copyout.c revision 1.3 1 1.3 matt /* $NetBSD: copyout.c,v 1.3 2011/06/20 05:17:24 matt Exp $ */
2 1.2 matt
3 1.2 matt /*-
4 1.2 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
5 1.2 matt * All rights reserved.
6 1.2 matt *
7 1.2 matt * This code is derived from software contributed to The NetBSD Foundation
8 1.2 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
9 1.2 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry.
10 1.2 matt *
11 1.2 matt * This material is based upon work supported by the Defense Advanced Research
12 1.2 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
13 1.2 matt * Contract No. N66001-09-C-2073.
14 1.2 matt * Approved for Public Release, Distribution Unlimited
15 1.2 matt *
16 1.2 matt * Redistribution and use in source and binary forms, with or without
17 1.2 matt * modification, are permitted provided that the following conditions
18 1.2 matt * are met:
19 1.2 matt * 1. Redistributions of source code must retain the above copyright
20 1.2 matt * notice, this list of conditions and the following disclaimer.
21 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright
22 1.2 matt * notice, this list of conditions and the following disclaimer in the
23 1.2 matt * documentation and/or other materials provided with the distribution.
24 1.2 matt *
25 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
26 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
29 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.2 matt * POSSIBILITY OF SUCH DAMAGE.
36 1.2 matt */
37 1.2 matt
38 1.2 matt #include <sys/cdefs.h>
39 1.3 matt __KERNEL_RCSID(0, "$NetBSD: copyout.c,v 1.3 2011/06/20 05:17:24 matt Exp $");
40 1.2 matt
41 1.2 matt #include <sys/param.h>
42 1.2 matt #include <sys/lwp.h>
43 1.2 matt
44 1.3 matt #include <powerpc/pcb.h>
45 1.3 matt
46 1.3 matt #include <powerpc/booke/cpuvar.h>
47 1.2 matt
48 1.2 matt static inline void
49 1.2 matt copyout_uint8(uint8_t *udaddr, uint8_t data, register_t ds_msr)
50 1.2 matt {
51 1.2 matt register_t msr;
52 1.2 matt __asm volatile(
53 1.2 matt "mfmsr %[msr]" /* Save MSR */
54 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
55 1.2 matt "\n\t" "stb %[data],0(%[udaddr])" /* store user byte */
56 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
57 1.2 matt : [msr] "=&r" (msr)
58 1.2 matt : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
59 1.2 matt }
60 1.2 matt
61 1.2 matt static inline void
62 1.2 matt copyout_uint16(uint8_t *udaddr, uint8_t data, register_t ds_msr)
63 1.2 matt {
64 1.2 matt register_t msr;
65 1.2 matt __asm volatile(
66 1.2 matt "mfmsr %[msr]" /* Save MSR */
67 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
68 1.2 matt "\n\t" "stb %[data],0(%[udaddr])" /* store user byte */
69 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
70 1.2 matt : [msr] "=&r" (msr)
71 1.2 matt : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
72 1.2 matt }
73 1.2 matt
74 1.2 matt static inline void
75 1.2 matt copyout_uint32(uint32_t * const udaddr, uint32_t data, register_t ds_msr)
76 1.2 matt {
77 1.2 matt register_t msr;
78 1.2 matt __asm volatile(
79 1.2 matt "mfmsr %[msr]" /* Save MSR */
80 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
81 1.2 matt "\n\t" "stw %[data],0(%[udaddr])" /* store user data */
82 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
83 1.2 matt : [msr] "=&r" (msr)
84 1.2 matt : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
85 1.2 matt }
86 1.2 matt
87 1.2 matt static inline void
88 1.2 matt copyout_le32(uint32_t * const udaddr, uint32_t data, register_t ds_msr)
89 1.2 matt {
90 1.2 matt register_t msr;
91 1.2 matt __asm volatile(
92 1.2 matt "mfmsr %[msr]" /* Save MSR */
93 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
94 1.2 matt "\n\t" "stwbrx %[data],0,%[udaddr]" /* store user data */
95 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
96 1.2 matt : [msr] "=&r" (msr)
97 1.2 matt : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
98 1.2 matt }
99 1.2 matt
100 1.2 matt static inline void
101 1.2 matt copyout_le32_with_mask(uint32_t * const udaddr, uint32_t data,
102 1.2 matt uint32_t mask, register_t ds_msr)
103 1.2 matt {
104 1.2 matt register_t msr;
105 1.2 matt uint32_t tmp;
106 1.2 matt KASSERT((data & ~mask) == 0);
107 1.2 matt __asm volatile(
108 1.2 matt "mfmsr %[msr]" /* Save MSR */
109 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
110 1.2 matt "\n\t" "lwbrx %[tmp],0,%[udaddr]" /* fetch user data */
111 1.2 matt "\n\t" "andc %[tmp],%[tmp],%[mask]" /* mask out new data */
112 1.2 matt "\n\t" "or %[tmp],%[tmp],%[data]" /* merge new data */
113 1.2 matt "\n\t" "stwbrx %[tmp],0,%[udaddr]" /* store user data */
114 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
115 1.2 matt : [msr] "=&r" (msr), [tmp] "=&r" (tmp)
116 1.2 matt : [ds_msr] "r" (ds_msr), [data] "r" (data),
117 1.2 matt [mask] "r" (mask), [udaddr] "b" (udaddr));
118 1.2 matt }
119 1.2 matt
120 1.2 matt static inline void
121 1.2 matt copyout_16uint8s(const uint8_t *ksaddr8, uint8_t *udaddr8, register_t ds_msr)
122 1.2 matt {
123 1.2 matt register_t msr;
124 1.2 matt __asm volatile(
125 1.2 matt "mfmsr %[msr]" /* Save MSR */
126 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
127 1.2 matt "\n\t" "stb %[data0],0(%[udaddr8])" /* store user data */
128 1.2 matt "\n\t" "stb %[data1],1(%[udaddr8])" /* store user data */
129 1.2 matt "\n\t" "stb %[data2],2(%[udaddr8])" /* store user data */
130 1.2 matt "\n\t" "stb %[data3],3(%[udaddr8])" /* store user data */
131 1.2 matt "\n\t" "stb %[data4],4(%[udaddr8])" /* store user data */
132 1.2 matt "\n\t" "stb %[data5],5(%[udaddr8])" /* store user data */
133 1.2 matt "\n\t" "stb %[data6],6(%[udaddr8])" /* store user data */
134 1.2 matt "\n\t" "stb %[data7],7(%[udaddr8])" /* store user data */
135 1.2 matt "\n\t" "stb %[data8],8(%[udaddr8])" /* store user data */
136 1.2 matt "\n\t" "stb %[data9],9(%[udaddr8])" /* store user data */
137 1.2 matt "\n\t" "stb %[data10],10(%[udaddr8])" /* store user data */
138 1.2 matt "\n\t" "stb %[data11],11(%[udaddr8])" /* store user data */
139 1.2 matt "\n\t" "stb %[data12],12(%[udaddr8])" /* store user data */
140 1.2 matt "\n\t" "stb %[data13],13(%[udaddr8])" /* store user data */
141 1.2 matt "\n\t" "stb %[data14],14(%[udaddr8])" /* store user data */
142 1.2 matt "\n\t" "stb %[data15],15(%[udaddr8])" /* store user data */
143 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
144 1.2 matt : [msr] "=&r" (msr)
145 1.2 matt : [ds_msr] "r" (ds_msr), [udaddr8] "b" (udaddr8),
146 1.2 matt [data0] "r" (ksaddr8[0]), [data1] "r" (ksaddr8[1]),
147 1.2 matt [data2] "r" (ksaddr8[2]), [data3] "r" (ksaddr8[3]),
148 1.2 matt [data4] "r" (ksaddr8[4]), [data5] "r" (ksaddr8[5]),
149 1.2 matt [data6] "r" (ksaddr8[6]), [data7] "r" (ksaddr8[7]),
150 1.2 matt [data8] "r" (ksaddr8[8]), [data9] "r" (ksaddr8[9]),
151 1.2 matt [data10] "r" (ksaddr8[10]), [data11] "r" (ksaddr8[11]),
152 1.2 matt [data12] "r" (ksaddr8[12]), [data13] "r" (ksaddr8[13]),
153 1.2 matt [data14] "r" (ksaddr8[14]), [data15] "r" (ksaddr8[15]));
154 1.2 matt }
155 1.2 matt
156 1.2 matt static inline void
157 1.2 matt copyout_8uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32,
158 1.2 matt const register_t ds_msr, const size_t line_mask)
159 1.2 matt {
160 1.2 matt register_t msr;
161 1.2 matt register_t tmp;
162 1.2 matt __asm volatile(
163 1.2 matt "and. %[tmp],%[line_mask],%[udaddr32]"
164 1.2 matt "\n\t" "mfmsr %[msr]" /* Save MSR */
165 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
166 1.2 matt "\n\t" "bne 0,1f"
167 1.2 matt "\n\t" "dcba 0,%[udaddr32]"
168 1.2 matt "\n" "1:"
169 1.2 matt "\n\t" "stw %[data0],0(%[udaddr32])" /* store user data */
170 1.2 matt "\n\t" "stw %[data1],4(%[udaddr32])" /* store user data */
171 1.2 matt "\n\t" "stw %[data2],8(%[udaddr32])" /* store user data */
172 1.2 matt "\n\t" "stw %[data3],12(%[udaddr32])" /* store user data */
173 1.2 matt "\n\t" "stw %[data4],16(%[udaddr32])" /* store user data */
174 1.2 matt "\n\t" "stw %[data5],20(%[udaddr32])" /* store user data */
175 1.2 matt "\n\t" "stw %[data6],24(%[udaddr32])" /* store user data */
176 1.2 matt "\n\t" "stw %[data7],28(%[udaddr32])" /* store user data */
177 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
178 1.2 matt : [msr] "=&r" (msr), [tmp] "=&r" (tmp)
179 1.2 matt : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32),
180 1.2 matt [line_mask] "r" (line_mask),
181 1.2 matt [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]),
182 1.2 matt [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]),
183 1.2 matt [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]),
184 1.2 matt [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7])
185 1.2 matt : "cr0");
186 1.2 matt }
187 1.2 matt
188 1.2 matt static inline void
189 1.2 matt copyout_16uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32,
190 1.2 matt const register_t ds_msr, const size_t line_mask)
191 1.2 matt {
192 1.2 matt KASSERT(((uintptr_t)udaddr32 & line_mask) == 0);
193 1.2 matt register_t msr;
194 1.2 matt register_t tmp;
195 1.2 matt __asm volatile(
196 1.2 matt "and. %[tmp],%[line_mask],%[udaddr32]"
197 1.2 matt "\n\t" "cmplwi 2,%[line_size],32"
198 1.2 matt "\n\t" "mfmsr %[msr]" /* Save MSR */
199 1.2 matt "\n\t" "mtmsr %[ds_msr]; sync; isync" /* DS on */
200 1.2 matt "\n\t" "bne 0,1f"
201 1.2 matt "\n\t" "dcba 0,%[udaddr32]"
202 1.2 matt "\n\t" "bne 2,1f"
203 1.2 matt "\n\t" "dcba %[line_size],%[udaddr32]"
204 1.2 matt "\n" "1:"
205 1.2 matt "\n\t" "stw %[data0],0(%[udaddr32])" /* store user data */
206 1.2 matt "\n\t" "stw %[data1],4(%[udaddr32])" /* store user data */
207 1.2 matt "\n\t" "stw %[data2],8(%[udaddr32])" /* store user data */
208 1.2 matt "\n\t" "stw %[data3],12(%[udaddr32])" /* store user data */
209 1.2 matt "\n\t" "stw %[data4],16(%[udaddr32])" /* store user data */
210 1.2 matt "\n\t" "stw %[data5],20(%[udaddr32])" /* store user data */
211 1.2 matt "\n\t" "stw %[data6],24(%[udaddr32])" /* store user data */
212 1.2 matt "\n\t" "stw %[data7],28(%[udaddr32])" /* store user data */
213 1.2 matt "\n\t" "stw %[data8],32(%[udaddr32])" /* store user data */
214 1.2 matt "\n\t" "stw %[data9],36(%[udaddr32])" /* store user data */
215 1.2 matt "\n\t" "stw %[data10],40(%[udaddr32])" /* store user data */
216 1.2 matt "\n\t" "stw %[data11],44(%[udaddr32])" /* store user data */
217 1.2 matt "\n\t" "stw %[data12],48(%[udaddr32])" /* store user data */
218 1.2 matt "\n\t" "stw %[data13],52(%[udaddr32])" /* store user data */
219 1.2 matt "\n\t" "stw %[data14],56(%[udaddr32])" /* store user data */
220 1.2 matt "\n\t" "stw %[data15],60(%[udaddr32])" /* store user data */
221 1.2 matt "\n\t" "mtmsr %[msr]; sync; isync" /* DS off */
222 1.2 matt : [msr] "=&r" (msr), [tmp] "=&r" (tmp)
223 1.2 matt : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32),
224 1.2 matt [line_size] "r" (line_mask + 1), [line_mask] "r" (line_mask),
225 1.2 matt [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]),
226 1.2 matt [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]),
227 1.2 matt [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]),
228 1.2 matt [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7]),
229 1.2 matt [data8] "r" (ksaddr32[8]), [data9] "r" (ksaddr32[9]),
230 1.2 matt [data10] "r" (ksaddr32[10]), [data11] "r" (ksaddr32[11]),
231 1.2 matt [data12] "r" (ksaddr32[12]), [data13] "r" (ksaddr32[13]),
232 1.2 matt [data14] "r" (ksaddr32[14]), [data15] "r" (ksaddr32[15])
233 1.2 matt : "cr0", "cr2");
234 1.2 matt }
235 1.2 matt
236 1.2 matt static inline void
237 1.2 matt copyout_uint8s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr)
238 1.2 matt {
239 1.2 matt const uint8_t *ksaddr8 = (void *)ksaddr;
240 1.2 matt uint8_t *udaddr8 = (void *)udaddr;
241 1.2 matt
242 1.2 matt __builtin_prefetch(ksaddr8, 0, 1);
243 1.2 matt
244 1.2 matt for (; len >= 16; len -= 16, ksaddr8 += 16, udaddr8 += 16) {
245 1.2 matt __builtin_prefetch(ksaddr8 + 16, 0, 1);
246 1.2 matt copyout_16uint8s(ksaddr8, udaddr8, ds_msr);
247 1.2 matt }
248 1.2 matt
249 1.2 matt while (len-- > 0) {
250 1.2 matt copyout_uint8(udaddr8++, *ksaddr8++, ds_msr);
251 1.2 matt }
252 1.2 matt }
253 1.2 matt
254 1.2 matt static inline void
255 1.2 matt copyout_uint32s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr)
256 1.2 matt {
257 1.2 matt const size_t line_size = curcpu()->ci_ci.dcache_line_size;
258 1.2 matt const size_t line_mask = line_size - 1;
259 1.2 matt const size_t udalignment = udaddr & line_mask;
260 1.2 matt KASSERT((ksaddr & 3) == 0);
261 1.2 matt KASSERT((udaddr & 3) == 0);
262 1.2 matt const uint32_t *ksaddr32 = (void *)ksaddr;
263 1.2 matt uint32_t *udaddr32 = (void *)udaddr;
264 1.2 matt len >>= 2;
265 1.2 matt __builtin_prefetch(ksaddr32, 0, 1);
266 1.2 matt if (udalignment != 0 && udalignment + 4*len > line_size) {
267 1.2 matt size_t slen = (line_size - udalignment) >> 2;
268 1.2 matt len -= slen;
269 1.2 matt for (; slen >= 8; ksaddr32 += 8, udaddr32 += 8, slen -= 8) {
270 1.2 matt copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask);
271 1.2 matt }
272 1.2 matt while (slen-- > 0) {
273 1.2 matt copyout_uint32(udaddr32++, *ksaddr32++, ds_msr);
274 1.2 matt }
275 1.2 matt if (len == 0)
276 1.2 matt return;
277 1.2 matt }
278 1.2 matt __builtin_prefetch(ksaddr32, 0, 1);
279 1.2 matt while (len >= 16) {
280 1.2 matt __builtin_prefetch(ksaddr32 + 8, 0, 1);
281 1.2 matt __builtin_prefetch(ksaddr32 + 16, 0, 1);
282 1.2 matt copyout_16uint32s(ksaddr32, udaddr32, ds_msr, line_mask);
283 1.2 matt ksaddr32 += 16, udaddr32 += 16, len -= 16;
284 1.2 matt }
285 1.2 matt KASSERT(len <= 16);
286 1.2 matt if (len >= 8) {
287 1.2 matt __builtin_prefetch(ksaddr32 + 8, 0, 1);
288 1.2 matt copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask);
289 1.2 matt ksaddr32 += 8, udaddr32 += 8, len -= 8;
290 1.2 matt }
291 1.2 matt while (len-- > 0) {
292 1.2 matt copyout_uint32(udaddr32++, *ksaddr32++, ds_msr);
293 1.2 matt }
294 1.2 matt }
295 1.2 matt
296 1.2 matt int
297 1.2 matt copyout(const void *vksaddr, void *vudaddr, size_t len)
298 1.2 matt {
299 1.2 matt struct pcb * const pcb = lwp_getpcb(curlwp);
300 1.2 matt struct faultbuf env;
301 1.2 matt vaddr_t udaddr = (vaddr_t) vudaddr;
302 1.2 matt vaddr_t ksaddr = (vaddr_t) vksaddr;
303 1.2 matt
304 1.2 matt if (__predict_false(len == 0)) {
305 1.2 matt return 0;
306 1.2 matt }
307 1.2 matt
308 1.2 matt const register_t ds_msr = mfmsr() | PSL_DS;
309 1.2 matt
310 1.2 matt int rv = setfault(&env);
311 1.2 matt if (rv != 0) {
312 1.2 matt pcb->pcb_onfault = NULL;
313 1.2 matt return rv;
314 1.2 matt }
315 1.2 matt
316 1.2 matt if (__predict_false(len < 4)) {
317 1.2 matt copyout_uint8s(ksaddr, udaddr, len, ds_msr);
318 1.2 matt pcb->pcb_onfault = NULL;
319 1.2 matt return 0;
320 1.2 matt }
321 1.2 matt
322 1.2 matt const size_t alignment = (udaddr ^ ksaddr) & 3;
323 1.2 matt if (__predict_true(alignment == 0)) {
324 1.2 matt size_t slen;
325 1.2 matt if (__predict_false(ksaddr & 3)) {
326 1.2 matt slen = 4 - (ksaddr & 3);
327 1.2 matt copyout_uint8s(ksaddr, udaddr, slen, ds_msr);
328 1.2 matt udaddr += slen, ksaddr += slen, len -= slen;
329 1.2 matt }
330 1.2 matt slen = len & ~3;
331 1.2 matt if (__predict_true(slen >= 4)) {
332 1.2 matt copyout_uint32s(ksaddr, udaddr, slen, ds_msr);
333 1.2 matt udaddr += slen, ksaddr += slen, len -= slen;
334 1.2 matt }
335 1.2 matt }
336 1.2 matt
337 1.2 matt if (len > 0) {
338 1.2 matt copyout_uint8s(ksaddr, udaddr, len, ds_msr);
339 1.2 matt }
340 1.2 matt pcb->pcb_onfault = NULL;
341 1.2 matt return 0;
342 1.2 matt }
343 1.2 matt
344 1.2 matt int
345 1.2 matt copyoutstr(const void *ksaddr, void *udaddr, size_t len, size_t *lenp)
346 1.2 matt {
347 1.2 matt struct pcb * const pcb = lwp_getpcb(curlwp);
348 1.2 matt struct faultbuf env;
349 1.2 matt
350 1.2 matt if (__predict_false(len == 0)) {
351 1.2 matt if (lenp)
352 1.2 matt *lenp = 0;
353 1.2 matt return 0;
354 1.2 matt }
355 1.2 matt
356 1.2 matt if (setfault(&env)) {
357 1.2 matt pcb->pcb_onfault = NULL;
358 1.2 matt if (lenp)
359 1.2 matt *lenp = 0;
360 1.2 matt return EFAULT;
361 1.2 matt }
362 1.2 matt
363 1.2 matt const register_t ds_msr = mfmsr() | PSL_DS;
364 1.2 matt const uint8_t *ksaddr8 = ksaddr;
365 1.2 matt size_t copylen = 0;
366 1.2 matt
367 1.2 matt #if 1
368 1.2 matt uint8_t *udaddr8 = (void *)udaddr;
369 1.2 matt
370 1.2 matt while (copylen++ < len) {
371 1.2 matt const uint8_t data = *ksaddr8++;
372 1.2 matt copyout_uint8(udaddr8++, data, ds_msr);
373 1.2 matt if (data == 0)
374 1.2 matt break;
375 1.2 matt }
376 1.2 matt #else
377 1.2 matt uint32_t *udaddr32 = (void *)((uintptr_t)udaddr & ~3);
378 1.2 matt
379 1.2 matt size_t boff = (uintptr_t)udaddr & 3;
380 1.2 matt bool done = false;
381 1.2 matt size_t wlen = 0;
382 1.2 matt size_t data = 0;
383 1.2 matt
384 1.2 matt /*
385 1.2 matt * If the destination buffer doesn't start on a 32-bit boundary
386 1.2 matt * try to partially fill in the first word. If we succeed we can
387 1.2 matt * finish writing it while preserving the bytes on front.
388 1.2 matt */
389 1.2 matt if (boff > 0) {
390 1.2 matt KASSERT(len > 0);
391 1.2 matt do {
392 1.2 matt data = (data << 8) | *ksaddr8++;
393 1.2 matt wlen++;
394 1.2 matt done = ((uint8_t)data == 0 || len == wlen);
395 1.2 matt } while (!done && boff + wlen < 4);
396 1.2 matt KASSERT(wlen > 0);
397 1.2 matt data <<= 8 * boff;
398 1.2 matt if (!done || boff + wlen == 4) {
399 1.2 matt uint32_t mask = 0xffffffff << (8 * boff);
400 1.2 matt copyout_le32_with_mask(udaddr32++, data, mask, ds_msr);
401 1.2 matt boff = 0;
402 1.2 matt copylen = wlen;
403 1.2 matt wlen = 0;
404 1.2 matt data = 0;
405 1.2 matt }
406 1.2 matt }
407 1.2 matt
408 1.2 matt /*
409 1.2 matt * Now we get to the heart of the routine. Build up complete words
410 1.2 matt * if possible. When we have one, write it to the user's address
411 1.2 matt * space and go for the next. If we ran out of space or we found the
412 1.2 matt * end of the string, stop building. If we managed to build a complete
413 1.2 matt * word, just write it and be happy. Otherwise we have to deal with
414 1.2 matt * the trailing bytes.
415 1.2 matt */
416 1.2 matt KASSERT(done || boff == 0);
417 1.2 matt KASSERT(done || copylen < len);
418 1.2 matt while (!done) {
419 1.2 matt KASSERT(wlen == 0);
420 1.2 matt KASSERT(copylen < len);
421 1.2 matt do {
422 1.2 matt data = (data << 8) | *ksaddr8++;
423 1.2 matt wlen++;
424 1.2 matt done = ((uint8_t)data == 0 || copylen + wlen == len);
425 1.2 matt } while (!done && wlen < 4);
426 1.2 matt KASSERT(done || wlen == 4);
427 1.2 matt if (__predict_true(wlen == 4)) {
428 1.2 matt copyout_le32(udaddr32++, data, ds_msr);
429 1.2 matt data = 0;
430 1.2 matt copylen += wlen;
431 1.2 matt wlen = 0;
432 1.2 matt KASSERT(copylen < len || done);
433 1.2 matt }
434 1.2 matt }
435 1.2 matt KASSERT(wlen < 3);
436 1.2 matt if (wlen) {
437 1.2 matt /*
438 1.2 matt * Remember even though we are running big-endian we are using
439 1.2 matt * byte reversed load/stores so we need to deal with things as
440 1.2 matt * little endian.
441 1.2 matt *
442 1.2 matt * wlen=1 boff=0:
443 1.2 matt * (~(~0 << 8) << 0) -> (~(0xffffff00) << 0) -> 0x000000ff
444 1.2 matt * wlen=1 boff=1:
445 1.2 matt * (~(~0 << 8) << 8) -> (~(0xffffff00) << 8) -> 0x0000ff00
446 1.2 matt * wlen=1 boff=2:
447 1.2 matt * (~(~0 << 8) << 16) -> (~(0xffffff00) << 16) -> 0x00ff0000
448 1.2 matt * wlen=1 boff=3:
449 1.2 matt * (~(~0 << 8) << 24) -> (~(0xffffff00) << 24) -> 0xff000000
450 1.2 matt * wlen=2 boff=0:
451 1.2 matt * (~(~0 << 16) << 0) -> (~(0xffff0000) << 0) -> 0x0000ffff
452 1.2 matt * wlen=2 boff=1:
453 1.2 matt * (~(~0 << 16) << 8) -> (~(0xffff0000) << 8) -> 0x00ffff00
454 1.2 matt * wlen=2 boff=2:
455 1.2 matt * (~(~0 << 16) << 16) -> (~(0xffff0000) << 16) -> 0xffff0000
456 1.2 matt * wlen=3 boff=0:
457 1.2 matt * (~(~0 << 24) << 0) -> (~(0xff000000) << 0) -> 0x00ffffff
458 1.2 matt * wlen=3 boff=1:
459 1.2 matt * (~(~0 << 24) << 8) -> (~(0xff000000) << 8) -> 0xffffff00
460 1.2 matt */
461 1.2 matt KASSERT(boff + wlen <= 4);
462 1.2 matt uint32_t mask = (~(~0 << (8 * wlen))) << (8 * boff);
463 1.2 matt KASSERT(mask != 0xffffffff);
464 1.2 matt copyout_le32_with_mask(udaddr32, data, mask, ds_msr);
465 1.2 matt copylen += wlen;
466 1.2 matt }
467 1.2 matt #endif
468 1.2 matt
469 1.2 matt pcb->pcb_onfault = NULL;
470 1.2 matt if (lenp)
471 1.2 matt *lenp = copylen;
472 1.2 matt return 0;
473 1.2 matt }
474