copyin.c revision 1.3 1 1.3 matt /* $NetBSD: copyin.c,v 1.3 2011/02/17 13:53:32 matt Exp $ */
2 1.2 matt
3 1.2 matt /*-
4 1.2 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
5 1.2 matt * All rights reserved.
6 1.2 matt *
7 1.2 matt * This code is derived from software contributed to The NetBSD Foundation
8 1.2 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
9 1.2 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry.
10 1.2 matt *
11 1.2 matt * This material is based upon work supported by the Defense Advanced Research
12 1.2 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
13 1.2 matt * Contract No. N66001-09-C-2073.
14 1.2 matt * Approved for Public Release, Distribution Unlimited
15 1.2 matt *
16 1.2 matt * Redistribution and use in source and binary forms, with or without
17 1.2 matt * modification, are permitted provided that the following conditions
18 1.2 matt * are met:
19 1.2 matt * 1. Redistributions of source code must retain the above copyright
20 1.2 matt * notice, this list of conditions and the following disclaimer.
21 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright
22 1.2 matt * notice, this list of conditions and the following disclaimer in the
23 1.2 matt * documentation and/or other materials provided with the distribution.
24 1.2 matt *
25 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.2 matt * POSSIBILITY OF SUCH DAMAGE.
36 1.2 matt */
37 1.2 matt
38 1.2 matt #include <sys/cdefs.h>
39 1.3 matt __KERNEL_RCSID(0, "$NetBSD: copyin.c,v 1.3 2011/02/17 13:53:32 matt Exp $");
40 1.2 matt
41 1.2 matt #include <sys/param.h>
42 1.2 matt #include <sys/lwp.h>
43 1.2 matt
44 1.2 matt #include <machine/pcb.h>
45 1.2 matt
46 1.3 matt #include <powerpc/booke/cpuvar.h>
47 1.3 matt
48 1.2 matt static inline uint8_t
49 1.2 matt copyin_byte(const uint8_t * const usaddr8, register_t ds_msr)
50 1.2 matt {
51 1.2 matt register_t msr;
52 1.2 matt uint8_t data;
53 1.2 matt __asm volatile(
54 1.2 matt "mfmsr %[msr]; " /* Save MSR */
55 1.2 matt "mtmsr %[ds_msr]; sync; isync; " /* DS on */
56 1.2 matt "lbz %[data],0(%[usaddr8]); " /* fetch user byte */
57 1.2 matt "mtmsr %[msr]; sync; isync; " /* DS off */
58 1.2 matt : [msr] "=&r" (msr), [data] "=r" (data)
59 1.2 matt : [ds_msr] "r" (ds_msr), [usaddr8] "b" (usaddr8));
60 1.2 matt return data;
61 1.2 matt }
62 1.2 matt
63 1.2 matt static inline uint16_t
64 1.2 matt copyin_halfword(const uint16_t * const usaddr16, register_t ds_msr)
65 1.2 matt {
66 1.2 matt register_t msr;
67 1.2 matt uint16_t data;
68 1.2 matt __asm volatile(
69 1.2 matt "mfmsr %[msr]; " /* Save MSR */
70 1.2 matt "mtmsr %[ds_msr]; sync; isync; " /* DS on */
71 1.2 matt "lhz %[data],0(%[usaddr16]); " /* fetch user byte */
72 1.2 matt "mtmsr %[msr]; sync; isync; " /* DS off */
73 1.2 matt : [msr] "=&r" (msr), [data] "=r" (data)
74 1.2 matt : [ds_msr] "r" (ds_msr), [usaddr16] "b" (usaddr16));
75 1.2 matt return data;
76 1.2 matt }
77 1.2 matt
78 1.2 matt static inline uint32_t
79 1.2 matt copyin_word(const uint32_t * const usaddr32, register_t ds_msr)
80 1.2 matt {
81 1.2 matt register_t msr;
82 1.2 matt uint32_t data;
83 1.2 matt __asm volatile(
84 1.2 matt "mfmsr %[msr]; " /* Save MSR */
85 1.2 matt "mtmsr %[ds_msr]; sync; isync; " /* DS on */
86 1.2 matt "lwz %[data],0(%[usaddr32]); " /* load user byte */
87 1.2 matt "mtmsr %[msr]; sync; isync; " /* DS off */
88 1.2 matt : [msr] "=&r" (msr), [data] "=r" (data)
89 1.2 matt : [ds_msr] "r" (ds_msr), [usaddr32] "b" (usaddr32));
90 1.2 matt return data;
91 1.2 matt }
92 1.2 matt
93 1.2 matt static inline uint32_t
94 1.2 matt copyin_word_bswap(const uint32_t * const usaddr32, register_t ds_msr)
95 1.2 matt {
96 1.2 matt register_t msr;
97 1.2 matt uint32_t data;
98 1.2 matt __asm volatile(
99 1.2 matt "mfmsr %[msr]; " /* Save MSR */
100 1.2 matt "mtmsr %[ds_msr]; sync; isync; " /* DS on */
101 1.2 matt "lwbrx %[data],0,%[usaddr32]; " /* load user LE word */
102 1.2 matt "mtmsr %[msr]; sync; isync; " /* DS off */
103 1.2 matt : [msr] "=&r" (msr), [data] "=r" (data)
104 1.2 matt : [ds_msr] "r" (ds_msr), [usaddr32] "b" (usaddr32));
105 1.2 matt return data;
106 1.2 matt }
107 1.2 matt
108 1.2 matt static inline void
109 1.2 matt copyin_8words(const uint32_t *usaddr32, uint32_t *kdaddr32, register_t ds_msr)
110 1.2 matt {
111 1.2 matt register_t msr;
112 1.2 matt //uint32_t data[8];
113 1.2 matt __asm volatile(
114 1.2 matt "mfmsr %[msr]" /* Save MSR */
115 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
116 1.2 matt "\n\t" "lwz %[data0],0(%[usaddr32])" /* fetch user data */
117 1.2 matt "\n\t" "lwz %[data1],4(%[usaddr32])" /* fetch user data */
118 1.2 matt "\n\t" "lwz %[data2],8(%[usaddr32])" /* fetch user data */
119 1.2 matt "\n\t" "lwz %[data3],12(%[usaddr32])" /* fetch user data */
120 1.2 matt "\n\t" "lwz %[data4],16(%[usaddr32])" /* fetch user data */
121 1.2 matt "\n\t" "lwz %[data5],20(%[usaddr32])" /* fetch user data */
122 1.2 matt "\n\t" "lwz %[data6],24(%[usaddr32])" /* fetch user data */
123 1.2 matt "\n\t" "lwz %[data7],28(%[usaddr32])" /* fetch user data */
124 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
125 1.2 matt : [msr] "=&r" (msr),
126 1.2 matt [data0] "=&r" (kdaddr32[0]), [data1] "=&r" (kdaddr32[1]),
127 1.2 matt [data2] "=&r" (kdaddr32[2]), [data3] "=&r" (kdaddr32[3]),
128 1.2 matt [data4] "=&r" (kdaddr32[4]), [data5] "=&r" (kdaddr32[5]),
129 1.2 matt [data6] "=&r" (kdaddr32[6]), [data7] "=&r" (kdaddr32[7])
130 1.2 matt : [ds_msr] "r" (ds_msr), [usaddr32] "b" (usaddr32));
131 1.2 matt }
132 1.2 matt
133 1.2 matt static inline void
134 1.2 matt copyin_16words(const uint32_t *usaddr32, uint32_t *kdaddr32, register_t ds_msr)
135 1.2 matt {
136 1.2 matt register_t msr;
137 1.2 matt __asm volatile(
138 1.2 matt "mfmsr %[msr]" /* Save MSR */
139 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
140 1.2 matt "\n\t" "lwz %[data0],0(%[usaddr32])" /* fetch user data */
141 1.2 matt "\n\t" "lwz %[data1],4(%[usaddr32])" /* fetch user data */
142 1.2 matt "\n\t" "lwz %[data2],8(%[usaddr32])" /* fetch user data */
143 1.2 matt "\n\t" "lwz %[data3],12(%[usaddr32])" /* fetch user data */
144 1.2 matt "\n\t" "lwz %[data4],16(%[usaddr32])" /* fetch user data */
145 1.2 matt "\n\t" "lwz %[data5],20(%[usaddr32])" /* fetch user data */
146 1.2 matt "\n\t" "lwz %[data6],24(%[usaddr32])" /* fetch user data */
147 1.2 matt "\n\t" "lwz %[data7],28(%[usaddr32])" /* fetch user data */
148 1.2 matt "\n\t" "lwz %[data8],32(%[usaddr32])" /* fetch user data */
149 1.2 matt "\n\t" "lwz %[data9],36(%[usaddr32])" /* fetch user data */
150 1.2 matt "\n\t" "lwz %[data10],40(%[usaddr32])" /* fetch user data */
151 1.2 matt "\n\t" "lwz %[data11],44(%[usaddr32])" /* fetch user data */
152 1.2 matt "\n\t" "lwz %[data12],48(%[usaddr32])" /* fetch user data */
153 1.2 matt "\n\t" "lwz %[data13],52(%[usaddr32])" /* fetch user data */
154 1.2 matt "\n\t" "lwz %[data14],56(%[usaddr32])" /* fetch user data */
155 1.2 matt "\n\t" "lwz %[data15],60(%[usaddr32])" /* fetch user data */
156 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
157 1.2 matt : [msr] "=&r" (msr),
158 1.2 matt [data0] "=&r" (kdaddr32[0]), [data1] "=&r" (kdaddr32[1]),
159 1.2 matt [data2] "=&r" (kdaddr32[2]), [data3] "=&r" (kdaddr32[3]),
160 1.2 matt [data4] "=&r" (kdaddr32[4]), [data5] "=&r" (kdaddr32[5]),
161 1.2 matt [data6] "=&r" (kdaddr32[6]), [data7] "=&r" (kdaddr32[7]),
162 1.2 matt [data8] "=&r" (kdaddr32[8]), [data9] "=&r" (kdaddr32[9]),
163 1.2 matt [data10] "=&r" (kdaddr32[10]), [data11] "=&r" (kdaddr32[11]),
164 1.2 matt [data12] "=&r" (kdaddr32[12]), [data13] "=&r" (kdaddr32[13]),
165 1.2 matt [data14] "=&r" (kdaddr32[14]), [data15] "=&r" (kdaddr32[15])
166 1.2 matt : [ds_msr] "r" (ds_msr), [usaddr32] "b" (usaddr32));
167 1.2 matt }
168 1.2 matt static inline void
169 1.2 matt copyin_bytes(vaddr_t usaddr, vaddr_t kdaddr, size_t len, register_t ds_msr)
170 1.2 matt {
171 1.2 matt const uint8_t *usaddr8 = (void *)usaddr;
172 1.2 matt uint8_t *kdaddr8 = (void *)kdaddr;
173 1.2 matt while (len-- > 0) {
174 1.2 matt *kdaddr8++ = copyin_byte(usaddr8++, ds_msr);
175 1.2 matt }
176 1.2 matt }
177 1.2 matt
178 1.2 matt static inline void
179 1.2 matt copyin_words(vaddr_t usaddr, vaddr_t kdaddr, size_t len, register_t ds_msr)
180 1.2 matt {
181 1.2 matt KASSERT((kdaddr & 3) == 0);
182 1.2 matt KASSERT((usaddr & 3) == 0);
183 1.2 matt const uint32_t *usaddr32 = (void *)usaddr;
184 1.2 matt uint32_t *kdaddr32 = (void *)kdaddr;
185 1.2 matt len >>= 2;
186 1.2 matt while (len >= 16) {
187 1.2 matt copyin_16words(usaddr32, kdaddr32, ds_msr);
188 1.2 matt usaddr32 += 16, kdaddr32 += 16, len -= 16;
189 1.2 matt }
190 1.2 matt KASSERT(len < 16);
191 1.2 matt if (len >= 8) {
192 1.2 matt copyin_8words(usaddr32, kdaddr32, ds_msr);
193 1.2 matt usaddr32 += 8, kdaddr32 += 8, len -= 8;
194 1.2 matt }
195 1.2 matt while (len-- > 0) {
196 1.2 matt *kdaddr32++ = copyin_word(usaddr32++, ds_msr);
197 1.2 matt }
198 1.2 matt }
199 1.2 matt
200 1.3 matt uint32_t
201 1.3 matt ufetch_32(const void *vusaddr)
202 1.3 matt {
203 1.3 matt struct pcb * const pcb = lwp_getpcb(curlwp);
204 1.3 matt struct faultbuf env;
205 1.3 matt
206 1.3 matt if (setfault(&env) != 0) {
207 1.3 matt pcb->pcb_onfault = NULL;
208 1.3 matt return -1;
209 1.3 matt }
210 1.3 matt
211 1.3 matt uint32_t rv = copyin_word(vusaddr, mfmsr() | PSL_DS);
212 1.3 matt
213 1.3 matt pcb->pcb_onfault = NULL;
214 1.3 matt
215 1.3 matt return rv;
216 1.3 matt }
217 1.3 matt
218 1.2 matt int
219 1.2 matt copyin(const void *vusaddr, void *vkdaddr, size_t len)
220 1.2 matt {
221 1.2 matt struct pcb * const pcb = lwp_getpcb(curlwp);
222 1.2 matt struct faultbuf env;
223 1.2 matt vaddr_t usaddr = (vaddr_t) vusaddr;
224 1.2 matt vaddr_t kdaddr = (vaddr_t) vkdaddr;
225 1.2 matt
226 1.2 matt if (__predict_false(len == 0)) {
227 1.2 matt return 0;
228 1.2 matt }
229 1.2 matt
230 1.2 matt const register_t ds_msr = mfmsr() | PSL_DS;
231 1.2 matt
232 1.2 matt int rv = setfault(&env);
233 1.2 matt if (rv != 0) {
234 1.2 matt pcb->pcb_onfault = NULL;
235 1.2 matt return rv;
236 1.2 matt }
237 1.2 matt
238 1.2 matt if (__predict_false(len < 4)) {
239 1.2 matt copyin_bytes(usaddr, kdaddr, len, ds_msr);
240 1.2 matt pcb->pcb_onfault = NULL;
241 1.2 matt return 0;
242 1.2 matt }
243 1.2 matt
244 1.2 matt const size_t alignment = (usaddr ^ kdaddr) & 3;
245 1.2 matt if (__predict_true(alignment == 0)) {
246 1.2 matt size_t slen;
247 1.2 matt if (__predict_false(kdaddr & 3)) {
248 1.2 matt slen = 4 - (kdaddr & 3);
249 1.2 matt copyin_bytes(usaddr, kdaddr, slen, ds_msr);
250 1.2 matt usaddr += slen, kdaddr += slen, len -= slen;
251 1.2 matt }
252 1.2 matt slen = len & ~3;
253 1.2 matt if (__predict_true(slen >= 4)) {
254 1.2 matt copyin_words(usaddr, kdaddr, slen, ds_msr);
255 1.2 matt usaddr += slen, kdaddr += slen, len -= slen;
256 1.2 matt }
257 1.2 matt }
258 1.2 matt if (len > 0) {
259 1.2 matt copyin_bytes(usaddr, kdaddr, len, ds_msr);
260 1.2 matt }
261 1.2 matt pcb->pcb_onfault = NULL;
262 1.2 matt return 0;
263 1.2 matt }
264 1.2 matt
265 1.2 matt int
266 1.2 matt copyinstr(const void *usaddr, void *kdaddr, size_t len, size_t *done)
267 1.2 matt {
268 1.2 matt struct pcb * const pcb = lwp_getpcb(curlwp);
269 1.2 matt struct faultbuf env;
270 1.2 matt
271 1.2 matt if (__predict_false(len == 0)) {
272 1.2 matt if (done)
273 1.2 matt *done = 0;
274 1.2 matt return 0;
275 1.2 matt }
276 1.2 matt
277 1.2 matt int rv = setfault(&env);
278 1.2 matt if (rv != 0) {
279 1.2 matt pcb->pcb_onfault = NULL;
280 1.2 matt if (done)
281 1.2 matt *done = 0;
282 1.2 matt return rv;
283 1.2 matt }
284 1.2 matt
285 1.2 matt const register_t ds_msr = mfmsr() | PSL_DS;
286 1.2 matt const uint32_t *usaddr32 = (const void *)((uintptr_t)usaddr & ~3);
287 1.2 matt uint8_t *kdaddr8 = kdaddr;
288 1.2 matt size_t copylen, wlen;
289 1.2 matt uint32_t data;
290 1.2 matt size_t uoff = (uintptr_t)usaddr & 3;
291 1.2 matt wlen = 4 - uoff;
292 1.2 matt /*
293 1.2 matt * We need discard any leading bytes if the address was
294 1.2 matt * unaligned. We read the words byteswapped so that the LSB
295 1.2 matt * contains the lowest address byte.
296 1.2 matt */
297 1.2 matt data = copyin_word_bswap(usaddr32++, ds_msr) >> (8 * uoff);
298 1.2 matt for (copylen = 0; copylen < len; copylen++, wlen--, data >>= 8) {
299 1.2 matt if (wlen == 0) {
300 1.2 matt /*
301 1.2 matt * If we've depleted the data in the word, fetch the
302 1.2 matt * next one.
303 1.2 matt */
304 1.2 matt data = copyin_word_bswap(usaddr32++, ds_msr);
305 1.2 matt wlen = 4;
306 1.2 matt }
307 1.2 matt *kdaddr8++ = data;
308 1.2 matt if ((uint8_t) data == 0) {
309 1.2 matt copylen++;
310 1.2 matt break;
311 1.2 matt }
312 1.2 matt }
313 1.2 matt
314 1.2 matt pcb->pcb_onfault = NULL;
315 1.2 matt if (done)
316 1.2 matt *done = copylen;
317 1.2 matt return 0;
318 1.2 matt }
319