booke_pmap.c revision 1.18.6.2 1 /* $NetBSD: booke_pmap.c,v 1.18.6.2 2015/12/27 12:09:40 skrll Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #define __PMAP_PRIVATE
38
39 #include <sys/cdefs.h>
40
41 __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.18.6.2 2015/12/27 12:09:40 skrll Exp $");
42
43 #include <sys/param.h>
44 #include <sys/kcore.h>
45 #include <sys/buf.h>
46 #include <sys/mutex.h>
47
48 #include <uvm/uvm.h>
49
50 #include <machine/pmap.h>
51
52 #if defined(MULTIPROCESSOR)
53 kmutex_t pmap_tlb_miss_lock;
54 #endif
55
56 /*
57 * Initialize the kernel pmap.
58 */
59 #ifdef MULTIPROCESSOR
60 #define PMAP_SIZE offsetof(struct pmap, pm_pai[PMAP_TLB_MAX])
61 #else
62 #define PMAP_SIZE sizeof(struct pmap)
63 #endif
64
65 CTASSERT(sizeof(pmap_segtab_t) == NBPG);
66
67 pmap_segtab_t pmap_kernel_segtab;
68
69 void
70 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
71 {
72 struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
73 vsize_t off = va & PAGE_SIZE;
74
75 kpreempt_disable();
76 for (const vaddr_t eva = va + len; va < eva; off = 0) {
77 const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
78 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
79 if (ptep == NULL) {
80 va = segeva;
81 continue;
82 }
83 pt_entry_t pt_entry = *ptep;
84 if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
85 va = segeva;
86 continue;
87 }
88 kpreempt_enable();
89 dcache_wb(pte_to_paddr(pt_entry), segeva - va);
90 icache_inv(pte_to_paddr(pt_entry), segeva - va);
91 kpreempt_disable();
92 va = segeva;
93 }
94 kpreempt_enable();
95 }
96
97 void
98 pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
99 {
100 /*
101 * If onproc is empty, we could do a
102 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
103 * mappings of the page and clear its execness. Then
104 * the next time page is faulted, it will get icache
105 * synched. But this is easier. :)
106 */
107 paddr_t pa = VM_PAGE_TO_PHYS(pg);
108 dcache_wb_page(pa);
109 icache_inv_page(pa);
110 }
111
112 vaddr_t
113 pmap_md_direct_map_paddr(paddr_t pa)
114 {
115 return (vaddr_t) pa;
116 }
117
118 bool
119 pmap_md_direct_mapped_vaddr_p(vaddr_t va)
120 {
121 return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
122 }
123
124 paddr_t
125 pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
126 {
127 return (paddr_t) va;
128 }
129
130 #ifdef PMAP_MINIMALTLB
131 static pt_entry_t *
132 kvtopte(const pmap_segtab_t *stp, vaddr_t va)
133 {
134 pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
135 if (ptep == NULL)
136 return NULL;
137 return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
138 }
139
140 vaddr_t
141 pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
142 {
143 const pmap_segtab_t * const stp = pmap_kernel()->pm_segtab;
144 KASSERT(sva == trunc_page(sva));
145 pt_entry_t *ptep = kvtopte(stp, sva);
146 for (; sva < eva; sva += NBPG) {
147 *ptep++ = pt_entry ? (sva | pt_entry) : 0;
148 }
149 return sva;
150 }
151 #endif
152
153 /*
154 * Bootstrap the system enough to run with virtual memory.
155 * firstaddr is the first unused kseg0 address (not page aligned).
156 */
157 vaddr_t
158 pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
159 phys_ram_seg_t *avail, size_t cnt)
160 {
161 pmap_segtab_t * const stp = &pmap_kernel_segtab;
162
163 /*
164 * Initialize the kernel segment table.
165 */
166 pmap_kernel()->pm_segtab = stp;
167 curcpu()->ci_pmap_kern_segtab = stp;
168
169 KASSERT(endkernel == trunc_page(endkernel));
170
171 /* init the lock */
172 pmap_tlb_info_init(&pmap_tlb0_info);
173
174 #if defined(MULTIPROCESSOR)
175 mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
176 #endif
177
178 /*
179 * Compute the number of pages kmem_arena will have.
180 */
181 kmeminit_nkmempages();
182
183 /*
184 * Figure out how many PTE's are necessary to map the kernel.
185 * We also reserve space for kmem_alloc_pageable() for vm_fork().
186 */
187
188 /* Get size of buffer cache and set an upper limit */
189 buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
190 vsize_t bufsz = buf_memcalc();
191 buf_setvalimit(bufsz);
192
193 vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
194 + (ubc_nwins << ubc_winshift)
195 + bufsz
196 + 16 * NCARGS
197 + pager_map_size
198 + maxproc * USPACE
199 + NBPG * nkmempages) >> SEGSHIFT;
200
201 /*
202 * Initialize `FYI' variables. Note we're relying on
203 * the fact that BSEARCH sorts the vm_physmem[] array
204 * for us. Must do this before uvm_pageboot_alloc()
205 * can be called.
206 */
207 pmap_limits.avail_start = vm_physmem[0].start << PGSHIFT;
208 pmap_limits.avail_end = vm_physmem[vm_nphysseg - 1].end << PGSHIFT;
209 const size_t max_nsegtabs =
210 (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
211 - pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
212 if (kv_nsegtabs >= max_nsegtabs) {
213 pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
214 kv_nsegtabs = max_nsegtabs;
215 } else {
216 pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
217 + kv_nsegtabs * NBSEG;
218 }
219
220 /*
221 * Now actually allocate the kernel PTE array (must be done
222 * after virtual_end is initialized).
223 */
224 const vaddr_t kv_segtabs = avail[0].start;
225 KASSERT(kv_segtabs == endkernel);
226 KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
227 printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
228 printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
229 avail[0].start += NBPG * kv_nsegtabs;
230 avail[0].size -= NBPG * kv_nsegtabs;
231 endkernel += NBPG * kv_nsegtabs;
232
233 /*
234 * Initialize the kernel's two-level page level. This only wastes
235 * an extra page for the segment table and allows the user/kernel
236 * access to be common.
237 */
238 pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
239 pt_entry_t *ptep = (void *)kv_segtabs;
240 memset(ptep, 0, NBPG * kv_nsegtabs);
241 for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
242 *ptp++ = ptep;
243 }
244
245 #if PMAP_MINIMALTLB
246 const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
247 const vaddr_t dm_segtabs = avail[0].start;
248 printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
249 printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
250 KASSERT(dm_segtabs == endkernel);
251 KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
252 avail[0].start += NBPG * dm_nsegtabs;
253 avail[0].size -= NBPG * dm_nsegtabs;
254 endkernel += NBPG * dm_nsegtabs;
255
256 ptp = stp->seg_tab;
257 ptep = (void *)dm_segtabs;
258 memset(ptep, 0, NBPG * dm_nsegtabs);
259 for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
260 *ptp = ptep;
261 }
262
263 /*
264 */
265 extern uint32_t _fdata[], _etext[];
266 vaddr_t va;
267
268 /* Now make everything before the kernel inaccessible. */
269 va = pmap_kvptefill(NBPG, startkernel, 0);
270
271 /* Kernel text is readonly & executable */
272 va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
273 PTE_M | PTE_xR | PTE_xX);
274
275 /* Kernel .rdata is readonly */
276 va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
277
278 /* Kernel .data/.bss + page tables are read-write */
279 va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
280
281 /* message buffer page table pages are read-write */
282 (void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
283 PTE_M | PTE_xR | PTE_xW);
284 #endif
285
286 for (size_t i = 0; i < cnt; i++) {
287 printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
288 atop(avail[i].start),
289 atop(avail[i].start + avail[i].size) - 1,
290 atop(avail[i].start),
291 atop(avail[i].start + avail[i].size) - 1,
292 VM_FREELIST_DEFAULT);
293 uvm_page_physload(
294 atop(avail[i].start),
295 atop(avail[i].start + avail[i].size) - 1,
296 atop(avail[i].start),
297 atop(avail[i].start + avail[i].size) - 1,
298 VM_FREELIST_DEFAULT);
299 }
300
301 pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
302
303 /*
304 * Initialize the pools.
305 */
306 pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
307 &pool_allocator_nointr, IPL_NONE);
308 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
309 &pmap_pv_page_allocator, IPL_NONE);
310
311 tlb_set_asid(0);
312
313 return endkernel;
314 }
315
316 struct vm_page *
317 pmap_md_alloc_poolpage(int flags)
318 {
319 /*
320 * Any managed page works for us.
321 */
322 return uvm_pagealloc(NULL, 0, NULL, flags);
323 }
324
325 vaddr_t
326 pmap_md_map_poolpage(paddr_t pa, vsize_t size)
327 {
328 const vaddr_t sva = (vaddr_t) pa;
329 #ifdef PMAP_MINIMALTLB
330 const vaddr_t eva = sva + size;
331 pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
332 #endif
333 return sva;
334 }
335
336 void
337 pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
338 {
339 #ifdef PMAP_MINIMALTLB
340 struct pmap * const pm = pmap_kernel();
341 const vaddr_t eva = va + size;
342 pmap_kvptefill(va, eva, 0);
343 for (;va < eva; va += NBPG) {
344 pmap_tlb_invalidate_addr(pm, va);
345 }
346 pmap_update(pm);
347 #endif
348 }
349
350 void
351 pmap_zero_page(paddr_t pa)
352 {
353 vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
354 dcache_zero_page(va);
355
356 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
357 pmap_md_unmap_poolpage(va, NBPG);
358 }
359
360 void
361 pmap_copy_page(paddr_t src, paddr_t dst)
362 {
363 const size_t line_size = curcpu()->ci_ci.dcache_line_size;
364 vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
365 vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
366 const vaddr_t end = src_va + PAGE_SIZE;
367
368 while (src_va < end) {
369 __asm __volatile(
370 "dcbt %2,%0" "\n\t" /* touch next src cacheline */
371 "dcba 0,%1" "\n\t" /* don't fetch dst cacheline */
372 :: "b"(src_va), "b"(dst_va), "b"(line_size));
373 for (u_int i = 0;
374 i < line_size;
375 src_va += 32, dst_va += 32, i += 32) {
376 register_t tmp;
377 __asm __volatile(
378 "mr %[tmp],31" "\n\t"
379 "lmw 24,0(%[src])" "\n\t"
380 "stmw 24,0(%[dst])" "\n\t"
381 "mr 31,%[tmp]" "\n\t"
382 : [tmp] "=&r"(tmp)
383 : [src] "b"(src_va), [dst] "b"(dst_va)
384 : "r24", "r25", "r26", "r27",
385 "r28", "r29", "r30", "memory");
386 }
387 }
388 pmap_md_unmap_poolpage(src_va, NBPG);
389 pmap_md_unmap_poolpage(dst_va, NBPG);
390
391 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
392 }
393
394 void
395 pmap_md_init(void)
396 {
397
398 /* nothing for now */
399 }
400
401 bool
402 pmap_md_io_vaddr_p(vaddr_t va)
403 {
404 return va >= pmap_limits.avail_end
405 && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
406 }
407
408 bool
409 pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
410 {
411 pmap_t pm = ctx;
412 struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
413
414 if (asid != pai->pai_asid)
415 return true;
416
417 const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
418 KASSERT(ptep != NULL);
419 pt_entry_t xpte = *ptep;
420 xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
421 xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
422
423 KASSERTMSG(pte == xpte,
424 "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
425 pm, va, asid, pte, xpte, *ptep);
426
427 return true;
428 }
429
430 #ifdef MULTIPROCESSOR
431 void
432 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
433 {
434 /* nothing */
435 }
436
437 void
438 pmap_md_tlb_miss_lock_enter(void)
439 {
440
441 mutex_spin_enter(&pmap_tlb_miss_lock);
442 }
443
444 void
445 pmap_md_tlb_miss_lock_exit(void)
446 {
447
448 mutex_spin_exit(&pmap_tlb_miss_lock);
449 }
450 #endif /* MULTIPROCESSOR */
451