.2 matt */
206 1.2 matt struct pmap_segtab * const stp = (void *)segtabs;
207 1.2 matt segtabs += round_page(sizeof(struct pmap_segtab));
208 1.2 matt pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
209 1.2 matt for (u_int i = 0; i < nsegtabs; i++, segtabs += NBPG) {
210 1.2 matt *ptp++ = (void *)segtabs;
211 1.2 matt }
212 1.2 matt pmap_kernel()->pm_segtab = stp;
213 1.2 matt curcpu()->ci_pmap_kern_segtab = stp;
214 1.2 matt printf(" kern_segtab=%p", stp);
215 1.2 matt
216 1.2 matt #if 0
217 1.2 matt nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
218 1.2 matt segtabs = uvm_pageboot_alloc(NBPG * nsegtabs);
219 1.2 matt ptp = stp->seg_tab;
220 1.2 matt pt_entry_t pt_entry = PTE_M|PTE_xX|PTE_xR;
221 1.2 matt pt_entry_t *ptep = (void *)segtabs;
222 1.2 matt printf("%s: allocated %lu page table pages for mapping %u pages\n",
223 1.2 matt __func__, nsegtabs, physmem);
224 1.2 matt for (u_int i = 0; i < nsegtabs; i++, segtabs += NBPG, ptp++) {
225 1.2 matt *ptp = ptep;
226 1.2 matt for (u_int j = 0; j < NPTEPG; j++, ptep++) {
227 1.2 matt *ptep = pt_entry;
228 1.2 matt pt_entry += NBPG;
229 1.2 matt }
230 1.2 matt printf(" [%u]=%p (%#x)", i, *ptp, **ptp);
231 1.2 matt pt_entry |= PTE_xW;
232 1.2 matt pt_entry &= ~PTE_xX;
233 1.2 matt }
234 1.2 matt
235 1.2 matt /*
236 1.2 matt * Now make everything before the kernel inaccessible.
237 1.2 matt */
238 1.2 matt for (u_int i = 0; i < startkernel / NBPG; i += NBPG) {
239 1.2 matt stp->seg_tab[i >> SEGSHIFT][(i & SEGOFSET) >> PAGE_SHIFT] = 0;
240 1.2 matt }
241 1.2 matt #endif
242 1.2 matt
243 1.2 matt /*
244 1.2 matt * Initialize the pools.
245 1.2 matt */
246 1.2 matt pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
247 1.2 matt &pool_allocator_nointr, IPL_NONE);
248 1.2 matt pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
249 1.2 matt &pmap_pv_page_allocator, IPL_NONE);
250 1.2 matt
251 1.2 matt tlb_set_asid(0);
252 1.2 matt }
253 1.2 matt
254 1.2 matt struct vm_page *
255 1.2 matt pmap_md_alloc_poolpage(int flags)
256 1.2 matt {
257 1.2 matt /*
258 1.2 matt * Any managed page works for us.
259 1.2 matt */
260 1.2 matt return uvm_pagealloc(NULL, 0, NULL, flags);
261 1.2 matt }
262 1.2 matt
263 1.2 matt void
264 1.2 matt pmap_zero_page(paddr_t pa)
265 1.2 matt {
266 1.2 matt dcache_zero_page(pa);
267 1.5 matt
268 1.6 matt KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(pa))));
269 1.2 matt }
270 1.2 matt
271 1.2 matt void
272 1.2 matt pmap_copy_page(paddr_t src, paddr_t dst)
273 1.2 matt {
274 1.2 matt const size_t line_size = curcpu()->ci_ci.dcache_line_size;
275 1.2 matt const paddr_t end = src + PAGE_SIZE;
276 1.2 matt
277 1.2 matt while (src < end) {
278 1.2 matt __asm(
279 1.2 matt "dcbt %2,%1" "\n\t" /* touch next src cachline */
280 1.2 matt "dcba 0,%1" "\n\t" /* don't fetch dst cacheline */
281 1.2 matt :: "b"(src), "b"(dst), "b"(line_size));
282 1.2 matt for (u_int i = 0;
283 1.2 matt i < line_size;
284 1.2 matt src += 32, dst += 32, i += 32) {
285 1.2 matt __asm(
286 1.2 matt "lmw 24,0(%0)" "\n\t"
287 1.2 matt "stmw 24,0(%1)"
288 1.2 matt :: "b"(src), "b"(dst)
289 1.2 matt : "r24", "r25", "r26", "r27",
290 1.2 matt "r28", "r29", "r30", "r31");
291 1.2 matt }
292 1.2 matt }
293 1.5 matt
294 1.6 matt KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst - PAGE_SIZE))));
295 1.2 matt }
296 1.2 matt
297 1.2 matt void
298 1.2 matt pmap_md_init(void)
299 1.2 matt {
300 1.2 matt
301 1.2 matt /* nothing for now */
302 1.2 matt }
303 1.2 matt
304 1.2 matt bool
305 1.2 matt pmap_md_io_vaddr_p(vaddr_t va)
306 1.2 matt {
307 1.2 matt return va >= pmap_limits.avail_end
308 1.2 matt && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
309 1.2 matt }
310 1.2 matt
311 1.7 matt bool
312 1.7 matt pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
313 1.7 matt {
314 1.7 matt pmap_t pm = ctx;
315 1.7 matt struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
316 1.7 matt
317 1.7 matt if (asid != pai->pai_asid)
318 1.7 matt return true;
319 1.7 matt
320 1.7 matt const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
321 1.7 matt KASSERT(ptep != NULL);
322 1.7 matt pt_entry_t xpte = *ptep;
323 1.7 matt xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
324 1.7 matt xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
325 1.7 matt
326 1.7 matt KASSERTMSG(pte == xpte,
327 1.7 matt ("pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
328 1.7 matt pm, va, asid, pte, xpte, *ptep));
329 1.7 matt
330 1.7 matt return true;
331 1.7 matt }
332 1.8 matt
333 1.8 matt #ifdef MULTIPROCESSOR
334 1.8 matt void
335 1.8 matt pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
336 1.8 matt {
337 1.8 matt /* nothing */
338 1.8 matt }
339 1.8 matt #endif /* MULTIPROCESSOR */
340