copyin.c revision 1.7 1 1.7 thorpej /* $NetBSD: copyin.c,v 1.7 2019/04/07 05:25:55 thorpej Exp $ */
2 1.2 matt
3 1.2 matt /*-
4 1.2 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
5 1.2 matt * All rights reserved.
6 1.2 matt *
7 1.2 matt * This code is derived from software contributed to The NetBSD Foundation
8 1.2 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
9 1.2 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry.
10 1.2 matt *
11 1.2 matt * This material is based upon work supported by the Defense Advanced Research
12 1.2 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
13 1.2 matt * Contract No. N66001-09-C-2073.
14 1.2 matt * Approved for Public Release, Distribution Unlimited
15 1.2 matt *
16 1.2 matt * Redistribution and use in source and binary forms, with or without
17 1.2 matt * modification, are permitted provided that the following conditions
18 1.2 matt * are met:
19 1.2 matt * 1. Redistributions of source code must retain the above copyright
20 1.2 matt * notice, this list of conditions and the following disclaimer.
21 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright
22 1.2 matt * notice, this list of conditions and the following disclaimer in the
23 1.2 matt * documentation and/or other materials provided with the distribution.
24 1.2 matt *
25 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.2 matt * POSSIBILITY OF SUCH DAMAGE.
36 1.2 matt */
37 1.2 matt
38 1.2 matt #include <sys/cdefs.h>
39 1.7 thorpej __KERNEL_RCSID(0, "$NetBSD: copyin.c,v 1.7 2019/04/07 05:25:55 thorpej Exp $");
40 1.7 thorpej
41 1.7 thorpej #define __UFETCHSTORE_PRIVATE
42 1.2 matt
43 1.2 matt #include <sys/param.h>
44 1.2 matt #include <sys/lwp.h>
45 1.7 thorpej #include <sys/systm.h>
46 1.2 matt
47 1.4 matt #include <powerpc/pcb.h>
48 1.2 matt
49 1.3 matt #include <powerpc/booke/cpuvar.h>
50 1.3 matt
51 1.2 matt static inline uint8_t
52 1.2 matt copyin_byte(const uint8_t * const usaddr8, register_t ds_msr)
53 1.2 matt {
54 1.2 matt register_t msr;
55 1.2 matt uint8_t data;
56 1.2 matt __asm volatile(
57 1.2 matt "mfmsr %[msr]; " /* Save MSR */
58 1.2 matt "mtmsr %[ds_msr]; sync; isync; " /* DS on */
59 1.2 matt "lbz %[data],0(%[usaddr8]); " /* fetch user byte */
60 1.2 matt "mtmsr %[msr]; sync; isync; " /* DS off */
61 1.2 matt : [msr] "=&r" (msr), [data] "=r" (data)
62 1.2 matt : [ds_msr] "r" (ds_msr), [usaddr8] "b" (usaddr8));
63 1.2 matt return data;
64 1.2 matt }
65 1.2 matt
66 1.2 matt static inline uint16_t
67 1.2 matt copyin_halfword(const uint16_t * const usaddr16, register_t ds_msr)
68 1.2 matt {
69 1.2 matt register_t msr;
70 1.2 matt uint16_t data;
71 1.2 matt __asm volatile(
72 1.2 matt "mfmsr %[msr]; " /* Save MSR */
73 1.2 matt "mtmsr %[ds_msr]; sync; isync; " /* DS on */
74 1.2 matt "lhz %[data],0(%[usaddr16]); " /* fetch user byte */
75 1.2 matt "mtmsr %[msr]; sync; isync; " /* DS off */
76 1.2 matt : [msr] "=&r" (msr), [data] "=r" (data)
77 1.2 matt : [ds_msr] "r" (ds_msr), [usaddr16] "b" (usaddr16));
78 1.2 matt return data;
79 1.2 matt }
80 1.2 matt
81 1.2 matt static inline uint32_t
82 1.2 matt copyin_word(const uint32_t * const usaddr32, register_t ds_msr)
83 1.2 matt {
84 1.2 matt register_t msr;
85 1.2 matt uint32_t data;
86 1.2 matt __asm volatile(
87 1.2 matt "mfmsr %[msr]; " /* Save MSR */
88 1.2 matt "mtmsr %[ds_msr]; sync; isync; " /* DS on */
89 1.2 matt "lwz %[data],0(%[usaddr32]); " /* load user byte */
90 1.2 matt "mtmsr %[msr]; sync; isync; " /* DS off */
91 1.2 matt : [msr] "=&r" (msr), [data] "=r" (data)
92 1.2 matt : [ds_msr] "r" (ds_msr), [usaddr32] "b" (usaddr32));
93 1.2 matt return data;
94 1.2 matt }
95 1.2 matt
96 1.2 matt static inline uint32_t
97 1.2 matt copyin_word_bswap(const uint32_t * const usaddr32, register_t ds_msr)
98 1.2 matt {
99 1.2 matt register_t msr;
100 1.2 matt uint32_t data;
101 1.2 matt __asm volatile(
102 1.2 matt "mfmsr %[msr]; " /* Save MSR */
103 1.2 matt "mtmsr %[ds_msr]; sync; isync; " /* DS on */
104 1.2 matt "lwbrx %[data],0,%[usaddr32]; " /* load user LE word */
105 1.2 matt "mtmsr %[msr]; sync; isync; " /* DS off */
106 1.2 matt : [msr] "=&r" (msr), [data] "=r" (data)
107 1.2 matt : [ds_msr] "r" (ds_msr), [usaddr32] "b" (usaddr32));
108 1.2 matt return data;
109 1.2 matt }
110 1.2 matt
111 1.2 matt static inline void
112 1.2 matt copyin_8words(const uint32_t *usaddr32, uint32_t *kdaddr32, register_t ds_msr)
113 1.2 matt {
114 1.2 matt register_t msr;
115 1.2 matt //uint32_t data[8];
116 1.2 matt __asm volatile(
117 1.2 matt "mfmsr %[msr]" /* Save MSR */
118 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
119 1.2 matt "\n\t" "lwz %[data0],0(%[usaddr32])" /* fetch user data */
120 1.2 matt "\n\t" "lwz %[data1],4(%[usaddr32])" /* fetch user data */
121 1.2 matt "\n\t" "lwz %[data2],8(%[usaddr32])" /* fetch user data */
122 1.2 matt "\n\t" "lwz %[data3],12(%[usaddr32])" /* fetch user data */
123 1.2 matt "\n\t" "lwz %[data4],16(%[usaddr32])" /* fetch user data */
124 1.2 matt "\n\t" "lwz %[data5],20(%[usaddr32])" /* fetch user data */
125 1.2 matt "\n\t" "lwz %[data6],24(%[usaddr32])" /* fetch user data */
126 1.2 matt "\n\t" "lwz %[data7],28(%[usaddr32])" /* fetch user data */
127 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
128 1.2 matt : [msr] "=&r" (msr),
129 1.2 matt [data0] "=&r" (kdaddr32[0]), [data1] "=&r" (kdaddr32[1]),
130 1.2 matt [data2] "=&r" (kdaddr32[2]), [data3] "=&r" (kdaddr32[3]),
131 1.2 matt [data4] "=&r" (kdaddr32[4]), [data5] "=&r" (kdaddr32[5]),
132 1.2 matt [data6] "=&r" (kdaddr32[6]), [data7] "=&r" (kdaddr32[7])
133 1.2 matt : [ds_msr] "r" (ds_msr), [usaddr32] "b" (usaddr32));
134 1.2 matt }
135 1.2 matt
136 1.2 matt static inline void
137 1.2 matt copyin_16words(const uint32_t *usaddr32, uint32_t *kdaddr32, register_t ds_msr)
138 1.2 matt {
139 1.2 matt register_t msr;
140 1.2 matt __asm volatile(
141 1.2 matt "mfmsr %[msr]" /* Save MSR */
142 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
143 1.2 matt "\n\t" "lwz %[data0],0(%[usaddr32])" /* fetch user data */
144 1.2 matt "\n\t" "lwz %[data1],4(%[usaddr32])" /* fetch user data */
145 1.2 matt "\n\t" "lwz %[data2],8(%[usaddr32])" /* fetch user data */
146 1.2 matt "\n\t" "lwz %[data3],12(%[usaddr32])" /* fetch user data */
147 1.2 matt "\n\t" "lwz %[data4],16(%[usaddr32])" /* fetch user data */
148 1.2 matt "\n\t" "lwz %[data5],20(%[usaddr32])" /* fetch user data */
149 1.2 matt "\n\t" "lwz %[data6],24(%[usaddr32])" /* fetch user data */
150 1.2 matt "\n\t" "lwz %[data7],28(%[usaddr32])" /* fetch user data */
151 1.2 matt "\n\t" "lwz %[data8],32(%[usaddr32])" /* fetch user data */
152 1.2 matt "\n\t" "lwz %[data9],36(%[usaddr32])" /* fetch user data */
153 1.2 matt "\n\t" "lwz %[data10],40(%[usaddr32])" /* fetch user data */
154 1.2 matt "\n\t" "lwz %[data11],44(%[usaddr32])" /* fetch user data */
155 1.2 matt "\n\t" "lwz %[data12],48(%[usaddr32])" /* fetch user data */
156 1.2 matt "\n\t" "lwz %[data13],52(%[usaddr32])" /* fetch user data */
157 1.2 matt "\n\t" "lwz %[data14],56(%[usaddr32])" /* fetch user data */
158 1.2 matt "\n\t" "lwz %[data15],60(%[usaddr32])" /* fetch user data */
159 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
160 1.2 matt : [msr] "=&r" (msr),
161 1.2 matt [data0] "=&r" (kdaddr32[0]), [data1] "=&r" (kdaddr32[1]),
162 1.2 matt [data2] "=&r" (kdaddr32[2]), [data3] "=&r" (kdaddr32[3]),
163 1.2 matt [data4] "=&r" (kdaddr32[4]), [data5] "=&r" (kdaddr32[5]),
164 1.2 matt [data6] "=&r" (kdaddr32[6]), [data7] "=&r" (kdaddr32[7]),
165 1.2 matt [data8] "=&r" (kdaddr32[8]), [data9] "=&r" (kdaddr32[9]),
166 1.2 matt [data10] "=&r" (kdaddr32[10]), [data11] "=&r" (kdaddr32[11]),
167 1.2 matt [data12] "=&r" (kdaddr32[12]), [data13] "=&r" (kdaddr32[13]),
168 1.2 matt [data14] "=&r" (kdaddr32[14]), [data15] "=&r" (kdaddr32[15])
169 1.2 matt : [ds_msr] "r" (ds_msr), [usaddr32] "b" (usaddr32));
170 1.2 matt }
171 1.2 matt static inline void
172 1.2 matt copyin_bytes(vaddr_t usaddr, vaddr_t kdaddr, size_t len, register_t ds_msr)
173 1.2 matt {
174 1.2 matt const uint8_t *usaddr8 = (void *)usaddr;
175 1.2 matt uint8_t *kdaddr8 = (void *)kdaddr;
176 1.2 matt while (len-- > 0) {
177 1.2 matt *kdaddr8++ = copyin_byte(usaddr8++, ds_msr);
178 1.2 matt }
179 1.2 matt }
180 1.2 matt
181 1.2 matt static inline void
182 1.2 matt copyin_words(vaddr_t usaddr, vaddr_t kdaddr, size_t len, register_t ds_msr)
183 1.2 matt {
184 1.2 matt KASSERT((kdaddr & 3) == 0);
185 1.2 matt KASSERT((usaddr & 3) == 0);
186 1.2 matt const uint32_t *usaddr32 = (void *)usaddr;
187 1.2 matt uint32_t *kdaddr32 = (void *)kdaddr;
188 1.2 matt len >>= 2;
189 1.2 matt while (len >= 16) {
190 1.2 matt copyin_16words(usaddr32, kdaddr32, ds_msr);
191 1.2 matt usaddr32 += 16, kdaddr32 += 16, len -= 16;
192 1.2 matt }
193 1.2 matt KASSERT(len < 16);
194 1.2 matt if (len >= 8) {
195 1.2 matt copyin_8words(usaddr32, kdaddr32, ds_msr);
196 1.2 matt usaddr32 += 8, kdaddr32 += 8, len -= 8;
197 1.2 matt }
198 1.2 matt while (len-- > 0) {
199 1.2 matt *kdaddr32++ = copyin_word(usaddr32++, ds_msr);
200 1.2 matt }
201 1.2 matt }
202 1.2 matt
203 1.7 thorpej int
204 1.7 thorpej _ufetch_8(const uint8_t *vusaddr, uint8_t *valp)
205 1.7 thorpej {
206 1.7 thorpej struct pcb * const pcb = lwp_getpcb(curlwp);
207 1.7 thorpej struct faultbuf env;
208 1.7 thorpej
209 1.7 thorpej if (setfault(&env) != 0) {
210 1.7 thorpej pcb->pcb_onfault = NULL;
211 1.7 thorpej return EFAULT;
212 1.7 thorpej }
213 1.7 thorpej
214 1.7 thorpej *valp = copyin_byte(vusaddr, mfmsr() | PSL_DS);
215 1.7 thorpej
216 1.7 thorpej pcb->pcb_onfault = NULL;
217 1.7 thorpej
218 1.7 thorpej return 0;
219 1.7 thorpej }
220 1.7 thorpej
221 1.7 thorpej int
222 1.7 thorpej _ufetch_16(const uint16_t *vusaddr, uint16_t *valp)
223 1.3 matt {
224 1.3 matt struct pcb * const pcb = lwp_getpcb(curlwp);
225 1.3 matt struct faultbuf env;
226 1.3 matt
227 1.3 matt if (setfault(&env) != 0) {
228 1.3 matt pcb->pcb_onfault = NULL;
229 1.7 thorpej return EFAULT;
230 1.3 matt }
231 1.3 matt
232 1.7 thorpej *valp = copyin_halfword(vusaddr, mfmsr() | PSL_DS);
233 1.3 matt
234 1.3 matt pcb->pcb_onfault = NULL;
235 1.3 matt
236 1.7 thorpej return 0;
237 1.7 thorpej }
238 1.7 thorpej
239 1.7 thorpej int
240 1.7 thorpej _ufetch_32(const uint32_t *vusaddr, uint32_t *valp)
241 1.7 thorpej {
242 1.7 thorpej struct pcb * const pcb = lwp_getpcb(curlwp);
243 1.7 thorpej struct faultbuf env;
244 1.7 thorpej
245 1.7 thorpej if (setfault(&env) != 0) {
246 1.7 thorpej pcb->pcb_onfault = NULL;
247 1.7 thorpej return EFAULT;
248 1.7 thorpej }
249 1.7 thorpej
250 1.7 thorpej *valp = copyin_word(vusaddr, mfmsr() | PSL_DS);
251 1.7 thorpej
252 1.7 thorpej pcb->pcb_onfault = NULL;
253 1.7 thorpej
254 1.7 thorpej return 0;
255 1.3 matt }
256 1.3 matt
257 1.2 matt int
258 1.2 matt copyin(const void *vusaddr, void *vkdaddr, size_t len)
259 1.2 matt {
260 1.2 matt struct pcb * const pcb = lwp_getpcb(curlwp);
261 1.2 matt struct faultbuf env;
262 1.2 matt vaddr_t usaddr = (vaddr_t) vusaddr;
263 1.2 matt vaddr_t kdaddr = (vaddr_t) vkdaddr;
264 1.2 matt
265 1.2 matt if (__predict_false(len == 0)) {
266 1.2 matt return 0;
267 1.2 matt }
268 1.2 matt
269 1.2 matt const register_t ds_msr = mfmsr() | PSL_DS;
270 1.2 matt
271 1.2 matt int rv = setfault(&env);
272 1.2 matt if (rv != 0) {
273 1.2 matt pcb->pcb_onfault = NULL;
274 1.2 matt return rv;
275 1.2 matt }
276 1.2 matt
277 1.2 matt if (__predict_false(len < 4)) {
278 1.2 matt copyin_bytes(usaddr, kdaddr, len, ds_msr);
279 1.2 matt pcb->pcb_onfault = NULL;
280 1.2 matt return 0;
281 1.2 matt }
282 1.2 matt
283 1.2 matt const size_t alignment = (usaddr ^ kdaddr) & 3;
284 1.2 matt if (__predict_true(alignment == 0)) {
285 1.2 matt size_t slen;
286 1.2 matt if (__predict_false(kdaddr & 3)) {
287 1.2 matt slen = 4 - (kdaddr & 3);
288 1.2 matt copyin_bytes(usaddr, kdaddr, slen, ds_msr);
289 1.2 matt usaddr += slen, kdaddr += slen, len -= slen;
290 1.2 matt }
291 1.2 matt slen = len & ~3;
292 1.2 matt if (__predict_true(slen >= 4)) {
293 1.2 matt copyin_words(usaddr, kdaddr, slen, ds_msr);
294 1.2 matt usaddr += slen, kdaddr += slen, len -= slen;
295 1.2 matt }
296 1.2 matt }
297 1.2 matt if (len > 0) {
298 1.2 matt copyin_bytes(usaddr, kdaddr, len, ds_msr);
299 1.2 matt }
300 1.2 matt pcb->pcb_onfault = NULL;
301 1.2 matt return 0;
302 1.2 matt }
303 1.2 matt
304 1.2 matt int
305 1.2 matt copyinstr(const void *usaddr, void *kdaddr, size_t len, size_t *done)
306 1.2 matt {
307 1.2 matt struct pcb * const pcb = lwp_getpcb(curlwp);
308 1.2 matt struct faultbuf env;
309 1.2 matt
310 1.2 matt if (__predict_false(len == 0)) {
311 1.2 matt if (done)
312 1.2 matt *done = 0;
313 1.2 matt return 0;
314 1.2 matt }
315 1.2 matt
316 1.2 matt int rv = setfault(&env);
317 1.2 matt if (rv != 0) {
318 1.2 matt pcb->pcb_onfault = NULL;
319 1.2 matt if (done)
320 1.2 matt *done = 0;
321 1.2 matt return rv;
322 1.2 matt }
323 1.2 matt
324 1.2 matt const register_t ds_msr = mfmsr() | PSL_DS;
325 1.2 matt const uint32_t *usaddr32 = (const void *)((uintptr_t)usaddr & ~3);
326 1.2 matt uint8_t *kdaddr8 = kdaddr;
327 1.2 matt size_t copylen, wlen;
328 1.2 matt uint32_t data;
329 1.2 matt size_t uoff = (uintptr_t)usaddr & 3;
330 1.2 matt wlen = 4 - uoff;
331 1.2 matt /*
332 1.2 matt * We need discard any leading bytes if the address was
333 1.2 matt * unaligned. We read the words byteswapped so that the LSB
334 1.2 matt * contains the lowest address byte.
335 1.2 matt */
336 1.2 matt data = copyin_word_bswap(usaddr32++, ds_msr) >> (8 * uoff);
337 1.2 matt for (copylen = 0; copylen < len; copylen++, wlen--, data >>= 8) {
338 1.2 matt if (wlen == 0) {
339 1.2 matt /*
340 1.2 matt * If we've depleted the data in the word, fetch the
341 1.2 matt * next one.
342 1.2 matt */
343 1.2 matt data = copyin_word_bswap(usaddr32++, ds_msr);
344 1.2 matt wlen = 4;
345 1.2 matt }
346 1.2 matt *kdaddr8++ = data;
347 1.2 matt if ((uint8_t) data == 0) {
348 1.2 matt copylen++;
349 1.2 matt break;
350 1.2 matt }
351 1.2 matt }
352 1.2 matt
353 1.2 matt pcb->pcb_onfault = NULL;
354 1.2 matt if (done)
355 1.2 matt *done = copylen;
356 1.5 matt /*
357 1.5 matt * If the last byte is not NUL (0), then the name is too long.
358 1.5 matt */
359 1.5 matt return (uint8_t)data ? ENAMETOOLONG : 0;
360 1.2 matt }
361