Home | History | Annotate | Line # | Download | only in booke
booke_pmap.c revision 1.25
      1 /*	$NetBSD: booke_pmap.c,v 1.25 2016/12/24 18:34:31 cherry Exp $	*/
      2 /*-
      3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9  *
     10  * This material is based upon work supported by the Defense Advanced Research
     11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12  * Contract No. N66001-09-C-2073.
     13  * Approved for Public Release, Distribution Unlimited
     14  *
     15  * Redistribution and use in source and binary forms, with or without
     16  * modification, are permitted provided that the following conditions
     17  * are met:
     18  * 1. Redistributions of source code must retain the above copyright
     19  *    notice, this list of conditions and the following disclaimer.
     20  * 2. Redistributions in binary form must reproduce the above copyright
     21  *    notice, this list of conditions and the following disclaimer in the
     22  *    documentation and/or other materials provided with the distribution.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 #define __PMAP_PRIVATE
     38 
     39 #include <sys/cdefs.h>
     40 
     41 __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.25 2016/12/24 18:34:31 cherry Exp $");
     42 
     43 #include <sys/param.h>
     44 #include <sys/kcore.h>
     45 #include <sys/buf.h>
     46 #include <sys/mutex.h>
     47 
     48 #include <uvm/uvm.h>
     49 
     50 #include <machine/pmap.h>
     51 
     52 #if defined(MULTIPROCESSOR)
     53 kmutex_t pmap_tlb_miss_lock;
     54 #endif
     55 
     56 PMAP_COUNTER(zeroed_pages, "pages zeroed");
     57 PMAP_COUNTER(copied_pages, "pages copied");
     58 
     59 CTASSERT(sizeof(pmap_segtab_t) == NBPG);
     60 
     61 void
     62 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
     63 {
     64 	struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
     65 	vsize_t off = va & PAGE_SIZE;
     66 
     67 	kpreempt_disable();
     68 	for (const vaddr_t eva = va + len; va < eva; off = 0) {
     69 		const vaddr_t segeva = min(va + len, va - off + PAGE_SIZE);
     70 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
     71 		if (ptep == NULL) {
     72 			va = segeva;
     73 			continue;
     74 		}
     75 		pt_entry_t pt_entry = *ptep;
     76 		if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
     77 			va = segeva;
     78 			continue;
     79 		}
     80 		kpreempt_enable();
     81 		dcache_wb(pte_to_paddr(pt_entry), segeva - va);
     82 		icache_inv(pte_to_paddr(pt_entry), segeva - va);
     83 		kpreempt_disable();
     84 		va = segeva;
     85 	}
     86 	kpreempt_enable();
     87 }
     88 
     89 void
     90 pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
     91 {
     92 	/*
     93 	 * If onproc is empty, we could do a
     94 	 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
     95 	 * mappings of the page and clear its execness.  Then
     96 	 * the next time page is faulted, it will get icache
     97 	 * synched.  But this is easier. :)
     98 	 */
     99 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
    100 	dcache_wb_page(pa);
    101 	icache_inv_page(pa);
    102 }
    103 
    104 vaddr_t
    105 pmap_md_direct_map_paddr(paddr_t pa)
    106 {
    107 	return (vaddr_t) pa;
    108 }
    109 
    110 bool
    111 pmap_md_direct_mapped_vaddr_p(vaddr_t va)
    112 {
    113 	return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
    114 }
    115 
    116 paddr_t
    117 pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
    118 {
    119 	return (paddr_t) va;
    120 }
    121 
    122 #ifdef PMAP_MINIMALTLB
    123 static pt_entry_t *
    124 kvtopte(const pmap_segtab_t *stp, vaddr_t va)
    125 {
    126 	pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
    127 	if (ptep == NULL)
    128 		return NULL;
    129 	return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
    130 }
    131 
    132 vaddr_t
    133 pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
    134 {
    135 	pmap_segtab_t * const stp = &pmap_kern_segtab;
    136 	KASSERT(sva == trunc_page(sva));
    137 	pt_entry_t *ptep = kvtopte(stp, sva);
    138 	for (; sva < eva; sva += NBPG) {
    139 		*ptep++ = pt_entry ? (sva | pt_entry) : 0;
    140 	}
    141 	return sva;
    142 }
    143 #endif
    144 
    145 /*
    146  *	Bootstrap the system enough to run with virtual memory.
    147  *	firstaddr is the first unused kseg0 address (not page aligned).
    148  */
    149 vaddr_t
    150 pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
    151 	phys_ram_seg_t *avail, size_t cnt)
    152 {
    153 	pmap_segtab_t * const stp = &pmap_kern_segtab;
    154 
    155 	KASSERT(endkernel == trunc_page(endkernel));
    156 
    157 	/* init the lock */
    158 	pmap_tlb_info_init(&pmap_tlb0_info);
    159 
    160 #if defined(MULTIPROCESSOR)
    161 	mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
    162 #endif
    163 
    164 	/*
    165 	 * Compute the number of pages kmem_arena will have.
    166 	 */
    167 	kmeminit_nkmempages();
    168 
    169 	/*
    170 	 * Figure out how many PTE's are necessary to map the kernel.
    171 	 * We also reserve space for kmem_alloc_pageable() for vm_fork().
    172 	 */
    173 
    174 	/* Get size of buffer cache and set an upper limit */
    175 	buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
    176 	vsize_t bufsz = buf_memcalc();
    177 	buf_setvalimit(bufsz);
    178 
    179 	vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
    180 	    + (ubc_nwins << ubc_winshift)
    181 	    + bufsz
    182 	    + 16 * NCARGS
    183 	    + pager_map_size
    184 	    + maxproc * USPACE
    185 	    + NBPG * nkmempages) >> SEGSHIFT;
    186 
    187 	/*
    188 	 * Initialize `FYI' variables.	Note we're relying on
    189 	 * the fact that BSEARCH sorts the vm_physmem[] array
    190 	 * for us.  Must do this before uvm_pageboot_alloc()
    191 	 * can be called.
    192 	 */
    193 	pmap_limits.avail_start = uvm_physseg_get_start(uvm_physseg_get_first()) << PGSHIFT;
    194 	pmap_limits.avail_end = uvm_physseg_get_end(uvm_physseg_get_last()) << PGSHIFT;
    195 	const size_t max_nsegtabs =
    196 	    (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
    197 		- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
    198 	if (kv_nsegtabs >= max_nsegtabs) {
    199 		pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
    200 		kv_nsegtabs = max_nsegtabs;
    201 	} else {
    202 		pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
    203 		    + kv_nsegtabs * NBSEG;
    204 	}
    205 
    206 	/*
    207 	 * Now actually allocate the kernel PTE array (must be done
    208 	 * after virtual_end is initialized).
    209 	 */
    210 	const vaddr_t kv_segtabs = avail[0].start;
    211 	KASSERT(kv_segtabs == endkernel);
    212 	KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
    213 	printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
    214 	printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
    215 	avail[0].start += NBPG * kv_nsegtabs;
    216 	avail[0].size -= NBPG * kv_nsegtabs;
    217 	endkernel += NBPG * kv_nsegtabs;
    218 
    219 	/*
    220 	 * Initialize the kernel's two-level page level.  This only wastes
    221 	 * an extra page for the segment table and allows the user/kernel
    222 	 * access to be common.
    223 	 */
    224 	pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
    225 	pt_entry_t *ptep = (void *)kv_segtabs;
    226 	memset(ptep, 0, NBPG * kv_nsegtabs);
    227 	for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
    228 		*ptp++ = ptep;
    229 	}
    230 
    231 #if PMAP_MINIMALTLB
    232 	const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
    233 	const vaddr_t dm_segtabs = avail[0].start;
    234 	printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
    235 	printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
    236 	KASSERT(dm_segtabs == endkernel);
    237 	KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
    238 	avail[0].start += NBPG * dm_nsegtabs;
    239 	avail[0].size -= NBPG * dm_nsegtabs;
    240 	endkernel += NBPG * dm_nsegtabs;
    241 
    242 	ptp = stp->seg_tab;
    243 	ptep = (void *)dm_segtabs;
    244 	memset(ptep, 0, NBPG * dm_nsegtabs);
    245 	for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
    246 		*ptp = ptep;
    247 	}
    248 
    249 	/*
    250 	 */
    251 	extern uint32_t _fdata[], _etext[];
    252 	vaddr_t va;
    253 
    254 	/* Now make everything before the kernel inaccessible. */
    255 	va = pmap_kvptefill(NBPG, startkernel, 0);
    256 
    257 	/* Kernel text is readonly & executable */
    258 	va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
    259 	    PTE_M | PTE_xR | PTE_xX);
    260 
    261 	/* Kernel .rdata is readonly */
    262 	va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
    263 
    264 	/* Kernel .data/.bss + page tables are read-write */
    265 	va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
    266 
    267 	/* message buffer page table pages are read-write */
    268 	(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
    269 	    PTE_M | PTE_xR | PTE_xW);
    270 #endif
    271 
    272 	for (size_t i = 0; i < cnt; i++) {
    273 		printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
    274 		    atop(avail[i].start),
    275 		    atop(avail[i].start + avail[i].size) - 1,
    276 		    atop(avail[i].start),
    277 		    atop(avail[i].start + avail[i].size) - 1,
    278 		    VM_FREELIST_DEFAULT);
    279 		uvm_page_physload(
    280 		    atop(avail[i].start),
    281 		    atop(avail[i].start + avail[i].size) - 1,
    282 		    atop(avail[i].start),
    283 		    atop(avail[i].start + avail[i].size) - 1,
    284 		    VM_FREELIST_DEFAULT);
    285 	}
    286 
    287 	pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
    288 
    289 	/*
    290 	 * Initialize the pools.
    291 	 */
    292 	pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
    293 	    &pool_allocator_nointr, IPL_NONE);
    294 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
    295 	    &pmap_pv_page_allocator, IPL_NONE);
    296 
    297 	tlb_set_asid(0);
    298 
    299 	return endkernel;
    300 }
    301 
    302 struct vm_page *
    303 pmap_md_alloc_poolpage(int flags)
    304 {
    305 	/*
    306 	 * Any managed page works for us.
    307 	 */
    308 	return uvm_pagealloc(NULL, 0, NULL, flags);
    309 }
    310 
    311 vaddr_t
    312 pmap_md_map_poolpage(paddr_t pa, vsize_t size)
    313 {
    314 	const vaddr_t sva = (vaddr_t) pa;
    315 #ifdef PMAP_MINIMALTLB
    316 	const vaddr_t eva = sva + size;
    317 	pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
    318 #endif
    319 	return sva;
    320 }
    321 
    322 void
    323 pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
    324 {
    325 #ifdef PMAP_MINIMALTLB
    326 	struct pmap * const pm = pmap_kernel();
    327 	const vaddr_t eva = va + size;
    328 	pmap_kvptefill(va, eva, 0);
    329 	for (;va < eva; va += NBPG) {
    330 		pmap_tlb_invalidate_addr(pm, va);
    331 	}
    332 	pmap_update(pm);
    333 #endif
    334 }
    335 
    336 void
    337 pmap_zero_page(paddr_t pa)
    338 {
    339 	PMAP_COUNT(zeroed_pages);
    340 	vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
    341 	dcache_zero_page(va);
    342 
    343 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
    344 	pmap_md_unmap_poolpage(va, NBPG);
    345 }
    346 
    347 void
    348 pmap_copy_page(paddr_t src, paddr_t dst)
    349 {
    350 	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
    351 	vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
    352 	vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
    353 	const vaddr_t end = src_va + PAGE_SIZE;
    354 
    355 	PMAP_COUNT(copied_pages);
    356 
    357 	while (src_va < end) {
    358 		__asm __volatile(
    359 			"dcbt	%2,%0"	"\n\t"	/* touch next src cacheline */
    360 			"dcba	0,%1"	"\n\t" 	/* don't fetch dst cacheline */
    361 		    :: "b"(src_va), "b"(dst_va), "b"(line_size));
    362 		for (u_int i = 0;
    363 		     i < line_size;
    364 		     src_va += 32, dst_va += 32, i += 32) {
    365 			register_t tmp;
    366 			__asm __volatile(
    367 				"mr	%[tmp],31"	"\n\t"
    368 				"lmw	24,0(%[src])"	"\n\t"
    369 				"stmw	24,0(%[dst])"	"\n\t"
    370 				"mr	31,%[tmp]"	"\n\t"
    371 			    : [tmp] "=&r"(tmp)
    372 			    : [src] "b"(src_va), [dst] "b"(dst_va)
    373 			    : "r24", "r25", "r26", "r27",
    374 			      "r28", "r29", "r30", "memory");
    375 		}
    376 	}
    377 	pmap_md_unmap_poolpage(src_va, NBPG);
    378 	pmap_md_unmap_poolpage(dst_va, NBPG);
    379 
    380 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
    381 }
    382 
    383 void
    384 pmap_md_init(void)
    385 {
    386 
    387 	/* nothing for now */
    388 }
    389 
    390 bool
    391 pmap_md_io_vaddr_p(vaddr_t va)
    392 {
    393 	return va >= pmap_limits.avail_end
    394 	    && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
    395 }
    396 
    397 bool
    398 pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
    399 {
    400 	pmap_t pm = ctx;
    401         struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
    402 
    403 	if (asid != pai->pai_asid)
    404 		return true;
    405 
    406 	const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
    407 	KASSERT(ptep != NULL);
    408 	pt_entry_t xpte = *ptep;
    409 	xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
    410 	xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
    411 
    412 	KASSERTMSG(pte == xpte,
    413 	    "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
    414 	    pm, va, asid, pte, xpte, *ptep);
    415 
    416 	return true;
    417 }
    418 
    419 #ifdef MULTIPROCESSOR
    420 void
    421 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
    422 {
    423 	/* nothing */
    424 }
    425 
    426 void
    427 pmap_md_tlb_miss_lock_enter(void)
    428 {
    429 
    430 	mutex_spin_enter(&pmap_tlb_miss_lock);
    431 }
    432 
    433 void
    434 pmap_md_tlb_miss_lock_exit(void)
    435 {
    436 
    437 	mutex_spin_exit(&pmap_tlb_miss_lock);
    438 }
    439 #endif /* MULTIPROCESSOR */
    440