booke_pmap.c revision 1.20 1 /* $NetBSD: booke_pmap.c,v 1.20 2015/01/09 11:45:11 nonaka Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #define __PMAP_PRIVATE
38
39 #include <sys/cdefs.h>
40
41 __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.20 2015/01/09 11:45:11 nonaka Exp $");
42
43 #include <sys/param.h>
44 #include <sys/kcore.h>
45 #include <sys/buf.h>
46
47 #include <uvm/uvm.h>
48
49 #include <machine/pmap.h>
50
51 /*
52 * Initialize the kernel pmap.
53 */
54 #ifdef MULTIPROCESSOR
55 #define PMAP_SIZE offsetof(struct pmap, pm_pai[PMAP_TLB_MAX])
56 #else
57 #define PMAP_SIZE sizeof(struct pmap)
58 #endif
59
60 CTASSERT(sizeof(pmap_segtab_t) == NBPG);
61
62 pmap_segtab_t pmap_kernel_segtab;
63
64 void
65 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
66 {
67 struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
68 vsize_t off = va & PAGE_SIZE;
69
70 kpreempt_disable();
71 for (const vaddr_t eva = va + len; va < eva; off = 0) {
72 const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
73 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
74 if (ptep == NULL) {
75 va = segeva;
76 continue;
77 }
78 pt_entry_t pt_entry = *ptep;
79 if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
80 va = segeva;
81 continue;
82 }
83 kpreempt_enable();
84 dcache_wb(pte_to_paddr(pt_entry), segeva - va);
85 icache_inv(pte_to_paddr(pt_entry), segeva - va);
86 kpreempt_disable();
87 va = segeva;
88 }
89 kpreempt_enable();
90 }
91
92 void
93 pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
94 {
95 /*
96 * If onproc is empty, we could do a
97 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
98 * mappings of the page and clear its execness. Then
99 * the next time page is faulted, it will get icache
100 * synched. But this is easier. :)
101 */
102 paddr_t pa = VM_PAGE_TO_PHYS(pg);
103 dcache_wb_page(pa);
104 icache_inv_page(pa);
105 }
106
107 vaddr_t
108 pmap_md_direct_map_paddr(paddr_t pa)
109 {
110 return (vaddr_t) pa;
111 }
112
113 bool
114 pmap_md_direct_mapped_vaddr_p(vaddr_t va)
115 {
116 return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
117 }
118
119 paddr_t
120 pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
121 {
122 return (paddr_t) va;
123 }
124
125 #ifdef PMAP_MINIMALTLB
126 static pt_entry_t *
127 kvtopte(const pmap_segtab_t *stp, vaddr_t va)
128 {
129 pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
130 if (ptep == NULL)
131 return NULL;
132 return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
133 }
134
135 vaddr_t
136 pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
137 {
138 const pmap_segtab_t * const stp = pmap_kernel()->pm_segtab;
139 KASSERT(sva == trunc_page(sva));
140 pt_entry_t *ptep = kvtopte(stp, sva);
141 for (; sva < eva; sva += NBPG) {
142 *ptep++ = pt_entry ? (sva | pt_entry) : 0;
143 }
144 return sva;
145 }
146 #endif
147
148 /*
149 * Bootstrap the system enough to run with virtual memory.
150 * firstaddr is the first unused kseg0 address (not page aligned).
151 */
152 vaddr_t
153 pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
154 phys_ram_seg_t *avail, size_t cnt)
155 {
156 pmap_segtab_t * const stp = &pmap_kernel_segtab;
157
158 /*
159 * Initialize the kernel segment table.
160 */
161 pmap_kernel()->pm_segtab = stp;
162 curcpu()->ci_pmap_kern_segtab = stp;
163 #ifdef MULTIPROCESSOR
164 pmap_kernel()->pm_active = kcpuset_running;
165 pmap_kernel()->pm_onproc = kcpuset_running;
166 #endif
167
168 KASSERT(endkernel == trunc_page(endkernel));
169
170 /* init the lock */
171 pmap_tlb_info_init(&pmap_tlb0_info);
172
173 /*
174 * Compute the number of pages kmem_arena will have.
175 */
176 kmeminit_nkmempages();
177
178 /*
179 * Figure out how many PTE's are necessary to map the kernel.
180 * We also reserve space for kmem_alloc_pageable() for vm_fork().
181 */
182
183 /* Get size of buffer cache and set an upper limit */
184 buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
185 vsize_t bufsz = buf_memcalc();
186 buf_setvalimit(bufsz);
187
188 vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
189 + (ubc_nwins << ubc_winshift)
190 + bufsz
191 + 16 * NCARGS
192 + pager_map_size
193 + maxproc * USPACE
194 #ifdef SYSVSHM
195 + NBPG * shminfo.shmall
196 #endif
197 + NBPG * nkmempages) >> SEGSHIFT;
198
199 /*
200 * Initialize `FYI' variables. Note we're relying on
201 * the fact that BSEARCH sorts the vm_physmem[] array
202 * for us. Must do this before uvm_pageboot_alloc()
203 * can be called.
204 */
205 pmap_limits.avail_start = vm_physmem[0].start << PGSHIFT;
206 pmap_limits.avail_end = vm_physmem[vm_nphysseg - 1].end << PGSHIFT;
207 const size_t max_nsegtabs =
208 (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
209 - pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
210 if (kv_nsegtabs >= max_nsegtabs) {
211 pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
212 kv_nsegtabs = max_nsegtabs;
213 } else {
214 pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
215 + kv_nsegtabs * NBSEG;
216 }
217
218 /*
219 * Now actually allocate the kernel PTE array (must be done
220 * after virtual_end is initialized).
221 */
222 const vaddr_t kv_segtabs = avail[0].start;
223 KASSERT(kv_segtabs == endkernel);
224 KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
225 printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
226 printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
227 avail[0].start += NBPG * kv_nsegtabs;
228 avail[0].size -= NBPG * kv_nsegtabs;
229 endkernel += NBPG * kv_nsegtabs;
230
231 /*
232 * Initialize the kernel's two-level page level. This only wastes
233 * an extra page for the segment table and allows the user/kernel
234 * access to be common.
235 */
236 pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
237 pt_entry_t *ptep = (void *)kv_segtabs;
238 memset(ptep, 0, NBPG * kv_nsegtabs);
239 for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
240 *ptp++ = ptep;
241 }
242
243 #if PMAP_MINIMALTLB
244 const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
245 const vaddr_t dm_segtabs = avail[0].start;
246 printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
247 printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
248 KASSERT(dm_segtabs == endkernel);
249 KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
250 avail[0].start += NBPG * dm_nsegtabs;
251 avail[0].size -= NBPG * dm_nsegtabs;
252 endkernel += NBPG * dm_nsegtabs;
253
254 ptp = stp->seg_tab;
255 ptep = (void *)dm_segtabs;
256 memset(ptep, 0, NBPG * dm_nsegtabs);
257 for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
258 *ptp = ptep;
259 }
260
261 /*
262 */
263 extern uint32_t _fdata[], _etext[];
264 vaddr_t va;
265
266 /* Now make everything before the kernel inaccessible. */
267 va = pmap_kvptefill(NBPG, startkernel, 0);
268
269 /* Kernel text is readonly & executable */
270 va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
271 PTE_M | PTE_xR | PTE_xX);
272
273 /* Kernel .rdata is readonly */
274 va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
275
276 /* Kernel .data/.bss + page tables are read-write */
277 va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
278
279 /* message buffer page table pages are read-write */
280 (void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
281 PTE_M | PTE_xR | PTE_xW);
282 #endif
283
284 for (size_t i = 0; i < cnt; i++) {
285 printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
286 atop(avail[i].start),
287 atop(avail[i].start + avail[i].size) - 1,
288 atop(avail[i].start),
289 atop(avail[i].start + avail[i].size) - 1,
290 VM_FREELIST_DEFAULT);
291 uvm_page_physload(
292 atop(avail[i].start),
293 atop(avail[i].start + avail[i].size) - 1,
294 atop(avail[i].start),
295 atop(avail[i].start + avail[i].size) - 1,
296 VM_FREELIST_DEFAULT);
297 }
298
299 pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
300
301 /*
302 * Initialize the pools.
303 */
304 pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
305 &pool_allocator_nointr, IPL_NONE);
306 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
307 &pmap_pv_page_allocator, IPL_NONE);
308
309 tlb_set_asid(0);
310
311 return endkernel;
312 }
313
314 struct vm_page *
315 pmap_md_alloc_poolpage(int flags)
316 {
317 /*
318 * Any managed page works for us.
319 */
320 return uvm_pagealloc(NULL, 0, NULL, flags);
321 }
322
323 vaddr_t
324 pmap_md_map_poolpage(paddr_t pa, vsize_t size)
325 {
326 const vaddr_t sva = (vaddr_t) pa;
327 #ifdef PMAP_MINIMALTLB
328 const vaddr_t eva = sva + size;
329 pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
330 #endif
331 return sva;
332 }
333
334 void
335 pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
336 {
337 #ifdef PMAP_MINIMALTLB
338 struct pmap * const pm = pmap_kernel();
339 const vaddr_t eva = va + size;
340 pmap_kvptefill(va, eva, 0);
341 for (;va < eva; va += NBPG) {
342 pmap_tlb_invalidate_addr(pm, va);
343 }
344 pmap_update(pm);
345 #endif
346 }
347
348 void
349 pmap_zero_page(paddr_t pa)
350 {
351 vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
352 dcache_zero_page(va);
353
354 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
355 pmap_md_unmap_poolpage(va, NBPG);
356 }
357
358 void
359 pmap_copy_page(paddr_t src, paddr_t dst)
360 {
361 const size_t line_size = curcpu()->ci_ci.dcache_line_size;
362 vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
363 vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
364 const vaddr_t end = src_va + PAGE_SIZE;
365
366 while (src_va < end) {
367 __asm __volatile(
368 "dcbt %2,%0" "\n\t" /* touch next src cacheline */
369 "dcba 0,%1" "\n\t" /* don't fetch dst cacheline */
370 :: "b"(src_va), "b"(dst_va), "b"(line_size));
371 for (u_int i = 0;
372 i < line_size;
373 src_va += 32, dst_va += 32, i += 32) {
374 register_t tmp;
375 __asm __volatile(
376 "mr %[tmp],31" "\n\t"
377 "lmw 24,0(%[src])" "\n\t"
378 "stmw 24,0(%[dst])" "\n\t"
379 "mr 31,%[tmp]" "\n\t"
380 : [tmp] "=&r"(tmp)
381 : [src] "b"(src_va), [dst] "b"(dst_va)
382 : "r24", "r25", "r26", "r27",
383 "r28", "r29", "r30", "memory");
384 }
385 }
386 pmap_md_unmap_poolpage(src_va, NBPG);
387 pmap_md_unmap_poolpage(dst_va, NBPG);
388
389 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
390 }
391
392 void
393 pmap_md_init(void)
394 {
395
396 /* nothing for now */
397 }
398
399 bool
400 pmap_md_io_vaddr_p(vaddr_t va)
401 {
402 return va >= pmap_limits.avail_end
403 && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
404 }
405
406 bool
407 pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
408 {
409 pmap_t pm = ctx;
410 struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
411
412 if (asid != pai->pai_asid)
413 return true;
414
415 const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
416 KASSERT(ptep != NULL);
417 pt_entry_t xpte = *ptep;
418 xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
419 xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
420
421 KASSERTMSG(pte == xpte,
422 "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
423 pm, va, asid, pte, xpte, *ptep);
424
425 return true;
426 }
427
428 #ifdef MULTIPROCESSOR
429 void
430 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
431 {
432 /* nothing */
433 }
434 #endif /* MULTIPROCESSOR */
435