booke_pmap.c revision 1.15 1 /* $NetBSD: booke_pmap.c,v 1.15 2012/07/09 17:45:22 matt Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #define __PMAP_PRIVATE
38
39 #include <sys/cdefs.h>
40
41 __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.15 2012/07/09 17:45:22 matt Exp $");
42
43 #include <sys/param.h>
44 #include <sys/kcore.h>
45 #include <sys/buf.h>
46
47 #include <uvm/uvm.h>
48
49 #include <machine/pmap.h>
50
51 /*
52 * Initialize the kernel pmap.
53 */
54 #ifdef MULTIPROCESSOR
55 #define PMAP_SIZE offsetof(struct pmap, pm_pai[MAXCPUS])
56 #else
57 #define PMAP_SIZE sizeof(struct pmap)
58 #endif
59
60 CTASSERT(sizeof(pmap_segtab_t) == NBPG);
61
62 pmap_segtab_t pmap_kernel_segtab;
63
64 void
65 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
66 {
67 struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
68 vsize_t off = va & PAGE_SIZE;
69
70 kpreempt_disable();
71 for (const vaddr_t eva = va + len; va < eva; off = 0) {
72 const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
73 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
74 if (ptep == NULL) {
75 va = segeva;
76 continue;
77 }
78 pt_entry_t pt_entry = *ptep;
79 if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
80 va = segeva;
81 continue;
82 }
83 kpreempt_enable();
84 dcache_wb(pte_to_paddr(pt_entry), segeva - va);
85 icache_inv(pte_to_paddr(pt_entry), segeva - va);
86 kpreempt_disable();
87 va = segeva;
88 }
89 kpreempt_enable();
90 }
91
92 void
93 pmap_md_page_syncicache(struct vm_page *pg, __cpuset_t onproc)
94 {
95 /*
96 * If onproc is empty, we could do a
97 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
98 * mappings of the page and clear its execness. Then
99 * the next time page is faulted, it will get icache
100 * synched. But this is easier. :)
101 */
102 paddr_t pa = VM_PAGE_TO_PHYS(pg);
103 dcache_wb_page(pa);
104 icache_inv_page(pa);
105 }
106
107 vaddr_t
108 pmap_md_direct_map_paddr(paddr_t pa)
109 {
110 return (vaddr_t) pa;
111 }
112
113 bool
114 pmap_md_direct_mapped_vaddr_p(vaddr_t va)
115 {
116 return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
117 }
118
119 paddr_t
120 pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
121 {
122 return (paddr_t) va;
123 }
124
125 #ifdef PMAP_MINIMALTLB
126 static pt_entry_t *
127 kvtopte(const pmap_segtab_t *stp, vaddr_t va)
128 {
129 pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
130 if (ptep == NULL)
131 return NULL;
132 return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
133 }
134
135 vaddr_t
136 pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
137 {
138 const pmap_segtab_t * const stp = pmap_kernel()->pm_segtab;
139 KASSERT(sva == trunc_page(sva));
140 pt_entry_t *ptep = kvtopte(stp, sva);
141 for (; sva < eva; sva += NBPG) {
142 *ptep++ = pt_entry ? (sva | pt_entry) : 0;
143 }
144 return sva;
145 }
146 #endif
147
148 /*
149 * Bootstrap the system enough to run with virtual memory.
150 * firstaddr is the first unused kseg0 address (not page aligned).
151 */
152 vaddr_t
153 pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
154 phys_ram_seg_t *avail, size_t cnt)
155 {
156 pmap_segtab_t * const stp = &pmap_kernel_segtab;
157
158 /*
159 * Initialize the kernel segment table.
160 */
161 pmap_kernel()->pm_segtab = stp;
162 curcpu()->ci_pmap_kern_segtab = stp;
163
164 KASSERT(endkernel == trunc_page(endkernel));
165
166 /*
167 * Compute the number of pages kmem_arena will have.
168 */
169 kmeminit_nkmempages();
170
171 /*
172 * Figure out how many PTE's are necessary to map the kernel.
173 * We also reserve space for kmem_alloc_pageable() for vm_fork().
174 */
175
176 /* Get size of buffer cache and set an upper limit */
177 buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
178 vsize_t bufsz = buf_memcalc();
179 buf_setvalimit(bufsz);
180
181 vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
182 + (ubc_nwins << ubc_winshift)
183 + bufsz
184 + 16 * NCARGS
185 + pager_map_size
186 + maxproc * USPACE
187 #ifdef SYSVSHM
188 + NBPG * shminfo.shmall
189 #endif
190 + NBPG * nkmempages) >> SEGSHIFT;
191
192 /*
193 * Initialize `FYI' variables. Note we're relying on
194 * the fact that BSEARCH sorts the vm_physmem[] array
195 * for us. Must do this before uvm_pageboot_alloc()
196 * can be called.
197 */
198 pmap_limits.avail_start = vm_physmem[0].start << PGSHIFT;
199 pmap_limits.avail_end = vm_physmem[vm_nphysseg - 1].end << PGSHIFT;
200 const size_t max_nsegtabs =
201 (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
202 - pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
203 if (kv_nsegtabs >= max_nsegtabs) {
204 pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
205 kv_nsegtabs = max_nsegtabs;
206 } else {
207 pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
208 + kv_nsegtabs * NBSEG;
209 }
210
211 /*
212 * Now actually allocate the kernel PTE array (must be done
213 * after virtual_end is initialized).
214 */
215 const vaddr_t kv_segtabs = avail[0].start;
216 KASSERT(kv_segtabs == endkernel);
217 KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
218 printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
219 printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
220 avail[0].start += NBPG * kv_nsegtabs;
221 avail[0].size -= NBPG * kv_nsegtabs;
222 endkernel += NBPG * kv_nsegtabs;
223
224 /*
225 * Initialize the kernel's two-level page level. This only wastes
226 * an extra page for the segment table and allows the user/kernel
227 * access to be common.
228 */
229 pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
230 pt_entry_t *ptep = (void *)kv_segtabs;
231 memset(ptep, 0, NBPG * kv_nsegtabs);
232 for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
233 *ptp++ = ptep;
234 }
235
236 #if PMAP_MINIMALTLB
237 const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
238 const vaddr_t dm_segtabs = avail[0].start;
239 printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
240 printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
241 KASSERT(dm_segtabs == endkernel);
242 KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
243 avail[0].start += NBPG * dm_nsegtabs;
244 avail[0].size -= NBPG * dm_nsegtabs;
245 endkernel += NBPG * dm_nsegtabs;
246
247 ptp = stp->seg_tab;
248 ptep = (void *)dm_segtabs;
249 memset(ptep, 0, NBPG * dm_nsegtabs);
250 for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
251 *ptp = ptep;
252 }
253
254 /*
255 */
256 extern uint32_t _fdata[], _etext[];
257 vaddr_t va;
258
259 /* Now make everything before the kernel inaccessible. */
260 va = pmap_kvptefill(NBPG, startkernel, 0);
261
262 /* Kernel text is readonly & executable */
263 va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
264 PTE_M | PTE_xR | PTE_xX);
265
266 /* Kernel .rdata is readonly */
267 va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
268
269 /* Kernel .data/.bss + page tables are read-write */
270 va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
271
272 /* message buffer page table pages are read-write */
273 (void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
274 PTE_M | PTE_xR | PTE_xW);
275 #endif
276
277 for (size_t i = 0; i < cnt; i++) {
278 printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
279 atop(avail[i].start),
280 atop(avail[i].start + avail[i].size) - 1,
281 atop(avail[i].start),
282 atop(avail[i].start + avail[i].size) - 1,
283 VM_FREELIST_DEFAULT);
284 uvm_page_physload(
285 atop(avail[i].start),
286 atop(avail[i].start + avail[i].size) - 1,
287 atop(avail[i].start),
288 atop(avail[i].start + avail[i].size) - 1,
289 VM_FREELIST_DEFAULT);
290 }
291
292 pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
293
294 /*
295 * Initialize the pools.
296 */
297 pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
298 &pool_allocator_nointr, IPL_NONE);
299 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
300 &pmap_pv_page_allocator, IPL_NONE);
301
302 tlb_set_asid(0);
303
304 return endkernel;
305 }
306
307 struct vm_page *
308 pmap_md_alloc_poolpage(int flags)
309 {
310 /*
311 * Any managed page works for us.
312 */
313 return uvm_pagealloc(NULL, 0, NULL, flags);
314 }
315
316 vaddr_t
317 pmap_md_map_poolpage(paddr_t pa, vsize_t size)
318 {
319 const vaddr_t sva = (vaddr_t) pa;
320 #ifdef PMAP_MINIMALTLB
321 const vaddr_t eva = sva + size;
322 pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
323 #endif
324 return sva;
325 }
326
327 void
328 pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
329 {
330 #ifdef PMAP_MINIMALTLB
331 struct pmap * const pm = pmap_kernel();
332 const vaddr_t eva = va + size;
333 pmap_kvptefill(va, eva, 0);
334 for (;va < eva; va += NBPG) {
335 pmap_tlb_invalidate_addr(pm, va);
336 }
337 pmap_update(pm);
338 #endif
339 }
340
341 void
342 pmap_zero_page(paddr_t pa)
343 {
344 vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
345 dcache_zero_page(va);
346
347 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
348 pmap_md_unmap_poolpage(va, NBPG);
349 }
350
351 void
352 pmap_copy_page(paddr_t src, paddr_t dst)
353 {
354 const size_t line_size = curcpu()->ci_ci.dcache_line_size;
355 vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
356 vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
357 const vaddr_t end = src_va + PAGE_SIZE;
358
359 while (src_va < end) {
360 __asm(
361 "dcbt %2,%1" "\n\t" /* touch next src cachline */
362 "dcba 0,%1" "\n\t" /* don't fetch dst cacheline */
363 :: "b"(src_va), "b"(dst_va), "b"(line_size));
364 for (u_int i = 0;
365 i < line_size;
366 src_va += 32, dst_va += 32, i += 32) {
367 __asm(
368 "lmw 24,0(%0)" "\n\t"
369 "stmw 24,0(%1)"
370 :: "b"(src_va), "b"(dst_va)
371 : "r24", "r25", "r26", "r27",
372 "r28", "r29", "r30", "r31");
373 }
374 }
375 pmap_md_unmap_poolpage(src_va, NBPG);
376 pmap_md_unmap_poolpage(dst_va, NBPG);
377
378 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
379 }
380
381 void
382 pmap_md_init(void)
383 {
384
385 /* nothing for now */
386 }
387
388 bool
389 pmap_md_io_vaddr_p(vaddr_t va)
390 {
391 return va >= pmap_limits.avail_end
392 && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
393 }
394
395 bool
396 pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
397 {
398 pmap_t pm = ctx;
399 struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
400
401 if (asid != pai->pai_asid)
402 return true;
403
404 const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
405 KASSERT(ptep != NULL);
406 pt_entry_t xpte = *ptep;
407 xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
408 xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
409
410 KASSERTMSG(pte == xpte,
411 "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
412 pm, va, asid, pte, xpte, *ptep);
413
414 return true;
415 }
416
417 #ifdef MULTIPROCESSOR
418 void
419 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
420 {
421 /* nothing */
422 }
423 #endif /* MULTIPROCESSOR */
424