Home | History | Annotate | Line # | Download | only in booke
booke_pmap.c revision 1.29
      1 /*	$NetBSD: booke_pmap.c,v 1.29 2020/07/06 10:09:23 rin Exp $	*/
      2 /*-
      3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9  *
     10  * This material is based upon work supported by the Defense Advanced Research
     11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12  * Contract No. N66001-09-C-2073.
     13  * Approved for Public Release, Distribution Unlimited
     14  *
     15  * Redistribution and use in source and binary forms, with or without
     16  * modification, are permitted provided that the following conditions
     17  * are met:
     18  * 1. Redistributions of source code must retain the above copyright
     19  *    notice, this list of conditions and the following disclaimer.
     20  * 2. Redistributions in binary form must reproduce the above copyright
     21  *    notice, this list of conditions and the following disclaimer in the
     22  *    documentation and/or other materials provided with the distribution.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 #define __PMAP_PRIVATE
     38 
     39 #include <sys/cdefs.h>
     40 __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.29 2020/07/06 10:09:23 rin Exp $");
     41 
     42 #ifdef _KERNEL_OPT
     43 #include "opt_multiprocessor.h"
     44 #include "opt_pmap.h"
     45 #endif
     46 
     47 #include <sys/param.h>
     48 #include <sys/kcore.h>
     49 #include <sys/buf.h>
     50 #include <sys/mutex.h>
     51 
     52 #include <uvm/uvm.h>
     53 
     54 #include <machine/pmap.h>
     55 
     56 PMAP_COUNTER(zeroed_pages, "pages zeroed");
     57 PMAP_COUNTER(copied_pages, "pages copied");
     58 
     59 CTASSERT(sizeof(pmap_segtab_t) == NBPG);
     60 
     61 void
     62 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
     63 {
     64 	struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
     65 	vsize_t off = va & PAGE_SIZE;
     66 
     67 	kpreempt_disable();
     68 	for (const vaddr_t eva = va + len; va < eva; off = 0) {
     69 		const vaddr_t segeva = uimin(va + len, va - off + PAGE_SIZE);
     70 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
     71 		if (ptep == NULL) {
     72 			va = segeva;
     73 			continue;
     74 		}
     75 		pt_entry_t pt_entry = *ptep;
     76 		if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
     77 			va = segeva;
     78 			continue;
     79 		}
     80 		kpreempt_enable();
     81 		dcache_wb(pte_to_paddr(pt_entry), segeva - va);
     82 		icache_inv(pte_to_paddr(pt_entry), segeva - va);
     83 		kpreempt_disable();
     84 		va = segeva;
     85 	}
     86 	kpreempt_enable();
     87 }
     88 
     89 void
     90 pmap_md_page_syncicache(struct vm_page *pg, const kcpuset_t *onproc)
     91 {
     92 	/*
     93 	 * If onproc is empty, we could do a
     94 	 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
     95 	 * mappings of the page and clear its execness.  Then
     96 	 * the next time page is faulted, it will get icache
     97 	 * synched.  But this is easier. :)
     98 	 */
     99 	paddr_t pa = VM_PAGE_TO_PHYS(pg);
    100 	dcache_wb_page(pa);
    101 	icache_inv_page(pa);
    102 }
    103 
    104 vaddr_t
    105 pmap_md_direct_map_paddr(paddr_t pa)
    106 {
    107 	return (vaddr_t) pa;
    108 }
    109 
    110 bool
    111 pmap_md_direct_mapped_vaddr_p(vaddr_t va)
    112 {
    113 	return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
    114 }
    115 
    116 paddr_t
    117 pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
    118 {
    119 	return (paddr_t) va;
    120 }
    121 
    122 #ifdef PMAP_MINIMALTLB
    123 static pt_entry_t *
    124 kvtopte(const pmap_segtab_t *stp, vaddr_t va)
    125 {
    126 	pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT];
    127 	if (ptep == NULL)
    128 		return NULL;
    129 	return &ptep[(va & SEGOFSET) >> PAGE_SHIFT];
    130 }
    131 
    132 vaddr_t
    133 pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
    134 {
    135 	pmap_segtab_t * const stp = &pmap_kern_segtab;
    136 	KASSERT(sva == trunc_page(sva));
    137 	pt_entry_t *ptep = kvtopte(stp, sva);
    138 	for (; sva < eva; sva += NBPG) {
    139 		*ptep++ = pt_entry ? (sva | pt_entry) : 0;
    140 	}
    141 	return sva;
    142 }
    143 #endif
    144 
    145 /*
    146  *	Bootstrap the system enough to run with virtual memory.
    147  *	firstaddr is the first unused kseg0 address (not page aligned).
    148  */
    149 vaddr_t
    150 pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
    151 	phys_ram_seg_t *avail, size_t cnt)
    152 {
    153 	pmap_segtab_t * const stp = &pmap_kern_segtab;
    154 
    155 	KASSERT(endkernel == trunc_page(endkernel));
    156 
    157 	/* common initialization */
    158 	pmap_bootstrap_common();
    159 
    160 	/* init the lock */
    161 	pmap_tlb_info_init(&pmap_tlb0_info);
    162 
    163 	/*
    164 	 * Compute the number of pages kmem_arena will have.
    165 	 */
    166 	kmeminit_nkmempages();
    167 
    168 	/*
    169 	 * Figure out how many PTE's are necessary to map the kernel.
    170 	 * We also reserve space for kmem_alloc_pageable() for vm_fork().
    171 	 */
    172 
    173 	/* Get size of buffer cache and set an upper limit */
    174 	buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
    175 	vsize_t bufsz = buf_memcalc();
    176 	buf_setvalimit(bufsz);
    177 
    178 	vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
    179 	    + (ubc_nwins << ubc_winshift)
    180 	    + bufsz
    181 	    + 16 * NCARGS
    182 	    + pager_map_size
    183 	    + maxproc * USPACE
    184 	    + NBPG * nkmempages) >> SEGSHIFT;
    185 
    186 	/*
    187 	 * Initialize `FYI' variables.	Note we're relying on
    188 	 * the fact that BSEARCH sorts the vm_physmem[] array
    189 	 * for us.  Must do this before uvm_pageboot_alloc()
    190 	 * can be called.
    191 	 */
    192 	pmap_limits.avail_start = uvm_physseg_get_start(uvm_physseg_get_first()) << PGSHIFT;
    193 	pmap_limits.avail_end = uvm_physseg_get_end(uvm_physseg_get_last()) << PGSHIFT;
    194 	const size_t max_nsegtabs =
    195 	    (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
    196 		- pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
    197 	if (kv_nsegtabs >= max_nsegtabs) {
    198 		pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
    199 		kv_nsegtabs = max_nsegtabs;
    200 	} else {
    201 		pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
    202 		    + kv_nsegtabs * NBSEG;
    203 	}
    204 
    205 	/*
    206 	 * Now actually allocate the kernel PTE array (must be done
    207 	 * after virtual_end is initialized).
    208 	 */
    209 	const vaddr_t kv_segtabs = avail[0].start;
    210 	KASSERT(kv_segtabs == endkernel);
    211 	KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
    212 	printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
    213 	printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
    214 	avail[0].start += NBPG * kv_nsegtabs;
    215 	avail[0].size -= NBPG * kv_nsegtabs;
    216 	endkernel += NBPG * kv_nsegtabs;
    217 
    218 	/*
    219 	 * Initialize the kernel's two-level page level.  This only wastes
    220 	 * an extra page for the segment table and allows the user/kernel
    221 	 * access to be common.
    222 	 */
    223 	pt_entry_t **ptp = &stp->seg_tab[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
    224 	pt_entry_t *ptep = (void *)kv_segtabs;
    225 	memset(ptep, 0, NBPG * kv_nsegtabs);
    226 	for (size_t i = 0; i < kv_nsegtabs; i++, ptep += NPTEPG) {
    227 		*ptp++ = ptep;
    228 	}
    229 
    230 #if PMAP_MINIMALTLB
    231 	const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
    232 	const vaddr_t dm_segtabs = avail[0].start;
    233 	printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
    234 	printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
    235 	KASSERT(dm_segtabs == endkernel);
    236 	KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
    237 	avail[0].start += NBPG * dm_nsegtabs;
    238 	avail[0].size -= NBPG * dm_nsegtabs;
    239 	endkernel += NBPG * dm_nsegtabs;
    240 
    241 	ptp = stp->seg_tab;
    242 	ptep = (void *)dm_segtabs;
    243 	memset(ptep, 0, NBPG * dm_nsegtabs);
    244 	for (size_t i = 0; i < dm_nsegtabs; i++, ptp++, ptep += NPTEPG) {
    245 		*ptp = ptep;
    246 	}
    247 
    248 	/*
    249 	 */
    250 	extern uint32_t _fdata[], _etext[];
    251 	vaddr_t va;
    252 
    253 	/* Now make everything before the kernel inaccessible. */
    254 	va = pmap_kvptefill(NBPG, startkernel, 0);
    255 
    256 	/* Kernel text is readonly & executable */
    257 	va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
    258 	    PTE_M | PTE_xR | PTE_xX);
    259 
    260 	/* Kernel .rdata is readonly */
    261 	va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
    262 
    263 	/* Kernel .data/.bss + page tables are read-write */
    264 	va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
    265 
    266 	/* message buffer page table pages are read-write */
    267 	(void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
    268 	    PTE_M | PTE_xR | PTE_xW);
    269 #endif
    270 
    271 	for (size_t i = 0; i < cnt; i++) {
    272 		printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
    273 		    atop(avail[i].start),
    274 		    atop(avail[i].start + avail[i].size) - 1,
    275 		    atop(avail[i].start),
    276 		    atop(avail[i].start + avail[i].size) - 1,
    277 		    VM_FREELIST_DEFAULT);
    278 		uvm_page_physload(
    279 		    atop(avail[i].start),
    280 		    atop(avail[i].start + avail[i].size) - 1,
    281 		    atop(avail[i].start),
    282 		    atop(avail[i].start + avail[i].size) - 1,
    283 		    VM_FREELIST_DEFAULT);
    284 	}
    285 
    286 	pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
    287 
    288 	/*
    289 	 * Initialize the pools.
    290 	 */
    291 	pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
    292 	    &pool_allocator_nointr, IPL_NONE);
    293 	pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
    294 	    &pmap_pv_page_allocator, IPL_NONE);
    295 
    296 	tlb_set_asid(0);
    297 
    298 	return endkernel;
    299 }
    300 
    301 struct vm_page *
    302 pmap_md_alloc_poolpage(int flags)
    303 {
    304 	/*
    305 	 * Any managed page works for us.
    306 	 */
    307 	return uvm_pagealloc(NULL, 0, NULL, flags);
    308 }
    309 
    310 vaddr_t
    311 pmap_md_map_poolpage(paddr_t pa, vsize_t size)
    312 {
    313 	const vaddr_t sva = (vaddr_t) pa;
    314 #ifdef PMAP_MINIMALTLB
    315 	const vaddr_t eva = sva + size;
    316 	pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
    317 #endif
    318 	return sva;
    319 }
    320 
    321 void
    322 pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
    323 {
    324 #ifdef PMAP_MINIMALTLB
    325 	struct pmap * const pm = pmap_kernel();
    326 	const vaddr_t eva = va + size;
    327 	pmap_kvptefill(va, eva, 0);
    328 	for (;va < eva; va += NBPG) {
    329 		pmap_tlb_invalidate_addr(pm, va);
    330 	}
    331 	pmap_update(pm);
    332 #endif
    333 }
    334 
    335 void
    336 pmap_zero_page(paddr_t pa)
    337 {
    338 	PMAP_COUNT(zeroed_pages);
    339 	vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
    340 	dcache_zero_page(va);
    341 
    342 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
    343 	pmap_md_unmap_poolpage(va, NBPG);
    344 }
    345 
    346 void
    347 pmap_copy_page(paddr_t src, paddr_t dst)
    348 {
    349 	const size_t line_size = curcpu()->ci_ci.dcache_line_size;
    350 	vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
    351 	vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
    352 	const vaddr_t end = src_va + PAGE_SIZE;
    353 
    354 	PMAP_COUNT(copied_pages);
    355 
    356 	while (src_va < end) {
    357 		__asm __volatile(
    358 			"dcbt	%2,%0"	"\n\t"	/* touch next src cacheline */
    359 			"dcba	0,%1"	"\n\t" 	/* don't fetch dst cacheline */
    360 		    :: "b"(src_va), "b"(dst_va), "b"(line_size));
    361 		for (u_int i = 0;
    362 		     i < line_size;
    363 		     src_va += 32, dst_va += 32, i += 32) {
    364 			register_t tmp;
    365 			__asm __volatile(
    366 				"mr	%[tmp],31"	"\n\t"
    367 				"lmw	24,0(%[src])"	"\n\t"
    368 				"stmw	24,0(%[dst])"	"\n\t"
    369 				"mr	31,%[tmp]"	"\n\t"
    370 			    : [tmp] "=&r"(tmp)
    371 			    : [src] "b"(src_va), [dst] "b"(dst_va)
    372 			    : "r24", "r25", "r26", "r27",
    373 			      "r28", "r29", "r30", "memory");
    374 		}
    375 	}
    376 	pmap_md_unmap_poolpage(src_va, NBPG);
    377 	pmap_md_unmap_poolpage(dst_va, NBPG);
    378 
    379 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
    380 }
    381 
    382 void
    383 pmap_md_init(void)
    384 {
    385 
    386 	/* nothing for now */
    387 }
    388 
    389 bool
    390 pmap_md_io_vaddr_p(vaddr_t va)
    391 {
    392 	return va >= pmap_limits.avail_end
    393 	    && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
    394 }
    395 
    396 bool
    397 pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
    398 {
    399 	pmap_t pm = ctx;
    400         struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
    401 
    402 	if (asid != pai->pai_asid)
    403 		return true;
    404 
    405 	const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
    406 	KASSERT(ptep != NULL);
    407 	pt_entry_t xpte = *ptep;
    408 	xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
    409 	xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
    410 
    411 	KASSERTMSG(pte == xpte,
    412 	    "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
    413 	    pm, va, asid, pte, xpte, *ptep);
    414 
    415 	return true;
    416 }
    417 
    418 #ifdef MULTIPROCESSOR
    419 void
    420 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
    421 {
    422 	/* nothing */
    423 }
    424 #endif /* MULTIPROCESSOR */
    425