1 1.10 andvar /* $NetBSD: copyout.c,v 1.10 2022/05/22 11:27:34 andvar Exp $ */ 2 1.2 matt 3 1.2 matt /*- 4 1.2 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc. 5 1.2 matt * All rights reserved. 6 1.2 matt * 7 1.2 matt * This code is derived from software contributed to The NetBSD Foundation 8 1.2 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects 9 1.2 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry. 10 1.2 matt * 11 1.2 matt * This material is based upon work supported by the Defense Advanced Research 12 1.2 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under 13 1.2 matt * Contract No. N66001-09-C-2073. 14 1.2 matt * Approved for Public Release, Distribution Unlimited 15 1.2 matt * 16 1.2 matt * Redistribution and use in source and binary forms, with or without 17 1.2 matt * modification, are permitted provided that the following conditions 18 1.2 matt * are met: 19 1.2 matt * 1. Redistributions of source code must retain the above copyright 20 1.2 matt * notice, this list of conditions and the following disclaimer. 21 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright 22 1.2 matt * notice, this list of conditions and the following disclaimer in the 23 1.2 matt * documentation and/or other materials provided with the distribution. 24 1.2 matt * 25 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 26 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 29 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 1.2 matt * POSSIBILITY OF SUCH DAMAGE. 36 1.2 matt */ 37 1.2 matt 38 1.9 rin #define __UFETCHSTORE_PRIVATE 39 1.9 rin 40 1.2 matt #include <sys/cdefs.h> 41 1.10 andvar __KERNEL_RCSID(0, "$NetBSD: copyout.c,v 1.10 2022/05/22 11:27:34 andvar Exp $"); 42 1.2 matt 43 1.2 matt #include <sys/param.h> 44 1.2 matt #include <sys/lwp.h> 45 1.5 thorpej #include <sys/systm.h> 46 1.2 matt 47 1.3 matt #include <powerpc/pcb.h> 48 1.3 matt 49 1.3 matt #include <powerpc/booke/cpuvar.h> 50 1.2 matt 51 1.2 matt static inline void 52 1.2 matt copyout_uint8(uint8_t *udaddr, uint8_t data, register_t ds_msr) 53 1.2 matt { 54 1.2 matt register_t msr; 55 1.2 matt __asm volatile( 56 1.2 matt "mfmsr %[msr]" /* Save MSR */ 57 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 58 1.2 matt "\n\t" "stb %[data],0(%[udaddr])" /* store user byte */ 59 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 60 1.2 matt : [msr] "=&r" (msr) 61 1.2 matt : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr)); 62 1.2 matt } 63 1.2 matt 64 1.2 matt static inline void 65 1.5 thorpej copyout_uint16(uint16_t *udaddr, uint8_t data, register_t ds_msr) 66 1.2 matt { 67 1.2 matt register_t msr; 68 1.2 matt __asm volatile( 69 1.2 matt "mfmsr %[msr]" /* Save MSR */ 70 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 71 1.5 thorpej "\n\t" "sth %[data],0(%[udaddr])" /* store user half */ 72 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 73 1.2 matt : [msr] "=&r" (msr) 74 1.2 matt : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr)); 75 1.2 matt } 76 1.2 matt 77 1.2 matt static inline void 78 1.2 matt copyout_uint32(uint32_t * const udaddr, uint32_t data, register_t ds_msr) 79 1.2 matt { 80 1.2 matt register_t msr; 81 1.2 matt __asm volatile( 82 1.2 matt "mfmsr %[msr]" /* Save MSR */ 83 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 84 1.2 matt "\n\t" "stw %[data],0(%[udaddr])" /* store user data */ 85 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 86 1.2 matt : [msr] "=&r" (msr) 87 1.2 matt : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr)); 88 1.2 matt } 89 1.2 matt 90 1.4 joerg #if 0 91 1.2 matt static inline void 92 1.2 matt copyout_le32(uint32_t * const udaddr, uint32_t data, register_t ds_msr) 93 1.2 matt { 94 1.2 matt register_t msr; 95 1.2 matt __asm volatile( 96 1.2 matt "mfmsr %[msr]" /* Save MSR */ 97 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 98 1.2 matt "\n\t" "stwbrx %[data],0,%[udaddr]" /* store user data */ 99 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 100 1.2 matt : [msr] "=&r" (msr) 101 1.2 matt : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr)); 102 1.2 matt } 103 1.2 matt 104 1.2 matt static inline void 105 1.2 matt copyout_le32_with_mask(uint32_t * const udaddr, uint32_t data, 106 1.2 matt uint32_t mask, register_t ds_msr) 107 1.2 matt { 108 1.2 matt register_t msr; 109 1.2 matt uint32_t tmp; 110 1.2 matt KASSERT((data & ~mask) == 0); 111 1.2 matt __asm volatile( 112 1.2 matt "mfmsr %[msr]" /* Save MSR */ 113 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 114 1.2 matt "\n\t" "lwbrx %[tmp],0,%[udaddr]" /* fetch user data */ 115 1.2 matt "\n\t" "andc %[tmp],%[tmp],%[mask]" /* mask out new data */ 116 1.2 matt "\n\t" "or %[tmp],%[tmp],%[data]" /* merge new data */ 117 1.2 matt "\n\t" "stwbrx %[tmp],0,%[udaddr]" /* store user data */ 118 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 119 1.2 matt : [msr] "=&r" (msr), [tmp] "=&r" (tmp) 120 1.2 matt : [ds_msr] "r" (ds_msr), [data] "r" (data), 121 1.2 matt [mask] "r" (mask), [udaddr] "b" (udaddr)); 122 1.2 matt } 123 1.4 joerg #endif 124 1.2 matt 125 1.2 matt static inline void 126 1.2 matt copyout_16uint8s(const uint8_t *ksaddr8, uint8_t *udaddr8, register_t ds_msr) 127 1.2 matt { 128 1.2 matt register_t msr; 129 1.2 matt __asm volatile( 130 1.2 matt "mfmsr %[msr]" /* Save MSR */ 131 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 132 1.2 matt "\n\t" "stb %[data0],0(%[udaddr8])" /* store user data */ 133 1.2 matt "\n\t" "stb %[data1],1(%[udaddr8])" /* store user data */ 134 1.2 matt "\n\t" "stb %[data2],2(%[udaddr8])" /* store user data */ 135 1.2 matt "\n\t" "stb %[data3],3(%[udaddr8])" /* store user data */ 136 1.2 matt "\n\t" "stb %[data4],4(%[udaddr8])" /* store user data */ 137 1.2 matt "\n\t" "stb %[data5],5(%[udaddr8])" /* store user data */ 138 1.2 matt "\n\t" "stb %[data6],6(%[udaddr8])" /* store user data */ 139 1.2 matt "\n\t" "stb %[data7],7(%[udaddr8])" /* store user data */ 140 1.2 matt "\n\t" "stb %[data8],8(%[udaddr8])" /* store user data */ 141 1.2 matt "\n\t" "stb %[data9],9(%[udaddr8])" /* store user data */ 142 1.2 matt "\n\t" "stb %[data10],10(%[udaddr8])" /* store user data */ 143 1.2 matt "\n\t" "stb %[data11],11(%[udaddr8])" /* store user data */ 144 1.2 matt "\n\t" "stb %[data12],12(%[udaddr8])" /* store user data */ 145 1.2 matt "\n\t" "stb %[data13],13(%[udaddr8])" /* store user data */ 146 1.2 matt "\n\t" "stb %[data14],14(%[udaddr8])" /* store user data */ 147 1.2 matt "\n\t" "stb %[data15],15(%[udaddr8])" /* store user data */ 148 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 149 1.2 matt : [msr] "=&r" (msr) 150 1.2 matt : [ds_msr] "r" (ds_msr), [udaddr8] "b" (udaddr8), 151 1.2 matt [data0] "r" (ksaddr8[0]), [data1] "r" (ksaddr8[1]), 152 1.2 matt [data2] "r" (ksaddr8[2]), [data3] "r" (ksaddr8[3]), 153 1.2 matt [data4] "r" (ksaddr8[4]), [data5] "r" (ksaddr8[5]), 154 1.2 matt [data6] "r" (ksaddr8[6]), [data7] "r" (ksaddr8[7]), 155 1.2 matt [data8] "r" (ksaddr8[8]), [data9] "r" (ksaddr8[9]), 156 1.2 matt [data10] "r" (ksaddr8[10]), [data11] "r" (ksaddr8[11]), 157 1.2 matt [data12] "r" (ksaddr8[12]), [data13] "r" (ksaddr8[13]), 158 1.2 matt [data14] "r" (ksaddr8[14]), [data15] "r" (ksaddr8[15])); 159 1.2 matt } 160 1.2 matt 161 1.2 matt static inline void 162 1.2 matt copyout_8uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32, 163 1.2 matt const register_t ds_msr, const size_t line_mask) 164 1.2 matt { 165 1.2 matt register_t msr; 166 1.2 matt register_t tmp; 167 1.2 matt __asm volatile( 168 1.2 matt "and. %[tmp],%[line_mask],%[udaddr32]" 169 1.2 matt "\n\t" "mfmsr %[msr]" /* Save MSR */ 170 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 171 1.2 matt "\n\t" "bne 0,1f" 172 1.2 matt "\n\t" "dcba 0,%[udaddr32]" 173 1.2 matt "\n" "1:" 174 1.2 matt "\n\t" "stw %[data0],0(%[udaddr32])" /* store user data */ 175 1.2 matt "\n\t" "stw %[data1],4(%[udaddr32])" /* store user data */ 176 1.2 matt "\n\t" "stw %[data2],8(%[udaddr32])" /* store user data */ 177 1.2 matt "\n\t" "stw %[data3],12(%[udaddr32])" /* store user data */ 178 1.2 matt "\n\t" "stw %[data4],16(%[udaddr32])" /* store user data */ 179 1.2 matt "\n\t" "stw %[data5],20(%[udaddr32])" /* store user data */ 180 1.2 matt "\n\t" "stw %[data6],24(%[udaddr32])" /* store user data */ 181 1.2 matt "\n\t" "stw %[data7],28(%[udaddr32])" /* store user data */ 182 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 183 1.2 matt : [msr] "=&r" (msr), [tmp] "=&r" (tmp) 184 1.2 matt : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32), 185 1.2 matt [line_mask] "r" (line_mask), 186 1.2 matt [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]), 187 1.2 matt [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]), 188 1.2 matt [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]), 189 1.2 matt [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7]) 190 1.2 matt : "cr0"); 191 1.2 matt } 192 1.2 matt 193 1.2 matt static inline void 194 1.2 matt copyout_16uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32, 195 1.2 matt const register_t ds_msr, const size_t line_mask) 196 1.2 matt { 197 1.2 matt KASSERT(((uintptr_t)udaddr32 & line_mask) == 0); 198 1.2 matt register_t msr; 199 1.2 matt register_t tmp; 200 1.2 matt __asm volatile( 201 1.2 matt "and. %[tmp],%[line_mask],%[udaddr32]" 202 1.2 matt "\n\t" "cmplwi 2,%[line_size],32" 203 1.2 matt "\n\t" "mfmsr %[msr]" /* Save MSR */ 204 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */ 205 1.2 matt "\n\t" "bne 0,1f" 206 1.2 matt "\n\t" "dcba 0,%[udaddr32]" 207 1.2 matt "\n\t" "bne 2,1f" 208 1.2 matt "\n\t" "dcba %[line_size],%[udaddr32]" 209 1.2 matt "\n" "1:" 210 1.2 matt "\n\t" "stw %[data0],0(%[udaddr32])" /* store user data */ 211 1.2 matt "\n\t" "stw %[data1],4(%[udaddr32])" /* store user data */ 212 1.2 matt "\n\t" "stw %[data2],8(%[udaddr32])" /* store user data */ 213 1.2 matt "\n\t" "stw %[data3],12(%[udaddr32])" /* store user data */ 214 1.2 matt "\n\t" "stw %[data4],16(%[udaddr32])" /* store user data */ 215 1.2 matt "\n\t" "stw %[data5],20(%[udaddr32])" /* store user data */ 216 1.2 matt "\n\t" "stw %[data6],24(%[udaddr32])" /* store user data */ 217 1.2 matt "\n\t" "stw %[data7],28(%[udaddr32])" /* store user data */ 218 1.2 matt "\n\t" "stw %[data8],32(%[udaddr32])" /* store user data */ 219 1.2 matt "\n\t" "stw %[data9],36(%[udaddr32])" /* store user data */ 220 1.2 matt "\n\t" "stw %[data10],40(%[udaddr32])" /* store user data */ 221 1.2 matt "\n\t" "stw %[data11],44(%[udaddr32])" /* store user data */ 222 1.2 matt "\n\t" "stw %[data12],48(%[udaddr32])" /* store user data */ 223 1.2 matt "\n\t" "stw %[data13],52(%[udaddr32])" /* store user data */ 224 1.2 matt "\n\t" "stw %[data14],56(%[udaddr32])" /* store user data */ 225 1.2 matt "\n\t" "stw %[data15],60(%[udaddr32])" /* store user data */ 226 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */ 227 1.2 matt : [msr] "=&r" (msr), [tmp] "=&r" (tmp) 228 1.2 matt : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32), 229 1.2 matt [line_size] "r" (line_mask + 1), [line_mask] "r" (line_mask), 230 1.2 matt [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]), 231 1.2 matt [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]), 232 1.2 matt [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]), 233 1.2 matt [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7]), 234 1.2 matt [data8] "r" (ksaddr32[8]), [data9] "r" (ksaddr32[9]), 235 1.2 matt [data10] "r" (ksaddr32[10]), [data11] "r" (ksaddr32[11]), 236 1.2 matt [data12] "r" (ksaddr32[12]), [data13] "r" (ksaddr32[13]), 237 1.2 matt [data14] "r" (ksaddr32[14]), [data15] "r" (ksaddr32[15]) 238 1.2 matt : "cr0", "cr2"); 239 1.2 matt } 240 1.2 matt 241 1.2 matt static inline void 242 1.2 matt copyout_uint8s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr) 243 1.2 matt { 244 1.2 matt const uint8_t *ksaddr8 = (void *)ksaddr; 245 1.2 matt uint8_t *udaddr8 = (void *)udaddr; 246 1.2 matt 247 1.2 matt __builtin_prefetch(ksaddr8, 0, 1); 248 1.2 matt 249 1.2 matt for (; len >= 16; len -= 16, ksaddr8 += 16, udaddr8 += 16) { 250 1.2 matt __builtin_prefetch(ksaddr8 + 16, 0, 1); 251 1.2 matt copyout_16uint8s(ksaddr8, udaddr8, ds_msr); 252 1.2 matt } 253 1.2 matt 254 1.2 matt while (len-- > 0) { 255 1.2 matt copyout_uint8(udaddr8++, *ksaddr8++, ds_msr); 256 1.2 matt } 257 1.2 matt } 258 1.2 matt 259 1.2 matt static inline void 260 1.2 matt copyout_uint32s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr) 261 1.2 matt { 262 1.2 matt const size_t line_size = curcpu()->ci_ci.dcache_line_size; 263 1.2 matt const size_t line_mask = line_size - 1; 264 1.2 matt const size_t udalignment = udaddr & line_mask; 265 1.2 matt KASSERT((ksaddr & 3) == 0); 266 1.2 matt KASSERT((udaddr & 3) == 0); 267 1.2 matt const uint32_t *ksaddr32 = (void *)ksaddr; 268 1.2 matt uint32_t *udaddr32 = (void *)udaddr; 269 1.2 matt len >>= 2; 270 1.2 matt __builtin_prefetch(ksaddr32, 0, 1); 271 1.2 matt if (udalignment != 0 && udalignment + 4*len > line_size) { 272 1.2 matt size_t slen = (line_size - udalignment) >> 2; 273 1.2 matt len -= slen; 274 1.2 matt for (; slen >= 8; ksaddr32 += 8, udaddr32 += 8, slen -= 8) { 275 1.2 matt copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask); 276 1.2 matt } 277 1.2 matt while (slen-- > 0) { 278 1.2 matt copyout_uint32(udaddr32++, *ksaddr32++, ds_msr); 279 1.2 matt } 280 1.2 matt if (len == 0) 281 1.2 matt return; 282 1.2 matt } 283 1.2 matt __builtin_prefetch(ksaddr32, 0, 1); 284 1.2 matt while (len >= 16) { 285 1.2 matt __builtin_prefetch(ksaddr32 + 8, 0, 1); 286 1.2 matt __builtin_prefetch(ksaddr32 + 16, 0, 1); 287 1.2 matt copyout_16uint32s(ksaddr32, udaddr32, ds_msr, line_mask); 288 1.2 matt ksaddr32 += 16, udaddr32 += 16, len -= 16; 289 1.2 matt } 290 1.2 matt KASSERT(len <= 16); 291 1.2 matt if (len >= 8) { 292 1.2 matt __builtin_prefetch(ksaddr32 + 8, 0, 1); 293 1.2 matt copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask); 294 1.2 matt ksaddr32 += 8, udaddr32 += 8, len -= 8; 295 1.2 matt } 296 1.2 matt while (len-- > 0) { 297 1.2 matt copyout_uint32(udaddr32++, *ksaddr32++, ds_msr); 298 1.2 matt } 299 1.2 matt } 300 1.2 matt 301 1.2 matt int 302 1.5 thorpej _ustore_8(uint8_t *vusaddr, uint8_t val) 303 1.5 thorpej { 304 1.5 thorpej struct pcb * const pcb = lwp_getpcb(curlwp); 305 1.5 thorpej struct faultbuf env; 306 1.5 thorpej 307 1.5 thorpej if (setfault(&env) != 0) { 308 1.5 thorpej pcb->pcb_onfault = NULL; 309 1.5 thorpej return EFAULT; 310 1.5 thorpej } 311 1.5 thorpej 312 1.5 thorpej copyout_uint8(vusaddr, val, mfmsr() | PSL_DS); 313 1.5 thorpej 314 1.5 thorpej pcb->pcb_onfault = NULL; 315 1.5 thorpej 316 1.5 thorpej return 0; 317 1.5 thorpej } 318 1.5 thorpej 319 1.5 thorpej int 320 1.5 thorpej _ustore_16(uint16_t *vusaddr, uint16_t val) 321 1.5 thorpej { 322 1.5 thorpej struct pcb * const pcb = lwp_getpcb(curlwp); 323 1.5 thorpej struct faultbuf env; 324 1.5 thorpej 325 1.5 thorpej if (setfault(&env) != 0) { 326 1.5 thorpej pcb->pcb_onfault = NULL; 327 1.5 thorpej return EFAULT; 328 1.5 thorpej } 329 1.5 thorpej 330 1.5 thorpej copyout_uint16(vusaddr, val, mfmsr() | PSL_DS); 331 1.5 thorpej 332 1.5 thorpej pcb->pcb_onfault = NULL; 333 1.5 thorpej 334 1.5 thorpej return 0; 335 1.5 thorpej } 336 1.5 thorpej 337 1.5 thorpej int 338 1.5 thorpej _ustore_32(uint32_t *vusaddr, uint32_t val) 339 1.5 thorpej { 340 1.5 thorpej struct pcb * const pcb = lwp_getpcb(curlwp); 341 1.5 thorpej struct faultbuf env; 342 1.5 thorpej 343 1.5 thorpej if (setfault(&env) != 0) { 344 1.5 thorpej pcb->pcb_onfault = NULL; 345 1.5 thorpej return EFAULT; 346 1.5 thorpej } 347 1.5 thorpej 348 1.5 thorpej copyout_uint32(vusaddr, val, mfmsr() | PSL_DS); 349 1.5 thorpej 350 1.5 thorpej pcb->pcb_onfault = NULL; 351 1.5 thorpej 352 1.5 thorpej return 0; 353 1.5 thorpej } 354 1.5 thorpej 355 1.5 thorpej int 356 1.2 matt copyout(const void *vksaddr, void *vudaddr, size_t len) 357 1.2 matt { 358 1.2 matt struct pcb * const pcb = lwp_getpcb(curlwp); 359 1.2 matt struct faultbuf env; 360 1.2 matt vaddr_t udaddr = (vaddr_t) vudaddr; 361 1.2 matt vaddr_t ksaddr = (vaddr_t) vksaddr; 362 1.2 matt 363 1.2 matt if (__predict_false(len == 0)) { 364 1.2 matt return 0; 365 1.2 matt } 366 1.2 matt 367 1.2 matt const register_t ds_msr = mfmsr() | PSL_DS; 368 1.2 matt 369 1.2 matt int rv = setfault(&env); 370 1.2 matt if (rv != 0) { 371 1.2 matt pcb->pcb_onfault = NULL; 372 1.2 matt return rv; 373 1.2 matt } 374 1.2 matt 375 1.2 matt if (__predict_false(len < 4)) { 376 1.2 matt copyout_uint8s(ksaddr, udaddr, len, ds_msr); 377 1.2 matt pcb->pcb_onfault = NULL; 378 1.2 matt return 0; 379 1.2 matt } 380 1.2 matt 381 1.2 matt const size_t alignment = (udaddr ^ ksaddr) & 3; 382 1.2 matt if (__predict_true(alignment == 0)) { 383 1.2 matt size_t slen; 384 1.2 matt if (__predict_false(ksaddr & 3)) { 385 1.2 matt slen = 4 - (ksaddr & 3); 386 1.2 matt copyout_uint8s(ksaddr, udaddr, slen, ds_msr); 387 1.2 matt udaddr += slen, ksaddr += slen, len -= slen; 388 1.2 matt } 389 1.2 matt slen = len & ~3; 390 1.2 matt if (__predict_true(slen >= 4)) { 391 1.2 matt copyout_uint32s(ksaddr, udaddr, slen, ds_msr); 392 1.2 matt udaddr += slen, ksaddr += slen, len -= slen; 393 1.2 matt } 394 1.2 matt } 395 1.2 matt 396 1.2 matt if (len > 0) { 397 1.2 matt copyout_uint8s(ksaddr, udaddr, len, ds_msr); 398 1.2 matt } 399 1.2 matt pcb->pcb_onfault = NULL; 400 1.2 matt return 0; 401 1.2 matt } 402 1.2 matt 403 1.6 rin #if 1 404 1.2 matt int 405 1.7 rin copyoutstr(const void *ksaddr, void *udaddr, size_t len, size_t *done) 406 1.2 matt { 407 1.2 matt struct pcb * const pcb = lwp_getpcb(curlwp); 408 1.2 matt struct faultbuf env; 409 1.7 rin int rv; 410 1.2 matt 411 1.2 matt if (__predict_false(len == 0)) { 412 1.7 rin if (done) 413 1.7 rin *done = 0; 414 1.2 matt return 0; 415 1.2 matt } 416 1.2 matt 417 1.7 rin rv = setfault(&env); 418 1.7 rin if (rv != 0) { 419 1.2 matt pcb->pcb_onfault = NULL; 420 1.7 rin if (done) 421 1.7 rin *done = 0; 422 1.7 rin return rv; 423 1.2 matt } 424 1.2 matt 425 1.2 matt const register_t ds_msr = mfmsr() | PSL_DS; 426 1.2 matt const uint8_t *ksaddr8 = ksaddr; 427 1.2 matt size_t copylen = 0; 428 1.2 matt 429 1.2 matt uint8_t *udaddr8 = (void *)udaddr; 430 1.2 matt 431 1.2 matt while (copylen++ < len) { 432 1.2 matt const uint8_t data = *ksaddr8++; 433 1.2 matt copyout_uint8(udaddr8++, data, ds_msr); 434 1.2 matt if (data == 0) 435 1.8 rin goto out; 436 1.2 matt } 437 1.8 rin rv = ENAMETOOLONG; 438 1.6 rin 439 1.8 rin out: 440 1.6 rin pcb->pcb_onfault = NULL; 441 1.7 rin if (done) 442 1.7 rin *done = copylen; 443 1.8 rin return rv; 444 1.6 rin } 445 1.2 matt #else 446 1.10 andvar /* XXX This version of copyoutstr(9) has never been enabled so far. */ 447 1.6 rin int 448 1.6 rin copyoutstr(const void *ksaddr, void *udaddr, size_t len, size_t *lenp) 449 1.6 rin { 450 1.6 rin struct pcb * const pcb = lwp_getpcb(curlwp); 451 1.6 rin struct faultbuf env; 452 1.6 rin 453 1.6 rin if (__predict_false(len == 0)) { 454 1.6 rin if (lenp) 455 1.6 rin *lenp = 0; 456 1.6 rin return 0; 457 1.6 rin } 458 1.6 rin 459 1.6 rin if (setfault(&env)) { 460 1.6 rin pcb->pcb_onfault = NULL; 461 1.6 rin if (lenp) 462 1.6 rin *lenp = 0; 463 1.6 rin return EFAULT; 464 1.6 rin } 465 1.6 rin 466 1.6 rin const register_t ds_msr = mfmsr() | PSL_DS; 467 1.6 rin const uint8_t *ksaddr8 = ksaddr; 468 1.6 rin size_t copylen = 0; 469 1.6 rin 470 1.2 matt uint32_t *udaddr32 = (void *)((uintptr_t)udaddr & ~3); 471 1.2 matt 472 1.2 matt size_t boff = (uintptr_t)udaddr & 3; 473 1.2 matt bool done = false; 474 1.2 matt size_t wlen = 0; 475 1.2 matt size_t data = 0; 476 1.2 matt 477 1.2 matt /* 478 1.2 matt * If the destination buffer doesn't start on a 32-bit boundary 479 1.2 matt * try to partially fill in the first word. If we succeed we can 480 1.2 matt * finish writing it while preserving the bytes on front. 481 1.2 matt */ 482 1.2 matt if (boff > 0) { 483 1.2 matt KASSERT(len > 0); 484 1.2 matt do { 485 1.2 matt data = (data << 8) | *ksaddr8++; 486 1.2 matt wlen++; 487 1.2 matt done = ((uint8_t)data == 0 || len == wlen); 488 1.2 matt } while (!done && boff + wlen < 4); 489 1.2 matt KASSERT(wlen > 0); 490 1.2 matt data <<= 8 * boff; 491 1.2 matt if (!done || boff + wlen == 4) { 492 1.2 matt uint32_t mask = 0xffffffff << (8 * boff); 493 1.2 matt copyout_le32_with_mask(udaddr32++, data, mask, ds_msr); 494 1.2 matt boff = 0; 495 1.2 matt copylen = wlen; 496 1.2 matt wlen = 0; 497 1.2 matt data = 0; 498 1.2 matt } 499 1.2 matt } 500 1.2 matt 501 1.2 matt /* 502 1.2 matt * Now we get to the heart of the routine. Build up complete words 503 1.2 matt * if possible. When we have one, write it to the user's address 504 1.2 matt * space and go for the next. If we ran out of space or we found the 505 1.2 matt * end of the string, stop building. If we managed to build a complete 506 1.2 matt * word, just write it and be happy. Otherwise we have to deal with 507 1.2 matt * the trailing bytes. 508 1.2 matt */ 509 1.2 matt KASSERT(done || boff == 0); 510 1.2 matt KASSERT(done || copylen < len); 511 1.2 matt while (!done) { 512 1.2 matt KASSERT(wlen == 0); 513 1.2 matt KASSERT(copylen < len); 514 1.2 matt do { 515 1.2 matt data = (data << 8) | *ksaddr8++; 516 1.2 matt wlen++; 517 1.2 matt done = ((uint8_t)data == 0 || copylen + wlen == len); 518 1.2 matt } while (!done && wlen < 4); 519 1.2 matt KASSERT(done || wlen == 4); 520 1.2 matt if (__predict_true(wlen == 4)) { 521 1.2 matt copyout_le32(udaddr32++, data, ds_msr); 522 1.2 matt data = 0; 523 1.2 matt copylen += wlen; 524 1.2 matt wlen = 0; 525 1.2 matt KASSERT(copylen < len || done); 526 1.2 matt } 527 1.2 matt } 528 1.2 matt KASSERT(wlen < 3); 529 1.2 matt if (wlen) { 530 1.2 matt /* 531 1.2 matt * Remember even though we are running big-endian we are using 532 1.2 matt * byte reversed load/stores so we need to deal with things as 533 1.2 matt * little endian. 534 1.2 matt * 535 1.2 matt * wlen=1 boff=0: 536 1.2 matt * (~(~0 << 8) << 0) -> (~(0xffffff00) << 0) -> 0x000000ff 537 1.2 matt * wlen=1 boff=1: 538 1.2 matt * (~(~0 << 8) << 8) -> (~(0xffffff00) << 8) -> 0x0000ff00 539 1.2 matt * wlen=1 boff=2: 540 1.2 matt * (~(~0 << 8) << 16) -> (~(0xffffff00) << 16) -> 0x00ff0000 541 1.2 matt * wlen=1 boff=3: 542 1.2 matt * (~(~0 << 8) << 24) -> (~(0xffffff00) << 24) -> 0xff000000 543 1.2 matt * wlen=2 boff=0: 544 1.2 matt * (~(~0 << 16) << 0) -> (~(0xffff0000) << 0) -> 0x0000ffff 545 1.2 matt * wlen=2 boff=1: 546 1.2 matt * (~(~0 << 16) << 8) -> (~(0xffff0000) << 8) -> 0x00ffff00 547 1.2 matt * wlen=2 boff=2: 548 1.2 matt * (~(~0 << 16) << 16) -> (~(0xffff0000) << 16) -> 0xffff0000 549 1.2 matt * wlen=3 boff=0: 550 1.2 matt * (~(~0 << 24) << 0) -> (~(0xff000000) << 0) -> 0x00ffffff 551 1.2 matt * wlen=3 boff=1: 552 1.2 matt * (~(~0 << 24) << 8) -> (~(0xff000000) << 8) -> 0xffffff00 553 1.2 matt */ 554 1.2 matt KASSERT(boff + wlen <= 4); 555 1.2 matt uint32_t mask = (~(~0 << (8 * wlen))) << (8 * boff); 556 1.2 matt KASSERT(mask != 0xffffffff); 557 1.2 matt copyout_le32_with_mask(udaddr32, data, mask, ds_msr); 558 1.2 matt copylen += wlen; 559 1.2 matt } 560 1.2 matt 561 1.2 matt pcb->pcb_onfault = NULL; 562 1.2 matt if (lenp) 563 1.2 matt *lenp = copylen; 564 1.2 matt return 0; 565 1.2 matt } 566 1.6 rin #endif 567