booke_pmap.c revision 1.25 1 /* $NetBSD: booke_pmap.c,v 1.25 2016/12/24 18:34:31 cherry Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #define __PMAP_PRIVATE
38
39 #include <sys/cdefs.h>
40
41 __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.25 2016/12/24 18:34:31 cherry Exp $");
42
43 #include <sys/param.h>
44 #include <sys/kcore.h>
45 #include <sys/buf.h>
46 #include <sys/mutex.h>
47
48 #include <uvm/uvm.h>
49
50 #include <machine/pmap.h>
51
52 #if defined(MULTIPROCESSOR)
53 kmutex_t pmap_tlb_miss_lock;
54 #endif
55
56 PMAP_COUNTER(zeroed_pages, "pages zeroed");
57 PMAP_COUNTER(copied_pages, "pages copied");
58
59 CTASSERT(sizeof(pmap_segtab_t) == NBPG);
60
61 void
62 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
63 {
64 struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
65 vsize_t off = va & PAGE_SIZE;
66
67 kpreempt_disable();
68 for (const vaddr_t eva = va + len; va < eva; off = 0) {
69 const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
70 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
71 if (ptep == NULL) {
72 va = segeva;
73 continue;
74 }
75 pt_entry_t pt_entry = *ptep;
76 if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
77 va = segeva;
78 continue;
79 }
80 kpreempt_enable();
81 dcache_wb(pte_to_paddr(pt_entry), segeva - va);
82 icache_inv(pte_to_paddr(pt_entry), segeva - va);
83 kpreempt_disable();
84 va = segeva;
85 }
86 kpreempt_enable();
87 }
88
89 void
90 pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
91 {
92 /*
93 * If onproc is empty, we could do a
94 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
95 * mappings of the page and clear its execness. Then
96 * the next time page is faulted, it will get icache
97 * synched. But this is easier. :)
98 */
99 paddr_t pa = VM_PAGE_TO_PHYS(pg);
100 dcache_wb_page(pa);
101 icache_inv_page(pa);
102 }
103
104 vaddr_t
105 pmap_md_direct_map_paddr(paddr_t pa)
106 {
107 return (vaddr_t) pa;
108 }
109
110 bool
111 pmap_md_direct_mapped_vaddr_p(vaddr_t va)
112 {
113 return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
114 }
115
116 paddr_t
117 pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
118 {
119 return (paddr_t) va;
120 }
121
122 #ifdef PMAP_MINIMALTLB
123 static pt_entry_t *
124 kvtopte(const pmap_segtab_t *stp, vaddr_t va)
125 {
126 pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
127 if (ptep == NULL)
128 return NULL;
129 return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
130 }
131
132 vaddr_t
133 pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
134 {
135 pmap_segtab_t * const stp = &pmap_kern_segtab;
136 KASSERT(sva == trunc_page(sva));
137 pt_entry_t *ptep = kvtopte(stp, sva);
138 for (; sva < eva; sva += NBPG) {
139 *ptep++ = pt_entry ? (sva | pt_entry) : 0;
140 }
141 return sva;
142 }
143 #endif
144
145 /*
146 * Bootstrap the system enough to run with virtual memory.
147 * firstaddr is the first unused kseg0 address (not page aligned).
148 */
149 vaddr_t
150 pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
151 phys_ram_seg_t *avail, size_t cnt)
152 {
153 pmap_segtab_t * const stp = &pmap_kern_segtab;
154
155 KASSERT(endkernel == trunc_page(endkernel));
156
157 /* init the lock */
158 pmap_tlb_info_init(&pmap_tlb0_info);
159
160 #if defined(MULTIPROCESSOR)
161 mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
162 #endif
163
164 /*
165 * Compute the number of pages kmem_arena will have.
166 */
167 kmeminit_nkmempages();
168
169 /*
170 * Figure out how many PTE's are necessary to map the kernel.
171 * We also reserve space for kmem_alloc_pageable() for vm_fork().
172 */
173
174 /* Get size of buffer cache and set an upper limit */
175 buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
176 vsize_t bufsz = buf_memcalc();
177 buf_setvalimit(bufsz);
178
179 vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
180 + (ubc_nwins << ubc_winshift)
181 + bufsz
182 + 16 * NCARGS
183 + pager_map_size
184 + maxproc * USPACE
185 + NBPG * nkmempages) >> SEGSHIFT;
186
187 /*
188 * Initialize `FYI' variables. Note we're relying on
189 * the fact that BSEARCH sorts the vm_physmem[] array
190 * for us. Must do this before uvm_pageboot_alloc()
191 * can be called.
192 */
193 pmap_limits.avail_start = uvm_physseg_get_start(uvm_physseg_get_first()) << PGSHIFT;
194 pmap_limits.avail_end = uvm_physseg_get_end(uvm_physseg_get_last()) << PGSHIFT;
195 const size_t max_nsegtabs =
196 (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
197 - pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
198 if (kv_nsegtabs >= max_nsegtabs) {
199 pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
200 kv_nsegtabs = max_nsegtabs;
201 } else {
202 pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
203 + kv_nsegtabs * NBSEG;
204 }
205
206 /*
207 * Now actually allocate the kernel PTE array (must be done
208 * after virtual_end is initialized).
209 */
210 const vaddr_t kv_segtabs = avail[0].start;
211 KASSERT(kv_segtabs == endkernel);
212 KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
213 printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
214 printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
215 avail[0].start += NBPG * kv_nsegtabs;
216 avail[0].size -= NBPG * kv_nsegtabs;
217 endkernel += NBPG * kv_nsegtabs;
218
219 /*
220 * Initialize the kernel's two-level page level. This only wastes
221 * an extra page for the segment table and allows the user/kernel
222 * access to be common.
223 */
224 pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
225 pt_entry_t *ptep = (void *)kv_segtabs;
226 memset(ptep, 0, NBPG * kv_nsegtabs);
227 for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
228 *ptp++ = ptep;
229 }
230
231 #if PMAP_MINIMALTLB
232 const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
233 const vaddr_t dm_segtabs = avail[0].start;
234 printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
235 printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
236 KASSERT(dm_segtabs == endkernel);
237 KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
238 avail[0].start += NBPG * dm_nsegtabs;
239 avail[0].size -= NBPG * dm_nsegtabs;
240 endkernel += NBPG * dm_nsegtabs;
241
242 ptp = stp->seg_tab;
243 ptep = (void *)dm_segtabs;
244 memset(ptep, 0, NBPG * dm_nsegtabs);
245 for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
246 *ptp = ptep;
247 }
248
249 /*
250 */
251 extern uint32_t _fdata[], _etext[];
252 vaddr_t va;
253
254 /* Now make everything before the kernel inaccessible. */
255 va = pmap_kvptefill(NBPG, startkernel, 0);
256
257 /* Kernel text is readonly & executable */
258 va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
259 PTE_M | PTE_xR | PTE_xX);
260
261 /* Kernel .rdata is readonly */
262 va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
263
264 /* Kernel .data/.bss + page tables are read-write */
265 va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
266
267 /* message buffer page table pages are read-write */
268 (void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
269 PTE_M | PTE_xR | PTE_xW);
270 #endif
271
272 for (size_t i = 0; i < cnt; i++) {
273 printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
274 atop(avail[i].start),
275 atop(avail[i].start + avail[i].size) - 1,
276 atop(avail[i].start),
277 atop(avail[i].start + avail[i].size) - 1,
278 VM_FREELIST_DEFAULT);
279 uvm_page_physload(
280 atop(avail[i].start),
281 atop(avail[i].start + avail[i].size) - 1,
282 atop(avail[i].start),
283 atop(avail[i].start + avail[i].size) - 1,
284 VM_FREELIST_DEFAULT);
285 }
286
287 pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
288
289 /*
290 * Initialize the pools.
291 */
292 pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
293 &pool_allocator_nointr, IPL_NONE);
294 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
295 &pmap_pv_page_allocator, IPL_NONE);
296
297 tlb_set_asid(0);
298
299 return endkernel;
300 }
301
302 struct vm_page *
303 pmap_md_alloc_poolpage(int flags)
304 {
305 /*
306 * Any managed page works for us.
307 */
308 return uvm_pagealloc(NULL, 0, NULL, flags);
309 }
310
311 vaddr_t
312 pmap_md_map_poolpage(paddr_t pa, vsize_t size)
313 {
314 const vaddr_t sva = (vaddr_t) pa;
315 #ifdef PMAP_MINIMALTLB
316 const vaddr_t eva = sva + size;
317 pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
318 #endif
319 return sva;
320 }
321
322 void
323 pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
324 {
325 #ifdef PMAP_MINIMALTLB
326 struct pmap * const pm = pmap_kernel();
327 const vaddr_t eva = va + size;
328 pmap_kvptefill(va, eva, 0);
329 for (;va < eva; va += NBPG) {
330 pmap_tlb_invalidate_addr(pm, va);
331 }
332 pmap_update(pm);
333 #endif
334 }
335
336 void
337 pmap_zero_page(paddr_t pa)
338 {
339 PMAP_COUNT(zeroed_pages);
340 vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
341 dcache_zero_page(va);
342
343 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
344 pmap_md_unmap_poolpage(va, NBPG);
345 }
346
347 void
348 pmap_copy_page(paddr_t src, paddr_t dst)
349 {
350 const size_t line_size = curcpu()->ci_ci.dcache_line_size;
351 vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
352 vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
353 const vaddr_t end = src_va + PAGE_SIZE;
354
355 PMAP_COUNT(copied_pages);
356
357 while (src_va < end) {
358 __asm __volatile(
359 "dcbt %2,%0" "\n\t" /* touch next src cacheline */
360 "dcba 0,%1" "\n\t" /* don't fetch dst cacheline */
361 :: "b"(src_va), "b"(dst_va), "b"(line_size));
362 for (u_int i = 0;
363 i < line_size;
364 src_va += 32, dst_va += 32, i += 32) {
365 register_t tmp;
366 __asm __volatile(
367 "mr %[tmp],31" "\n\t"
368 "lmw 24,0(%[src])" "\n\t"
369 "stmw 24,0(%[dst])" "\n\t"
370 "mr 31,%[tmp]" "\n\t"
371 : [tmp] "=&r"(tmp)
372 : [src] "b"(src_va), [dst] "b"(dst_va)
373 : "r24", "r25", "r26", "r27",
374 "r28", "r29", "r30", "memory");
375 }
376 }
377 pmap_md_unmap_poolpage(src_va, NBPG);
378 pmap_md_unmap_poolpage(dst_va, NBPG);
379
380 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
381 }
382
383 void
384 pmap_md_init(void)
385 {
386
387 /* nothing for now */
388 }
389
390 bool
391 pmap_md_io_vaddr_p(vaddr_t va)
392 {
393 return va >= pmap_limits.avail_end
394 && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
395 }
396
397 bool
398 pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
399 {
400 pmap_t pm = ctx;
401 struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
402
403 if (asid != pai->pai_asid)
404 return true;
405
406 const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
407 KASSERT(ptep != NULL);
408 pt_entry_t xpte = *ptep;
409 xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
410 xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
411
412 KASSERTMSG(pte == xpte,
413 "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
414 pm, va, asid, pte, xpte, *ptep);
415
416 return true;
417 }
418
419 #ifdef MULTIPROCESSOR
420 void
421 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
422 {
423 /* nothing */
424 }
425
426 void
427 pmap_md_tlb_miss_lock_enter(void)
428 {
429
430 mutex_spin_enter(&pmap_tlb_miss_lock);
431 }
432
433 void
434 pmap_md_tlb_miss_lock_exit(void)
435 {
436
437 mutex_spin_exit(&pmap_tlb_miss_lock);
438 }
439 #endif /* MULTIPROCESSOR */
440