booke_pmap.c revision 1.39 1 /* $NetBSD: booke_pmap.c,v 1.39 2024/09/24 07:29:55 skrll Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #define __PMAP_PRIVATE
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: booke_pmap.c,v 1.39 2024/09/24 07:29:55 skrll Exp $");
41
42 #ifdef _KERNEL_OPT
43 #include "opt_multiprocessor.h"
44 #include "opt_pmap.h"
45 #endif
46
47 #include <sys/param.h>
48 #include <sys/kcore.h>
49 #include <sys/buf.h>
50 #include <sys/mutex.h>
51
52 #include <uvm/uvm.h>
53
54 #include <machine/pmap.h>
55
56 PMAP_COUNTER(zeroed_pages, "pages zeroed");
57 PMAP_COUNTER(copied_pages, "pages copied");
58
59 CTASSERT(sizeof(pmap_segtab_t) == NBPG);
60
61 void
62 pmap_procwr(struct proc *p, vaddr_t va, size_t len)
63 {
64 struct pmap * const pmap = p->p_vmspace->vm_map.pmap;
65 vsize_t off = va & PAGE_MASK;
66
67 kpreempt_disable();
68 for (const vaddr_t eva = va + len; va < eva; off = 0) {
69 const vaddr_t segeva = uimin(va + len, va - off + PAGE_SIZE);
70 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
71 if (ptep == NULL) {
72 va = segeva;
73 continue;
74 }
75 pt_entry_t pt_entry = *ptep;
76 if (!pte_valid_p(pt_entry) || !pte_exec_p(pt_entry)) {
77 va = segeva;
78 continue;
79 }
80 kpreempt_enable();
81 dcache_wb(pte_to_paddr(pt_entry) + off, segeva - va);
82 icache_inv(pte_to_paddr(pt_entry) + off, segeva - va);
83 kpreempt_disable();
84 va = segeva;
85 }
86 kpreempt_enable();
87 }
88
89 void
90 pmap_md_page_syncicache(struct vm_page_md *mdpg, const kcpuset_t *onproc)
91 {
92 KASSERT(VM_PAGEMD_VMPAGE_P(mdpg));
93
94 struct vm_page * const pg = VM_MD_TO_PAGE(mdpg);
95
96 /*
97 * If onproc is empty, we could do a
98 * pmap_page_protect(pg, VM_PROT_NONE) and remove all
99 * mappings of the page and clear its execness. Then
100 * the next time page is faulted, it will get icache
101 * synched. But this is easier. :)
102 */
103 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
104 dcache_wb_page(pa);
105 icache_inv_page(pa);
106 }
107
108 vaddr_t
109 pmap_md_direct_map_paddr(paddr_t pa)
110 {
111 return (vaddr_t) pa;
112 }
113
114 bool
115 pmap_md_direct_mapped_vaddr_p(vaddr_t va)
116 {
117 return va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va;
118 }
119
120 paddr_t
121 pmap_md_direct_mapped_vaddr_to_paddr(vaddr_t va)
122 {
123 return (paddr_t) va;
124 }
125
126 #ifdef PMAP_MINIMALTLB
127 static pt_entry_t *
128 pmap_kvtopte(const pmap_segtab_t *stb, vaddr_t va)
129 {
130 const vaddr_t segtab_mask = PMAP_SEGTABSIZE - 1;
131 const size_t idx = (va >> SEGSHIFT) & segtab_mask;
132 pmap_ptpage_t * const ppg = stb->seg_ppg[idx];
133 if (ppg == NULL)
134 return NULL;
135 const size_t pte_idx = (va >> PGSHIFT) & (NPTEPG - 1);
136
137 return &ppg->ppg_ptes[pte_idx];
138 }
139
140 vaddr_t
141 pmap_kvptefill(vaddr_t sva, vaddr_t eva, pt_entry_t pt_entry)
142 {
143 pmap_segtab_t * const stb = &pmap_kern_segtab;
144 KASSERT(sva == trunc_page(sva));
145 pt_entry_t *ptep = pmap_kvtopte(stb, sva);
146 for (; sva < eva; sva += NBPG) {
147 *ptep++ = pt_entry ? (sva | pt_entry) : 0;
148 }
149 return sva;
150 }
151 #endif
152
153 /*
154 * Bootstrap the system enough to run with virtual memory.
155 * firstaddr is the first unused kseg0 address (not page aligned).
156 */
157 vaddr_t
158 pmap_bootstrap(vaddr_t startkernel, vaddr_t endkernel,
159 phys_ram_seg_t *avail, size_t cnt)
160 {
161 pmap_segtab_t * const stb = &pmap_kern_segtab;
162
163 KASSERT(endkernel == trunc_page(endkernel));
164
165 /* common initialization */
166 pmap_bootstrap_common();
167
168 /* init the lock */
169 pmap_tlb_info_init(&pmap_tlb0_info);
170
171 /*
172 * Compute the number of pages kmem_arena will have.
173 */
174 kmeminit_nkmempages();
175
176 /*
177 * Figure out how many PTE's are necessary to map the kernel.
178 * We also reserve space for kmem_alloc_pageable() for vm_fork().
179 */
180
181 /* Get size of buffer cache and set an upper limit */
182 buf_setvalimit((VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / 8);
183 vsize_t bufsz = buf_memcalc();
184 buf_setvalimit(bufsz);
185
186 vsize_t kv_nsegtabs = pmap_round_seg(VM_PHYS_SIZE
187 + (ubc_nwins << ubc_winshift)
188 + bufsz
189 + 16 * NCARGS
190 + pager_map_size
191 + maxproc * USPACE
192 + NBPG * nkmempages) >> SEGSHIFT;
193
194 /*
195 * Initialize `FYI' variables. Note we're relying on
196 * the fact that BSEARCH sorts the vm_physmem[] array
197 * for us. Must do this before uvm_pageboot_alloc()
198 * can be called.
199 */
200 pmap_limits.avail_start = uvm_physseg_get_start(uvm_physseg_get_first()) << PGSHIFT;
201 pmap_limits.avail_end = uvm_physseg_get_end(uvm_physseg_get_last()) << PGSHIFT;
202 const size_t max_nsegtabs =
203 (pmap_round_seg(VM_MAX_KERNEL_ADDRESS)
204 - pmap_trunc_seg(VM_MIN_KERNEL_ADDRESS)) / NBSEG;
205 if (kv_nsegtabs >= max_nsegtabs) {
206 pmap_limits.virtual_end = VM_MAX_KERNEL_ADDRESS;
207 kv_nsegtabs = max_nsegtabs;
208 } else {
209 pmap_limits.virtual_end = VM_MIN_KERNEL_ADDRESS
210 + kv_nsegtabs * NBSEG;
211 }
212
213 /* update the top of the kernel VM - pmap_growkernel not required */
214 pmap_curmaxkvaddr = pmap_limits.virtual_end;
215
216 /*
217 * Now actually allocate the kernel PTE array (must be done
218 * after virtual_end is initialized).
219 */
220 const vaddr_t kv_segtabs = avail[0].start;
221 KASSERT(kv_segtabs == endkernel);
222 KASSERT(avail[0].size >= NBPG * kv_nsegtabs);
223 printf(" kv_nsegtabs=%#"PRIxVSIZE, kv_nsegtabs);
224 printf(" kv_segtabs=%#"PRIxVADDR, kv_segtabs);
225 avail[0].start += NBPG * kv_nsegtabs;
226 avail[0].size -= NBPG * kv_nsegtabs;
227 endkernel += NBPG * kv_nsegtabs;
228
229 /*
230 * Initialize the kernel's two-level page level. This only wastes
231 * an extra page for the segment table and allows the user/kernel
232 * access to be common.
233 */
234
235 pmap_ptpage_t **ppg_p = &stb->seg_ppg[VM_MIN_KERNEL_ADDRESS >> SEGSHIFT];
236 pmap_ptpage_t *ppg = (void *)kv_segtabs;
237 memset(ppg, 0, NBPG * kv_nsegtabs);
238 for (size_t i = 0; i < kv_nsegtabs; i++, ppg++) {
239 *ppg_p++ = ppg;
240 }
241
242 #ifdef PMAP_MINIMALTLB
243 const vsize_t dm_nsegtabs = (physmem + NPTEPG - 1) / NPTEPG;
244 const vaddr_t dm_segtabs = avail[0].start;
245 printf(" dm_nsegtabs=%#"PRIxVSIZE, dm_nsegtabs);
246 printf(" dm_segtabs=%#"PRIxVADDR, dm_segtabs);
247 KASSERT(dm_segtabs == endkernel);
248 KASSERT(avail[0].size >= NBPG * dm_nsegtabs);
249 avail[0].start += NBPG * dm_nsegtabs;
250 avail[0].size -= NBPG * dm_nsegtabs;
251 endkernel += NBPG * dm_nsegtabs;
252
253 ppg_p = stb->seg_ppg;
254 ppg = (void *)dm_segtabs;
255 memset(ppg, 0, NBPG * dm_nsegtabs);
256 for (size_t i = 0; i < dm_nsegtabs; i++, ppg_p++, ppg++) {
257 *ppg_p = ppg;
258 }
259
260 /*
261 */
262 extern uint32_t _fdata[], _etext[];
263 vaddr_t va;
264
265 /* Now make everything before the kernel inaccessible. */
266 va = pmap_kvptefill(NBPG, startkernel, 0);
267
268 /* Kernel text is readonly & executable */
269 va = pmap_kvptefill(va, round_page((vaddr_t)_etext),
270 PTE_M | PTE_xR | PTE_xX);
271
272 /* Kernel .rdata is readonly */
273 va = pmap_kvptefill(va, trunc_page((vaddr_t)_fdata), PTE_M | PTE_xR);
274
275 /* Kernel .data/.bss + page tables are read-write */
276 va = pmap_kvptefill(va, round_page(endkernel), PTE_M | PTE_xR | PTE_xW);
277
278 /* message buffer page table pages are read-write */
279 (void) pmap_kvptefill(msgbuf_paddr, msgbuf_paddr+round_page(MSGBUFSIZE),
280 PTE_M | PTE_xR | PTE_xW);
281 #endif
282
283 for (size_t i = 0; i < cnt; i++) {
284 printf(" uvm_page_physload(%#lx,%#lx,%#lx,%#lx,%d)",
285 atop(avail[i].start),
286 atop(avail[i].start + avail[i].size) - 1,
287 atop(avail[i].start),
288 atop(avail[i].start + avail[i].size) - 1,
289 VM_FREELIST_DEFAULT);
290 uvm_page_physload(
291 atop(avail[i].start),
292 atop(avail[i].start + avail[i].size) - 1,
293 atop(avail[i].start),
294 atop(avail[i].start + avail[i].size) - 1,
295 VM_FREELIST_DEFAULT);
296 }
297
298 pmap_pvlist_lock_init(curcpu()->ci_ci.dcache_line_size);
299
300 /*
301 * Initialize the pools.
302 */
303 pool_init(&pmap_pmap_pool, PMAP_SIZE, 0, 0, 0, "pmappl",
304 &pool_allocator_nointr, IPL_NONE);
305 pool_init(&pmap_pv_pool, sizeof(struct pv_entry), 0, 0, 0, "pvpl",
306 &pmap_pv_page_allocator, IPL_NONE);
307
308 tlb_set_asid(KERNEL_PID, pmap_kernel());
309
310 return endkernel;
311 }
312
313 struct vm_page *
314 pmap_md_alloc_poolpage(int flags)
315 {
316
317 /*
318 * Any managed page works for us.
319 */
320 return uvm_pagealloc(NULL, 0, NULL, flags);
321 }
322
323 vaddr_t
324 pmap_md_map_poolpage(paddr_t pa, vsize_t size)
325 {
326 const vaddr_t sva = (vaddr_t) pa;
327 #ifdef PMAP_MINIMALTLB
328 const vaddr_t eva = sva + size;
329 pmap_kvptefill(sva, eva, PTE_M | PTE_xR | PTE_xW);
330 #endif
331 return sva;
332 }
333
334 void
335 pmap_md_unmap_poolpage(vaddr_t va, vsize_t size)
336 {
337 #ifdef PMAP_MINIMALTLB
338 struct pmap * const pm = pmap_kernel();
339 const vaddr_t eva = va + size;
340 pmap_kvptefill(va, eva, 0);
341 for (;va < eva; va += NBPG) {
342 pmap_tlb_invalidate_addr(pm, va);
343 }
344 pmap_update(pm);
345 #endif
346 }
347
348 void
349 pmap_zero_page(paddr_t pa)
350 {
351 PMAP_COUNT(zeroed_pages);
352 vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
353 dcache_zero_page(va);
354
355 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(va))));
356 pmap_md_unmap_poolpage(va, NBPG);
357 }
358
359 void
360 pmap_copy_page(paddr_t src, paddr_t dst)
361 {
362 const size_t line_size = curcpu()->ci_ci.dcache_line_size;
363 vaddr_t src_va = pmap_md_map_poolpage(src, NBPG);
364 vaddr_t dst_va = pmap_md_map_poolpage(dst, NBPG);
365 const vaddr_t end = src_va + PAGE_SIZE;
366
367 PMAP_COUNT(copied_pages);
368
369 while (src_va < end) {
370 __asm __volatile(
371 "dcbt %2,%0" "\n\t" /* touch next src cacheline */
372 "dcba 0,%1" "\n\t" /* don't fetch dst cacheline */
373 :: "b"(src_va), "b"(dst_va), "b"(line_size));
374 for (u_int i = 0;
375 i < line_size;
376 src_va += 32, dst_va += 32, i += 32) {
377 register_t tmp;
378 __asm __volatile(
379 "mr %[tmp],31" "\n\t"
380 "lmw 24,0(%[src])" "\n\t"
381 "stmw 24,0(%[dst])" "\n\t"
382 "mr 31,%[tmp]" "\n\t"
383 : [tmp] "=&r"(tmp)
384 : [src] "b"(src_va), [dst] "b"(dst_va)
385 : "r24", "r25", "r26", "r27",
386 "r28", "r29", "r30", "memory");
387 }
388 }
389 pmap_md_unmap_poolpage(src_va, NBPG);
390 pmap_md_unmap_poolpage(dst_va, NBPG);
391
392 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(PHYS_TO_VM_PAGE(dst))));
393 }
394
395 void
396 pmap_md_init(void)
397 {
398
399 /* nothing for now */
400 }
401
402 bool
403 pmap_md_io_vaddr_p(vaddr_t va)
404 {
405 return va >= pmap_limits.avail_end
406 && !(VM_MIN_KERNEL_ADDRESS <= va && va < VM_MAX_KERNEL_ADDRESS);
407 }
408
409 bool
410 pmap_md_tlb_check_entry(void *ctx, vaddr_t va, tlb_asid_t asid, pt_entry_t pte)
411 {
412 pmap_t pm = ctx;
413 struct pmap_asid_info * const pai = PMAP_PAI(pm, curcpu()->ci_tlb_info);
414
415 if (asid != pai->pai_asid)
416 return true;
417
418 const pt_entry_t * const ptep = pmap_pte_lookup(pm, va);
419 KASSERT(ptep != NULL);
420 pt_entry_t xpte = *ptep;
421 xpte &= ~((xpte & (PTE_UNSYNCED|PTE_UNMODIFIED)) << 1);
422 xpte ^= xpte & (PTE_UNSYNCED|PTE_UNMODIFIED|PTE_WIRED);
423
424 KASSERTMSG(pte == xpte,
425 "pm=%p va=%#"PRIxVADDR" asid=%u: TLB pte (%#x) != real pte (%#x/%#x)",
426 pm, va, asid, pte, xpte, *ptep);
427
428 return true;
429 }
430
431 #ifdef MULTIPROCESSOR
432 void
433 pmap_md_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
434 {
435 /* nothing */
436 }
437 #endif /* MULTIPROCESSOR */
438