pq3etsec.c revision 1.18 1 /* $NetBSD: pq3etsec.c,v 1.18 2014/12/20 18:03:17 nonaka Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include "opt_inet.h"
38 #include "opt_mpc85xx.h"
39
40 #include <sys/cdefs.h>
41
42 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.18 2014/12/20 18:03:17 nonaka Exp $");
43
44 #include <sys/param.h>
45 #include <sys/cpu.h>
46 #include <sys/device.h>
47 #include <sys/mbuf.h>
48 #include <sys/ioctl.h>
49 #include <sys/intr.h>
50 #include <sys/bus.h>
51 #include <sys/kernel.h>
52 #include <sys/kmem.h>
53 #include <sys/proc.h>
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_ether.h>
60 #include <net/if_media.h>
61
62 #include <dev/mii/miivar.h>
63
64 #include <net/bpf.h>
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/in_offload.h>
71 #endif /* INET */
72 #ifdef INET6
73 #include <netinet6/in6.h>
74 #include <netinet/ip6.h>
75 #endif
76 #include <netinet6/in6_offload.h>
77
78
79 #include <powerpc/spr.h>
80 #include <powerpc/booke/spr.h>
81
82 #include <powerpc/booke/cpuvar.h>
83 #include <powerpc/booke/e500var.h>
84 #include <powerpc/booke/e500reg.h>
85 #include <powerpc/booke/etsecreg.h>
86
87 #define M_HASFCB M_LINK2 /* tx packet has FCB prepended */
88
89 #define ETSEC_MAXTXMBUFS 30
90 #define ETSEC_NTXSEGS 30
91 #define ETSEC_MAXRXMBUFS 511
92 #define ETSEC_MINRXMBUFS 32
93 #define ETSEC_NRXSEGS 1
94
95 #define IFCAP_RCTRL_IPCSEN IFCAP_CSUM_IPv4_Rx
96 #define IFCAP_RCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Rx\
97 |IFCAP_CSUM_UDPv4_Rx\
98 |IFCAP_CSUM_TCPv6_Rx\
99 |IFCAP_CSUM_UDPv6_Rx)
100
101 #define IFCAP_TCTRL_IPCSEN IFCAP_CSUM_IPv4_Tx
102 #define IFCAP_TCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Tx\
103 |IFCAP_CSUM_UDPv4_Tx\
104 |IFCAP_CSUM_TCPv6_Tx\
105 |IFCAP_CSUM_UDPv6_Tx)
106
107 #define IFCAP_ETSEC (IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
108 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
109
110 #define M_CSUM_IP (M_CSUM_CIP|M_CSUM_CTU)
111 #define M_CSUM_IP6 (M_CSUM_TCPv6|M_CSUM_UDPv6)
112 #define M_CSUM_TUP (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
113 #define M_CSUM_UDP (M_CSUM_UDPv4|M_CSUM_UDPv6)
114 #define M_CSUM_IP4 (M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
115 #define M_CSUM_CIP (M_CSUM_IPv4)
116 #define M_CSUM_CTU (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
117
118 struct pq3etsec_txqueue {
119 bus_dmamap_t txq_descmap;
120 volatile struct txbd *txq_consumer;
121 volatile struct txbd *txq_producer;
122 volatile struct txbd *txq_first;
123 volatile struct txbd *txq_last;
124 struct ifqueue txq_mbufs;
125 struct mbuf *txq_next;
126 #ifdef ETSEC_DEBUG
127 struct mbuf *txq_lmbufs[512];
128 #endif
129 uint32_t txq_qmask;
130 uint32_t txq_free;
131 uint32_t txq_threshold;
132 uint32_t txq_lastintr;
133 bus_size_t txq_reg_tbase;
134 bus_dma_segment_t txq_descmap_seg;
135 };
136
137 struct pq3etsec_rxqueue {
138 bus_dmamap_t rxq_descmap;
139 volatile struct rxbd *rxq_consumer;
140 volatile struct rxbd *rxq_producer;
141 volatile struct rxbd *rxq_first;
142 volatile struct rxbd *rxq_last;
143 struct mbuf *rxq_mhead;
144 struct mbuf **rxq_mtail;
145 struct mbuf *rxq_mconsumer;
146 #ifdef ETSEC_DEBUG
147 struct mbuf *rxq_mbufs[512];
148 #endif
149 uint32_t rxq_qmask;
150 uint32_t rxq_inuse;
151 uint32_t rxq_threshold;
152 bus_size_t rxq_reg_rbase;
153 bus_size_t rxq_reg_rbptr;
154 bus_dma_segment_t rxq_descmap_seg;
155 };
156
157 struct pq3etsec_mapcache {
158 u_int dmc_nmaps;
159 u_int dmc_maxseg;
160 u_int dmc_maxmaps;
161 u_int dmc_maxmapsize;
162 bus_dmamap_t dmc_maps[0];
163 };
164
165 struct pq3etsec_softc {
166 device_t sc_dev;
167 device_t sc_mdio_dev;
168 struct ethercom sc_ec;
169 #define sc_if sc_ec.ec_if
170 struct mii_data sc_mii;
171 bus_space_tag_t sc_bst;
172 bus_space_handle_t sc_bsh;
173 bus_space_handle_t sc_mdio_bsh;
174 bus_dma_tag_t sc_dmat;
175 int sc_phy_addr;
176 prop_dictionary_t sc_intrmap;
177 uint32_t sc_intrmask;
178
179 uint32_t sc_soft_flags;
180 #define SOFT_RESET 0x0001
181 #define SOFT_RXINTR 0x0010
182 #define SOFT_RXBSY 0x0020
183 #define SOFT_TXINTR 0x0100
184 #define SOFT_TXERROR 0x0200
185
186 struct pq3etsec_txqueue sc_txq;
187 struct pq3etsec_rxqueue sc_rxq;
188 uint32_t sc_txerrors;
189 uint32_t sc_rxerrors;
190
191 size_t sc_rx_adjlen;
192
193 /*
194 * Copies of various ETSEC registers.
195 */
196 uint32_t sc_imask;
197 uint32_t sc_maccfg1;
198 uint32_t sc_maccfg2;
199 uint32_t sc_maxfrm;
200 uint32_t sc_ecntrl;
201 uint32_t sc_dmactrl;
202 uint32_t sc_macstnaddr1;
203 uint32_t sc_macstnaddr2;
204 uint32_t sc_tctrl;
205 uint32_t sc_rctrl;
206 uint32_t sc_gaddr[16];
207 uint64_t sc_macaddrs[15];
208
209 void *sc_tx_ih;
210 void *sc_rx_ih;
211 void *sc_error_ih;
212 void *sc_soft_ih;
213
214 kmutex_t *sc_lock;
215
216 struct evcnt sc_ev_tx_stall;
217 struct evcnt sc_ev_tx_intr;
218 struct evcnt sc_ev_rx_stall;
219 struct evcnt sc_ev_rx_intr;
220 struct evcnt sc_ev_error_intr;
221 struct evcnt sc_ev_soft_intr;
222 struct evcnt sc_ev_tx_pause;
223 struct evcnt sc_ev_rx_pause;
224 struct evcnt sc_ev_mii_ticks;
225
226 struct callout sc_mii_callout;
227 uint64_t sc_mii_last_tick;
228
229 struct ifqueue sc_rx_bufcache;
230 struct pq3etsec_mapcache *sc_rx_mapcache;
231 struct pq3etsec_mapcache *sc_tx_mapcache;
232 };
233
234 struct pq3mdio_softc {
235 device_t mdio_dev;
236
237 kmutex_t *mdio_lock;
238
239 bus_space_tag_t mdio_bst;
240 bus_space_handle_t mdio_bsh;
241 };
242
243 static int pq3etsec_match(device_t, cfdata_t, void *);
244 static void pq3etsec_attach(device_t, device_t, void *);
245
246 static int pq3mdio_match(device_t, cfdata_t, void *);
247 static void pq3mdio_attach(device_t, device_t, void *);
248
249 static void pq3etsec_ifstart(struct ifnet *);
250 static void pq3etsec_ifwatchdog(struct ifnet *);
251 static int pq3etsec_ifinit(struct ifnet *);
252 static void pq3etsec_ifstop(struct ifnet *, int);
253 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
254
255 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
256 struct pq3etsec_mapcache **, size_t, size_t, size_t);
257 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
258 struct pq3etsec_mapcache *);
259 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
260 struct pq3etsec_mapcache *);
261 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
262 struct pq3etsec_mapcache *, bus_dmamap_t);
263
264 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
265 struct pq3etsec_txqueue *, u_int);
266 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
267 struct pq3etsec_txqueue *);
268 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
269 struct pq3etsec_txqueue *);
270 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
271 struct pq3etsec_txqueue *);
272 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
273 struct pq3etsec_txqueue *, struct mbuf *m);
274 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
275 struct pq3etsec_txqueue *);
276
277 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
278 struct pq3etsec_rxqueue *, u_int);
279 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
280 struct pq3etsec_rxqueue *);
281 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
282 struct pq3etsec_rxqueue *, bool);
283 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
284 struct pq3etsec_rxqueue *);
285
286 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
287
288 static void pq3etsec_mii_tick(void *);
289 static int pq3etsec_rx_intr(void *);
290 static int pq3etsec_tx_intr(void *);
291 static int pq3etsec_error_intr(void *);
292 static void pq3etsec_soft_intr(void *);
293
294 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
295 pq3etsec_match, pq3etsec_attach, NULL, NULL);
296
297 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
298 pq3mdio_match, pq3mdio_attach, NULL, NULL);
299
300 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
301 pq3mdio_match, pq3mdio_attach, NULL, NULL);
302
303 static inline uint32_t
304 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
305 {
306 return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
307 }
308
309 static inline void
310 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
311 {
312 bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
313 }
314
315 static inline uint32_t
316 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
317 {
318 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
319 }
320
321 static int
322 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
323 {
324 return strcmp(cf->cf_name, "mdio") == 0;
325 }
326
327 static int
328 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
329 {
330 const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
331 const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
332 || svr == (SVR_P1016v1 >> 16));
333
334 if (device_is_a(parent, "cpunode")) {
335 if (!p1025_p
336 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
337 return 0;
338
339 return 1;
340 }
341
342 if (device_is_a(parent, "tsec")) {
343 if (p1025_p
344 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
345 return 0;
346
347 return 1;
348 }
349
350 return 0;
351 }
352
353 static void
354 pq3mdio_attach(device_t parent, device_t self, void *aux)
355 {
356 struct pq3mdio_softc * const mdio = device_private(self);
357 struct cpunode_attach_args * const cna = aux;
358 struct cpunode_locators * const cnl = &cna->cna_locs;
359
360 mdio->mdio_dev = self;
361 mdio->mdio_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
362
363 if (device_is_a(parent, "cpunode")) {
364 struct cpunode_softc * const psc = device_private(parent);
365 psc->sc_children |= cna->cna_childmask;
366
367 mdio->mdio_bst = cna->cna_memt;
368 if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
369 cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
370 aprint_error(": error mapping registers @ %#x\n",
371 cnl->cnl_addr);
372 return;
373 }
374 } else {
375 struct pq3etsec_softc * const sc = device_private(parent);
376
377 KASSERT(device_is_a(parent, "tsec"));
378 KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
379 || cnl->cnl_addr == ETSEC2_BASE
380 || cnl->cnl_addr == ETSEC3_BASE
381 || cnl->cnl_addr == ETSEC4_BASE,
382 "unknown tsec addr %x", cnl->cnl_addr);
383
384 mdio->mdio_bst = sc->sc_bst;
385 mdio->mdio_bsh = sc->sc_bsh;
386 }
387
388 aprint_normal("\n");
389 }
390
391 static int
392 pq3mdio_mii_readreg(device_t self, int phy, int reg)
393 {
394 struct pq3mdio_softc * const mdio = device_private(self);
395 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
396
397 mutex_enter(mdio->mdio_lock);
398
399 etsec_mdio_write(mdio, MIIMADD,
400 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
401
402 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
403 etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
404
405 while (etsec_mdio_read(mdio, MIIMIND) != 0) {
406 delay(1);
407 }
408 int data = etsec_mdio_read(mdio, MIIMSTAT);
409
410 if (miimcom == MIIMCOM_SCAN)
411 etsec_mdio_write(mdio, MIIMCOM, miimcom);
412
413 #if 0
414 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
415 __func__, phy, reg, data);
416 #endif
417 mutex_exit(mdio->mdio_lock);
418 return data;
419 }
420
421 static void
422 pq3mdio_mii_writereg(device_t self, int phy, int reg, int data)
423 {
424 struct pq3mdio_softc * const mdio = device_private(self);
425 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
426
427 #if 0
428 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
429 __func__, phy, reg, data);
430 #endif
431
432 mutex_enter(mdio->mdio_lock);
433
434 etsec_mdio_write(mdio, MIIMADD,
435 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
436 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
437 etsec_mdio_write(mdio, MIIMCON, data);
438
439 int timo = 1000; /* 1ms */
440 while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
441 delay(1);
442 }
443
444 if (miimcom == MIIMCOM_SCAN)
445 etsec_mdio_write(mdio, MIIMCOM, miimcom);
446
447 mutex_exit(mdio->mdio_lock);
448 }
449
450 static inline void
451 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
452 {
453 bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
454 }
455
456 static void
457 pq3etsec_mii_statchg(struct ifnet *ifp)
458 {
459 struct pq3etsec_softc * const sc = ifp->if_softc;
460 struct mii_data * const mii = &sc->sc_mii;
461
462 uint32_t maccfg1 = sc->sc_maccfg1;
463 uint32_t maccfg2 = sc->sc_maccfg2;
464 uint32_t ecntrl = sc->sc_ecntrl;
465
466 maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
467 maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
468
469 if (sc->sc_mii.mii_media_active & IFM_FDX) {
470 maccfg2 |= MACCFG2_FD;
471 }
472
473 /*
474 * Now deal with the flow control bits.
475 */
476 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
477 && (mii->mii_media_active & IFM_ETH_FMASK)) {
478 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
479 maccfg1 |= MACCFG1_RX_FLOW;
480 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
481 maccfg1 |= MACCFG1_TX_FLOW;
482 }
483
484 /*
485 * Now deal with the speed.
486 */
487 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
488 maccfg2 |= MACCFG2_IFMODE_GMII;
489 } else {
490 maccfg2 |= MACCFG2_IFMODE_MII;
491 ecntrl &= ~ECNTRL_R100M;
492 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
493 ecntrl |= ECNTRL_R100M;
494 }
495 }
496
497 /*
498 * If things are different, re-init things.
499 */
500 if (maccfg1 != sc->sc_maccfg1
501 || maccfg2 != sc->sc_maccfg2
502 || ecntrl != sc->sc_ecntrl) {
503 if (sc->sc_if.if_flags & IFF_RUNNING)
504 atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
505 sc->sc_maccfg1 = maccfg1;
506 sc->sc_maccfg2 = maccfg2;
507 sc->sc_ecntrl = ecntrl;
508 }
509 }
510
511 #if 0
512 static void
513 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
514 {
515 struct pq3etsec_softc * const sc = ifp->if_softc;
516
517 mii_pollstat(&sc->sc_mii);
518 ether_mediastatus(ifp, ifmr);
519 ifmr->ifm_status = sc->sc_mii.mii_media_status;
520 ifmr->ifm_active = sc->sc_mii.mii_media_active;
521 }
522
523 static int
524 pq3etsec_mediachange(struct ifnet *ifp)
525 {
526 struct pq3etsec_softc * const sc = ifp->if_softc;
527
528 if ((ifp->if_flags & IFF_UP) == 0)
529 return 0;
530
531 int rv = mii_mediachg(&sc->sc_mii);
532 return (rv == ENXIO) ? 0 : rv;
533 }
534 #endif
535
536 static int
537 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
538 {
539
540 if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
541 return 0;
542
543 return 1;
544 }
545
546 static void
547 pq3etsec_attach(device_t parent, device_t self, void *aux)
548 {
549 struct cpunode_softc * const psc = device_private(parent);
550 struct pq3etsec_softc * const sc = device_private(self);
551 struct cpunode_attach_args * const cna = aux;
552 struct cpunode_locators * const cnl = &cna->cna_locs;
553 cfdata_t cf = device_cfdata(self);
554 int error;
555
556 psc->sc_children |= cna->cna_childmask;
557 sc->sc_dev = self;
558 sc->sc_bst = cna->cna_memt;
559 sc->sc_dmat = &booke_bus_dma_tag;
560
561 /*
562 * Pull out the mdio bus and phy we are supposed to use.
563 */
564 const int mdio = cf->cf_loc[CPUNODECF_MDIO];
565 const int phy = cf->cf_loc[CPUNODECF_PHY];
566 if (mdio != CPUNODECF_MDIO_DEFAULT)
567 aprint_normal(" mdio %d", mdio);
568
569 /*
570 * See if the phy is in the config file...
571 */
572 if (phy != CPUNODECF_PHY_DEFAULT) {
573 sc->sc_phy_addr = phy;
574 } else {
575 unsigned char prop_name[20];
576 snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
577 cnl->cnl_instance);
578 sc->sc_phy_addr = board_info_get_number(prop_name);
579 }
580 if (sc->sc_phy_addr != MII_PHY_ANY)
581 aprint_normal(" phy %d", sc->sc_phy_addr);
582
583 error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
584 &sc->sc_bsh);
585 if (error) {
586 aprint_error(": error mapping registers: %d\n", error);
587 return;
588 }
589
590 /*
591 * Assume firmware has aready set the mac address and fetch it
592 * before we reinit it.
593 */
594 sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
595 sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
596 sc->sc_rctrl = RCTRL_DEFAULT;
597 sc->sc_ecntrl = etsec_read(sc, ECNTRL);
598 sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
599 sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
600
601 if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
602 size_t len;
603 const uint8_t *mac_addr =
604 board_info_get_data("tsec-mac-addr-base", &len);
605 KASSERT(len == ETHER_ADDR_LEN);
606 sc->sc_macstnaddr2 =
607 (mac_addr[1] << 24)
608 | (mac_addr[0] << 16);
609 sc->sc_macstnaddr1 =
610 ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
611 | (mac_addr[4] << 16)
612 | (mac_addr[3] << 8)
613 | (mac_addr[2] << 0);
614 #if 0
615 aprint_error(": mac-address unknown\n");
616 return;
617 #endif
618 }
619
620 char enaddr[ETHER_ADDR_LEN] = {
621 [0] = sc->sc_macstnaddr2 >> 16,
622 [1] = sc->sc_macstnaddr2 >> 24,
623 [2] = sc->sc_macstnaddr1 >> 0,
624 [3] = sc->sc_macstnaddr1 >> 8,
625 [4] = sc->sc_macstnaddr1 >> 16,
626 [5] = sc->sc_macstnaddr1 >> 24,
627 };
628
629 error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
630 if (error) {
631 aprint_error(": failed to init rxq: %d\n", error);
632 return;
633 }
634
635 error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
636 if (error) {
637 aprint_error(": failed to init txq: %d\n", error);
638 return;
639 }
640
641 error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
642 ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
643 if (error) {
644 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
645 return;
646 }
647
648 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
649 ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
650 if (error) {
651 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
652 return;
653 }
654
655 sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
656 pq3etsec_tx_intr, sc);
657 if (sc->sc_tx_ih == NULL) {
658 aprint_error(": failed to establish tx interrupt: %d\n",
659 cnl->cnl_intrs[0]);
660 return;
661 }
662
663 sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
664 pq3etsec_rx_intr, sc);
665 if (sc->sc_rx_ih == NULL) {
666 aprint_error(": failed to establish rx interrupt: %d\n",
667 cnl->cnl_intrs[1]);
668 return;
669 }
670
671 sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
672 pq3etsec_error_intr, sc);
673 if (sc->sc_error_ih == NULL) {
674 aprint_error(": failed to establish error interrupt: %d\n",
675 cnl->cnl_intrs[2]);
676 return;
677 }
678
679 sc->sc_soft_ih = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
680 pq3etsec_soft_intr, sc);
681 if (sc->sc_soft_ih == NULL) {
682 aprint_error(": failed to establish soft interrupt\n");
683 return;
684 }
685
686 /*
687 * If there was no MDIO
688 */
689 if (mdio == CPUNODECF_MDIO_DEFAULT) {
690 aprint_normal("\n");
691 cfdata_t mdio_cf = config_search_ia(pq3mdio_find, self, NULL, cna);
692 if (mdio_cf != NULL) {
693 sc->sc_mdio_dev = config_attach(self, mdio_cf, cna, NULL);
694 }
695 } else {
696 sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
697 if (sc->sc_mdio_dev == NULL) {
698 aprint_error(": failed to locate mdio device\n");
699 return;
700 }
701 aprint_normal("\n");
702 }
703
704 etsec_write(sc, ATTR, ATTR_DEFAULT);
705 etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
706
707 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
708
709 callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
710 callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
711
712 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
713 ether_sprintf(enaddr));
714
715 const char * const xname = device_xname(sc->sc_dev);
716 struct ethercom * const ec = &sc->sc_ec;
717 struct ifnet * const ifp = &ec->ec_if;
718
719 ec->ec_mii = &sc->sc_mii;
720
721 sc->sc_mii.mii_ifp = ifp;
722 sc->sc_mii.mii_readreg = pq3mdio_mii_readreg;
723 sc->sc_mii.mii_writereg = pq3mdio_mii_writereg;
724 sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
725
726 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
727 ether_mediastatus);
728
729 if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
730 mii_attach(sc->sc_mdio_dev, &sc->sc_mii, 0xffffffff,
731 sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
732
733 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
734 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
735 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
736 } else {
737 callout_schedule(&sc->sc_mii_callout, hz);
738 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
739 }
740 } else {
741 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
742 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
743 }
744
745 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
746 | ETHERCAP_JUMBO_MTU;
747
748 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
749 ifp->if_softc = sc;
750 ifp->if_capabilities = IFCAP_ETSEC;
751 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
752 ifp->if_ioctl = pq3etsec_ifioctl;
753 ifp->if_start = pq3etsec_ifstart;
754 ifp->if_watchdog = pq3etsec_ifwatchdog;
755 ifp->if_init = pq3etsec_ifinit;
756 ifp->if_stop = pq3etsec_ifstop;
757 IFQ_SET_READY(&ifp->if_snd);
758
759 pq3etsec_ifstop(ifp, true);
760
761 /*
762 * Attach the interface.
763 */
764 if_attach(ifp);
765 ether_ifattach(ifp, enaddr);
766
767 evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
768 NULL, xname, "rx stall");
769 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
770 NULL, xname, "tx stall");
771 evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
772 NULL, xname, "tx intr");
773 evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
774 NULL, xname, "rx intr");
775 evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
776 NULL, xname, "error intr");
777 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
778 NULL, xname, "soft intr");
779 evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
780 NULL, xname, "tx pause");
781 evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
782 NULL, xname, "rx pause");
783 evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
784 NULL, xname, "mii ticks");
785 }
786
787 static uint64_t
788 pq3etsec_macaddr_create(const uint8_t *lladdr)
789 {
790 uint64_t macaddr = 0;
791
792 lladdr += ETHER_ADDR_LEN;
793 for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
794 macaddr = (macaddr << 8) | *--lladdr;
795 }
796 return macaddr << 16;
797 }
798
799 static int
800 pq3etsec_ifinit(struct ifnet *ifp)
801 {
802 struct pq3etsec_softc * const sc = ifp->if_softc;
803 int error = 0;
804
805 sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
806 if (ifp->if_mtu > ETHERMTU_JUMBO)
807 return error;
808
809 KASSERT(ifp->if_flags & IFF_UP);
810
811 /*
812 * Stop the interface (steps 1 to 4 in the Soft Reset and
813 * Reconfigurating Procedure.
814 */
815 pq3etsec_ifstop(ifp, 0);
816
817 /*
818 * If our frame size has changed (or it's our first time through)
819 * destroy the existing transmit mapcache.
820 */
821 if (sc->sc_tx_mapcache != NULL
822 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
823 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
824 sc->sc_tx_mapcache = NULL;
825 }
826
827 if (sc->sc_tx_mapcache == NULL) {
828 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
829 ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
830 if (error)
831 return error;
832 }
833
834 sc->sc_ev_mii_ticks.ev_count++;
835 mii_tick(&sc->sc_mii);
836
837 if (ifp->if_flags & IFF_PROMISC) {
838 sc->sc_rctrl |= RCTRL_PROM;
839 } else {
840 sc->sc_rctrl &= ~RCTRL_PROM;
841 }
842
843 uint32_t rctrl_prsdep = 0;
844 sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
845 if (VLAN_ATTACHED(&sc->sc_ec)) {
846 sc->sc_rctrl |= RCTRL_VLEX;
847 rctrl_prsdep = RCTRL_PRSDEP_L2;
848 }
849 if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
850 sc->sc_rctrl |= RCTRL_IPCSEN;
851 rctrl_prsdep = RCTRL_PRSDEP_L3;
852 }
853 if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
854 sc->sc_rctrl |= RCTRL_TUCSEN;
855 rctrl_prsdep = RCTRL_PRSDEP_L4;
856 }
857 sc->sc_rctrl |= rctrl_prsdep;
858 #if 0
859 if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
860 aprint_normal_dev(sc->sc_dev,
861 "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
862 sc->sc_rctrl,
863 __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
864 __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
865 __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
866 __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
867 #endif
868
869 sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
870 if (VLAN_ATTACHED(&sc->sc_ec)) /* is this really true */
871 sc->sc_tctrl |= TCTRL_VLINS;
872 if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
873 sc->sc_tctrl |= TCTRL_IPCSEN;
874 if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
875 sc->sc_tctrl |= TCTRL_TUCSEN;
876 #if 0
877 if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
878 aprint_normal_dev(sc->sc_dev,
879 "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
880 sc->sc_tctrl,
881 __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
882 __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
883 __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
884 #endif
885
886 sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
887
888 const uint64_t macstnaddr =
889 pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
890
891 sc->sc_imask = IEVENT_DPE;
892
893 /* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
894 pq3etsec_rxq_reset(sc, &sc->sc_rxq);
895 pq3etsec_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
896
897 /* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
898 pq3etsec_txq_reset(sc, &sc->sc_txq);
899
900 /* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
901 KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
902 etsec_write(sc, MAXFRM, sc->sc_maxfrm);
903 etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
904 etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >> 0));
905 etsec_write(sc, MACCFG1, sc->sc_maccfg1);
906 etsec_write(sc, MACCFG2, sc->sc_maccfg2);
907 etsec_write(sc, ECNTRL, sc->sc_ecntrl);
908
909 /* 8. Setup group address hash table (GADDR0-GADDR15) */
910 pq3etsec_mc_setup(sc);
911
912 /* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
913 etsec_write(sc, MRBLR, MCLBYTES);
914
915 /* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
916 sc->sc_dmactrl |= DMACTRL_DEFAULT;
917 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
918
919 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
920 etsec_write(sc, TQUEUE, TQUEUE_EN0);
921 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
922
923 etsec_write(sc, TCTRL, sc->sc_tctrl); /* for TOE stuff */
924
925 /* 12. Enable receive queues in RQUEUE, */
926 etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
927 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
928
929 /* and optionally set TOE functionality in RCTRL. */
930 etsec_write(sc, RCTRL, sc->sc_rctrl);
931 sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
932 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
933 sc->sc_rx_adjlen += sizeof(struct rxfcb);
934
935 /* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
936 etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
937
938 /* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
939 etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
940
941 /* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
942 sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
943 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
944
945 /* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
946 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
947 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
948
949 sc->sc_soft_flags = 0;
950
951 etsec_write(sc, IMASK, sc->sc_imask);
952
953 ifp->if_flags |= IFF_RUNNING;
954
955 return error;
956 }
957
958 static void
959 pq3etsec_ifstop(struct ifnet *ifp, int disable)
960 {
961 struct pq3etsec_softc * const sc = ifp->if_softc;
962
963 KASSERT(!cpu_intr_p());
964 const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
965 /*
966 * Clear the GTSC and GRSC from the interrupt mask until
967 * we are ready for them. Then clear them from IEVENT,
968 * request the graceful shutdown, and then enable the
969 * GTSC and GRSC bits in the mask. This should cause the
970 * error interrupt to fire which will issue a wakeup to
971 * allow us to resume.
972 */
973
974 /*
975 * 1. Set GRS/GTS bits in DMACTRL register
976 */
977 sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
978 etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
979 etsec_write(sc, IEVENT, imask_gsc_mask);
980 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
981
982 if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
983 /*
984 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
985 */
986 etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
987
988 u_int timo = 1000;
989 uint32_t ievent = etsec_read(sc, IEVENT);
990 while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
991 if (--timo == 0) {
992 aprint_error_dev(sc->sc_dev,
993 "WARNING: "
994 "request to stop failed (IEVENT=%#x)\n",
995 ievent);
996 break;
997 }
998 delay(10);
999 ievent = etsec_read(sc, IEVENT);
1000 }
1001 }
1002
1003 /*
1004 * Now reset the controller.
1005 *
1006 * 3. Set SOFT_RESET bit in MACCFG1 register
1007 * 4. Clear SOFT_RESET bit in MACCFG1 register
1008 */
1009 etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1010 etsec_write(sc, MACCFG1, 0);
1011 etsec_write(sc, IMASK, 0);
1012 etsec_write(sc, IEVENT, ~0);
1013 sc->sc_imask = 0;
1014 ifp->if_flags &= ~IFF_RUNNING;
1015
1016 uint32_t tbipa = etsec_read(sc, TBIPA);
1017 if (tbipa == sc->sc_phy_addr) {
1018 aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1019 etsec_write(sc, TBIPA, 0x1f);
1020 }
1021 uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1022 etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1023 etsec_write(sc, MIIMCFG, miimcfg);
1024
1025 /*
1026 * Let's consume any remaing transmitted packets. And if we are
1027 * disabling the interface, purge ourselves of any untransmitted
1028 * packets. But don't consume any received packets, just drop them.
1029 * If we aren't disabling the interface, save the mbufs in the
1030 * receive queue for reuse.
1031 */
1032 pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1033 pq3etsec_txq_consume(sc, &sc->sc_txq);
1034 if (disable) {
1035 pq3etsec_txq_purge(sc, &sc->sc_txq);
1036 IF_PURGE(&ifp->if_snd);
1037 }
1038 }
1039
1040 static void
1041 pq3etsec_ifwatchdog(struct ifnet *ifp)
1042 {
1043 }
1044
1045 static void
1046 pq3etsec_mc_setup(
1047 struct pq3etsec_softc *sc)
1048 {
1049 struct ethercom * const ec = &sc->sc_ec;
1050 struct ifnet * const ifp = &sc->sc_if;
1051 struct ether_multi *enm;
1052 struct ether_multistep step;
1053 uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1054 const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1055
1056 memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1057 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1058
1059 ifp->if_flags &= ~IFF_ALLMULTI;
1060
1061 ETHER_FIRST_MULTI(step, ec, enm);
1062 for (u_int i = 0; enm != NULL; ) {
1063 const char *addr = enm->enm_addrlo;
1064 if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1065 ifp->if_flags |= IFF_ALLMULTI;
1066 memset(gaddr, 0xff, 32 << (crc_shift & 1));
1067 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1068 break;
1069 }
1070 if ((sc->sc_rctrl & RCTRL_EMEN)
1071 && i < __arraycount(sc->sc_macaddrs)) {
1072 sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1073 } else {
1074 uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1075 #if 0
1076 printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1077 ether_sprintf(addr), crc,
1078 crc >> crc_shift,
1079 crc >> (crc_shift + 5),
1080 (crc >> crc_shift) & 31,
1081 1 << (((crc >> crc_shift) & 31) ^ 31));
1082 #endif
1083 /*
1084 * The documentation doesn't completely follow PowerPC
1085 * bit order. The BE crc32 (H) for 01:00:5E:00:00:01
1086 * is 0x7fa32d9b. By empirical testing, the
1087 * corresponding hash bit is word 3, bit 31 (ppc bit
1088 * order). Since 3 << 31 | 31 is 0x7f, we deduce
1089 * H[0:2] selects the register while H[3:7] selects
1090 * the bit (ppc bit order).
1091 */
1092 crc >>= crc_shift;
1093 gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1094 }
1095 ETHER_NEXT_MULTI(step, enm);
1096 }
1097 for (u_int i = 0; i < 8; i++) {
1098 etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1099 etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1100 #if 0
1101 if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1102 printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1103 i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1104 i, GADDR(i), etsec_read(sc, GADDR(i)));
1105 #endif
1106 }
1107 for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1108 uint64_t macaddr = sc->sc_macaddrs[i];
1109 etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1110 etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >> 0));
1111 #if 0
1112 if (macaddr)
1113 printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1114 i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1115 i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1116 #endif
1117 }
1118 }
1119
1120 static int
1121 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1122 {
1123 struct pq3etsec_softc *sc = ifp->if_softc;
1124 struct ifreq * const ifr = data;
1125 const int s = splnet();
1126 int error;
1127
1128 switch (cmd) {
1129 case SIOCSIFMEDIA:
1130 case SIOCGIFMEDIA:
1131 /* Flow control requires full-duplex mode. */
1132 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1133 (ifr->ifr_media & IFM_FDX) == 0)
1134 ifr->ifr_media &= ~IFM_ETH_FMASK;
1135 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1136 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1137 /* We can do both TXPAUSE and RXPAUSE. */
1138 ifr->ifr_media |=
1139 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1140 }
1141 }
1142 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1143 break;
1144
1145 default:
1146 error = ether_ioctl(ifp, cmd, data);
1147 if (error != ENETRESET)
1148 break;
1149
1150 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1151 error = 0;
1152 if (ifp->if_flags & IFF_RUNNING)
1153 pq3etsec_mc_setup(sc);
1154 break;
1155 }
1156 error = pq3etsec_ifinit(ifp);
1157 break;
1158 }
1159
1160 splx(s);
1161 return error;
1162 }
1163
1164 static void
1165 pq3etsec_rxq_desc_presync(
1166 struct pq3etsec_softc *sc,
1167 struct pq3etsec_rxqueue *rxq,
1168 volatile struct rxbd *rxbd,
1169 size_t count)
1170 {
1171 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1172 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1173 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1174 }
1175
1176 static void
1177 pq3etsec_rxq_desc_postsync(
1178 struct pq3etsec_softc *sc,
1179 struct pq3etsec_rxqueue *rxq,
1180 volatile struct rxbd *rxbd,
1181 size_t count)
1182 {
1183 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1184 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1185 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1186 }
1187
1188 static void
1189 pq3etsec_txq_desc_presync(
1190 struct pq3etsec_softc *sc,
1191 struct pq3etsec_txqueue *txq,
1192 volatile struct txbd *txbd,
1193 size_t count)
1194 {
1195 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1196 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1197 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1198 }
1199
1200 static void
1201 pq3etsec_txq_desc_postsync(
1202 struct pq3etsec_softc *sc,
1203 struct pq3etsec_txqueue *txq,
1204 volatile struct txbd *txbd,
1205 size_t count)
1206 {
1207 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1208 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1209 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1210 }
1211
1212 static bus_dmamap_t
1213 pq3etsec_mapcache_get(
1214 struct pq3etsec_softc *sc,
1215 struct pq3etsec_mapcache *dmc)
1216 {
1217 KASSERT(dmc->dmc_nmaps > 0);
1218 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1219 return dmc->dmc_maps[--dmc->dmc_nmaps];
1220 }
1221
1222 static void
1223 pq3etsec_mapcache_put(
1224 struct pq3etsec_softc *sc,
1225 struct pq3etsec_mapcache *dmc,
1226 bus_dmamap_t map)
1227 {
1228 KASSERT(map != NULL);
1229 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1230 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1231 }
1232
1233 static void
1234 pq3etsec_mapcache_destroy(
1235 struct pq3etsec_softc *sc,
1236 struct pq3etsec_mapcache *dmc)
1237 {
1238 const size_t dmc_size =
1239 offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1240
1241 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1242 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1243 }
1244 kmem_intr_free(dmc, dmc_size);
1245 }
1246
1247 static int
1248 pq3etsec_mapcache_create(
1249 struct pq3etsec_softc *sc,
1250 struct pq3etsec_mapcache **dmc_p,
1251 size_t maxmaps,
1252 size_t maxmapsize,
1253 size_t maxseg)
1254 {
1255 const size_t dmc_size =
1256 offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1257 struct pq3etsec_mapcache * const dmc =
1258 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1259
1260 dmc->dmc_maxmaps = maxmaps;
1261 dmc->dmc_nmaps = maxmaps;
1262 dmc->dmc_maxmapsize = maxmapsize;
1263 dmc->dmc_maxseg = maxseg;
1264
1265 for (u_int i = 0; i < maxmaps; i++) {
1266 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1267 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1268 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1269 if (error) {
1270 aprint_error_dev(sc->sc_dev,
1271 "failed to creat dma map cache "
1272 "entry %u of %zu: %d\n",
1273 i, maxmaps, error);
1274 while (i-- > 0) {
1275 bus_dmamap_destroy(sc->sc_dmat,
1276 dmc->dmc_maps[i]);
1277 }
1278 kmem_intr_free(dmc, dmc_size);
1279 return error;
1280 }
1281 KASSERT(dmc->dmc_maps[i] != NULL);
1282 }
1283
1284 *dmc_p = dmc;
1285
1286 return 0;
1287 }
1288
1289 #if 0
1290 static void
1291 pq3etsec_dmamem_free(
1292 bus_dma_tag_t dmat,
1293 size_t map_size,
1294 bus_dma_segment_t *seg,
1295 bus_dmamap_t map,
1296 void *kvap)
1297 {
1298 bus_dmamap_destroy(dmat, map);
1299 bus_dmamem_unmap(dmat, kvap, map_size);
1300 bus_dmamem_free(dmat, seg, 1);
1301 }
1302 #endif
1303
1304 static int
1305 pq3etsec_dmamem_alloc(
1306 bus_dma_tag_t dmat,
1307 size_t map_size,
1308 bus_dma_segment_t *seg,
1309 bus_dmamap_t *map,
1310 void **kvap)
1311 {
1312 int error;
1313 int nseg;
1314
1315 *kvap = NULL;
1316 *map = NULL;
1317
1318 error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1319 seg, 1, &nseg, 0);
1320 if (error)
1321 return error;
1322
1323 KASSERT(nseg == 1);
1324
1325 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1326 BUS_DMA_COHERENT);
1327 if (error == 0) {
1328 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1329 map);
1330 if (error == 0) {
1331 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1332 NULL, 0);
1333 if (error == 0)
1334 return 0;
1335 bus_dmamap_destroy(dmat, *map);
1336 *map = NULL;
1337 }
1338 bus_dmamem_unmap(dmat, *kvap, map_size);
1339 *kvap = NULL;
1340 }
1341 bus_dmamem_free(dmat, seg, nseg);
1342 return 0;
1343 }
1344
1345 static struct mbuf *
1346 pq3etsec_rx_buf_alloc(
1347 struct pq3etsec_softc *sc)
1348 {
1349 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1350 if (m == NULL) {
1351 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1352 return NULL;
1353 }
1354 MCLGET(m, M_DONTWAIT);
1355 if ((m->m_flags & M_EXT) == 0) {
1356 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1357 m_freem(m);
1358 return NULL;
1359 }
1360 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1361
1362 bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1363 if (map == NULL) {
1364 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1365 m_freem(m);
1366 return NULL;
1367 }
1368 M_SETCTX(m, map);
1369 m->m_len = m->m_pkthdr.len = MCLBYTES;
1370 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1371 BUS_DMA_READ|BUS_DMA_NOWAIT);
1372 if (error) {
1373 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1374 error);
1375 M_SETCTX(m, NULL);
1376 m_freem(m);
1377 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1378 return NULL;
1379 }
1380 KASSERT(map->dm_mapsize == MCLBYTES);
1381 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1382 BUS_DMASYNC_PREREAD);
1383
1384 return m;
1385 }
1386
1387 static void
1388 pq3etsec_rx_map_unload(
1389 struct pq3etsec_softc *sc,
1390 struct mbuf *m)
1391 {
1392 KASSERT(m);
1393 for (; m != NULL; m = m->m_next) {
1394 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1395 KASSERT(map);
1396 KASSERT(map->dm_mapsize == MCLBYTES);
1397 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1398 BUS_DMASYNC_POSTREAD);
1399 bus_dmamap_unload(sc->sc_dmat, map);
1400 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1401 M_SETCTX(m, NULL);
1402 }
1403 }
1404
1405 static bool
1406 pq3etsec_rxq_produce(
1407 struct pq3etsec_softc *sc,
1408 struct pq3etsec_rxqueue *rxq)
1409 {
1410 volatile struct rxbd *producer = rxq->rxq_producer;
1411 #if 0
1412 size_t inuse = rxq->rxq_inuse;
1413 #endif
1414 while (rxq->rxq_inuse < rxq->rxq_threshold) {
1415 struct mbuf *m;
1416 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1417 if (m == NULL) {
1418 m = pq3etsec_rx_buf_alloc(sc);
1419 if (m == NULL) {
1420 printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1421 break;
1422 }
1423 }
1424 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1425 KASSERT(map);
1426
1427 #ifdef ETSEC_DEBUG
1428 KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1429 rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1430 #endif
1431
1432 /* rxbd_len is write-only by the ETSEC */
1433 producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1434 membar_producer();
1435 producer->rxbd_flags |= RXBD_E;
1436 if (__predict_false(rxq->rxq_mhead == NULL)) {
1437 KASSERT(producer == rxq->rxq_consumer);
1438 rxq->rxq_mconsumer = m;
1439 }
1440 *rxq->rxq_mtail = m;
1441 rxq->rxq_mtail = &m->m_next;
1442 m->m_len = MCLBYTES;
1443 m->m_next = NULL;
1444 rxq->rxq_inuse++;
1445 if (++producer == rxq->rxq_last) {
1446 membar_producer();
1447 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1448 rxq->rxq_last - rxq->rxq_producer);
1449 producer = rxq->rxq_producer = rxq->rxq_first;
1450 }
1451 }
1452 if (producer != rxq->rxq_producer) {
1453 membar_producer();
1454 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1455 producer - rxq->rxq_producer);
1456 rxq->rxq_producer = producer;
1457 }
1458 uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1459 if (qhlt) {
1460 KASSERT(qhlt & rxq->rxq_qmask);
1461 sc->sc_ev_rx_stall.ev_count++;
1462 etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1463 }
1464 #if 0
1465 aprint_normal_dev(sc->sc_dev,
1466 "%s: buffers inuse went from %zu to %zu\n",
1467 __func__, inuse, rxq->rxq_inuse);
1468 #endif
1469 return true;
1470 }
1471
1472 static bool
1473 pq3etsec_rx_offload(
1474 struct pq3etsec_softc *sc,
1475 struct mbuf *m,
1476 const struct rxfcb *fcb)
1477 {
1478 if (fcb->rxfcb_flags & RXFCB_VLN) {
1479 VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1480 m_freem(m); return false);
1481 }
1482 if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1483 || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1484 return true;
1485 int csum_flags = 0;
1486 if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1487 csum_flags |= M_CSUM_IPv4;
1488 if (fcb->rxfcb_flags & RXFCB_EIP)
1489 csum_flags |= M_CSUM_IPv4_BAD;
1490 }
1491 if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1492 int ipv_flags;
1493 if (fcb->rxfcb_flags & RXFCB_IP6)
1494 ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1495 else
1496 ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1497 if (fcb->rxfcb_pro == IPPROTO_TCP) {
1498 csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1499 } else {
1500 csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1501 }
1502 if (fcb->rxfcb_flags & RXFCB_ETU)
1503 csum_flags |= M_CSUM_TCP_UDP_BAD;
1504 }
1505
1506 m->m_pkthdr.csum_flags = csum_flags;
1507 return true;
1508 }
1509
1510 static void
1511 pq3etsec_rx_input(
1512 struct pq3etsec_softc *sc,
1513 struct mbuf *m,
1514 uint16_t rxbd_flags)
1515 {
1516 struct ifnet * const ifp = &sc->sc_if;
1517
1518 pq3etsec_rx_map_unload(sc, m);
1519
1520 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1521 struct rxfcb fcb = *mtod(m, struct rxfcb *);
1522 if (!pq3etsec_rx_offload(sc, m, &fcb))
1523 return;
1524 }
1525 m_adj(m, sc->sc_rx_adjlen);
1526
1527 if (rxbd_flags & RXBD_M)
1528 m->m_flags |= M_PROMISC;
1529 if (rxbd_flags & RXBD_BC)
1530 m->m_flags |= M_BCAST;
1531 if (rxbd_flags & RXBD_MC)
1532 m->m_flags |= M_MCAST;
1533 m->m_flags |= M_HASFCS;
1534 m->m_pkthdr.rcvif = &sc->sc_if;
1535
1536 ifp->if_ipackets++;
1537 ifp->if_ibytes += m->m_pkthdr.len;
1538
1539 /*
1540 * Let's give it to the network subsystm to deal with.
1541 */
1542 int s = splnet();
1543 bpf_mtap(ifp, m);
1544 (*ifp->if_input)(ifp, m);
1545 splx(s);
1546 }
1547
1548 static void
1549 pq3etsec_rxq_consume(
1550 struct pq3etsec_softc *sc,
1551 struct pq3etsec_rxqueue *rxq)
1552 {
1553 struct ifnet * const ifp = &sc->sc_if;
1554 volatile struct rxbd *consumer = rxq->rxq_consumer;
1555 size_t rxconsumed = 0;
1556
1557 etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1558
1559 for (;;) {
1560 if (consumer == rxq->rxq_producer) {
1561 rxq->rxq_consumer = consumer;
1562 rxq->rxq_inuse -= rxconsumed;
1563 KASSERT(rxq->rxq_inuse == 0);
1564 return;
1565 }
1566 pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1567 const uint16_t rxbd_flags = consumer->rxbd_flags;
1568 if (rxbd_flags & RXBD_E) {
1569 rxq->rxq_consumer = consumer;
1570 rxq->rxq_inuse -= rxconsumed;
1571 return;
1572 }
1573 KASSERT(rxq->rxq_mconsumer != NULL);
1574 #ifdef ETSEC_DEBUG
1575 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1576 #endif
1577 #if 0
1578 printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1579 __func__,
1580 consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1581 mtod(rxq->rxq_mconsumer, int *)[0],
1582 mtod(rxq->rxq_mconsumer, int *)[1],
1583 mtod(rxq->rxq_mconsumer, int *)[2],
1584 mtod(rxq->rxq_mconsumer, int *)[3]);
1585 #endif
1586 /*
1587 * We own this packet again. Clear all flags except wrap.
1588 */
1589 rxconsumed++;
1590 consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1591
1592 /*
1593 * If this descriptor has the LAST bit set and no errors,
1594 * it's a valid input packet.
1595 */
1596 if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1597 size_t rxbd_len = consumer->rxbd_len;
1598 struct mbuf *m = rxq->rxq_mhead;
1599 struct mbuf *m_last = rxq->rxq_mconsumer;
1600 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1601 rxq->rxq_mtail = &rxq->rxq_mhead;
1602 rxq->rxq_mconsumer = rxq->rxq_mhead;
1603 m_last->m_next = NULL;
1604 m_last->m_len = rxbd_len & (MCLBYTES - 1);
1605 m->m_pkthdr.len = rxbd_len;
1606 pq3etsec_rx_input(sc, m, rxbd_flags);
1607 } else if (rxbd_flags & RXBD_L) {
1608 KASSERT(rxbd_flags & RXBD_ERRORS);
1609 struct mbuf *m;
1610 /*
1611 * We encountered an error, take the mbufs and add
1612 * then to the rx bufcache so we can reuse them.
1613 */
1614 ifp->if_ierrors++;
1615 for (m = rxq->rxq_mhead;
1616 m != rxq->rxq_mconsumer;
1617 m = m->m_next) {
1618 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1619 }
1620 m = rxq->rxq_mconsumer;
1621 if ((rxq->rxq_mhead = m->m_next) == NULL)
1622 rxq->rxq_mtail = &rxq->rxq_mhead;
1623 rxq->rxq_mconsumer = m->m_next;
1624 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1625 } else {
1626 rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1627 }
1628 #ifdef ETSEC_DEBUG
1629 rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1630 #endif
1631
1632 /*
1633 * Wrap at the last entry!
1634 */
1635 if (rxbd_flags & RXBD_W) {
1636 KASSERT(consumer + 1 == rxq->rxq_last);
1637 consumer = rxq->rxq_first;
1638 } else {
1639 consumer++;
1640 }
1641 #ifdef ETSEC_DEBUG
1642 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1643 #endif
1644 }
1645 }
1646
1647 static void
1648 pq3etsec_rxq_purge(
1649 struct pq3etsec_softc *sc,
1650 struct pq3etsec_rxqueue *rxq,
1651 bool discard)
1652 {
1653 struct mbuf *m;
1654
1655 if ((m = rxq->rxq_mhead) != NULL) {
1656 #ifdef ETSEC_DEBUG
1657 memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1658 #endif
1659
1660 if (discard) {
1661 pq3etsec_rx_map_unload(sc, m);
1662 m_freem(m);
1663 } else {
1664 while (m != NULL) {
1665 struct mbuf *m0 = m->m_next;
1666 m->m_next = NULL;
1667 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1668 m = m0;
1669 }
1670 }
1671
1672 }
1673
1674 rxq->rxq_mconsumer = NULL;
1675 rxq->rxq_mhead = NULL;
1676 rxq->rxq_mtail = &rxq->rxq_mhead;
1677 rxq->rxq_inuse = 0;
1678 }
1679
1680 static void
1681 pq3etsec_rxq_reset(
1682 struct pq3etsec_softc *sc,
1683 struct pq3etsec_rxqueue *rxq)
1684 {
1685 /*
1686 * sync all the descriptors
1687 */
1688 pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1689 rxq->rxq_last - rxq->rxq_first);
1690
1691 /*
1692 * Make sure we own all descriptors in the ring.
1693 */
1694 volatile struct rxbd *rxbd;
1695 for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1696 rxbd->rxbd_flags = RXBD_I;
1697 }
1698
1699 /*
1700 * Last descriptor has the wrap flag.
1701 */
1702 rxbd->rxbd_flags = RXBD_W|RXBD_I;
1703
1704 /*
1705 * Reset the producer consumer indexes.
1706 */
1707 rxq->rxq_consumer = rxq->rxq_first;
1708 rxq->rxq_producer = rxq->rxq_first;
1709 rxq->rxq_inuse = 0;
1710 if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1711 rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1712
1713 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1714
1715 /*
1716 * Restart the transmit at the first descriptor
1717 */
1718 etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1719 }
1720
1721 static int
1722 pq3etsec_rxq_attach(
1723 struct pq3etsec_softc *sc,
1724 struct pq3etsec_rxqueue *rxq,
1725 u_int qno)
1726 {
1727 size_t map_size = PAGE_SIZE;
1728 size_t desc_count = map_size / sizeof(struct rxbd);
1729 int error;
1730 void *descs;
1731
1732 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1733 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1734 if (error)
1735 return error;
1736
1737 memset(descs, 0, map_size);
1738 rxq->rxq_first = descs;
1739 rxq->rxq_last = rxq->rxq_first + desc_count;
1740 rxq->rxq_consumer = descs;
1741 rxq->rxq_producer = descs;
1742
1743 pq3etsec_rxq_purge(sc, rxq, true);
1744 pq3etsec_rxq_reset(sc, rxq);
1745
1746 rxq->rxq_reg_rbase = RBASEn(qno);
1747 rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1748
1749 return 0;
1750 }
1751
1752 static bool
1753 pq3etsec_txq_active_p(
1754 struct pq3etsec_softc * const sc,
1755 struct pq3etsec_txqueue *txq)
1756 {
1757 return !IF_IS_EMPTY(&txq->txq_mbufs);
1758 }
1759
1760 static bool
1761 pq3etsec_txq_fillable_p(
1762 struct pq3etsec_softc * const sc,
1763 struct pq3etsec_txqueue *txq)
1764 {
1765 return txq->txq_free >= txq->txq_threshold;
1766 }
1767
1768 static int
1769 pq3etsec_txq_attach(
1770 struct pq3etsec_softc *sc,
1771 struct pq3etsec_txqueue *txq,
1772 u_int qno)
1773 {
1774 size_t map_size = PAGE_SIZE;
1775 size_t desc_count = map_size / sizeof(struct txbd);
1776 int error;
1777 void *descs;
1778
1779 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1780 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1781 if (error)
1782 return error;
1783
1784 memset(descs, 0, map_size);
1785 txq->txq_first = descs;
1786 txq->txq_last = txq->txq_first + desc_count;
1787 txq->txq_consumer = descs;
1788 txq->txq_producer = descs;
1789
1790 IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1791
1792 txq->txq_reg_tbase = TBASEn(qno);
1793 txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1794
1795 pq3etsec_txq_reset(sc, txq);
1796
1797 return 0;
1798 }
1799
1800 static int
1801 pq3etsec_txq_map_load(
1802 struct pq3etsec_softc *sc,
1803 struct pq3etsec_txqueue *txq,
1804 struct mbuf *m)
1805 {
1806 bus_dmamap_t map;
1807 int error;
1808
1809 map = M_GETCTX(m, bus_dmamap_t);
1810 if (map != NULL)
1811 return 0;
1812
1813 map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1814 if (map == NULL)
1815 return ENOMEM;
1816
1817 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1818 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1819 if (error)
1820 return error;
1821
1822 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1823 BUS_DMASYNC_PREWRITE);
1824 M_SETCTX(m, map);
1825 return 0;
1826 }
1827
1828 static void
1829 pq3etsec_txq_map_unload(
1830 struct pq3etsec_softc *sc,
1831 struct pq3etsec_txqueue *txq,
1832 struct mbuf *m)
1833 {
1834 KASSERT(m);
1835 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1836 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1837 BUS_DMASYNC_POSTWRITE);
1838 bus_dmamap_unload(sc->sc_dmat, map);
1839 pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1840 }
1841
1842 static bool
1843 pq3etsec_txq_produce(
1844 struct pq3etsec_softc *sc,
1845 struct pq3etsec_txqueue *txq,
1846 struct mbuf *m)
1847 {
1848 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1849
1850 if (map->dm_nsegs > txq->txq_free)
1851 return false;
1852
1853 /*
1854 * TCP Offload flag must be set in the first descriptor.
1855 */
1856 volatile struct txbd *producer = txq->txq_producer;
1857 uint16_t last_flags = TXBD_L;
1858 uint16_t first_flags = TXBD_R
1859 | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1860
1861 /*
1862 * If we've produced enough descriptors without consuming any
1863 * we need to ask for an interrupt to reclaim some.
1864 */
1865 txq->txq_lastintr += map->dm_nsegs;
1866 if (txq->txq_lastintr >= txq->txq_threshold
1867 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1868 txq->txq_lastintr = 0;
1869 last_flags |= TXBD_I;
1870 }
1871
1872 #ifdef ETSEC_DEBUG
1873 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1874 #endif
1875 KASSERT(producer != txq->txq_last);
1876 producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1877 producer->txbd_len = map->dm_segs[0].ds_len;
1878
1879 if (map->dm_nsegs > 1) {
1880 volatile struct txbd *start = producer + 1;
1881 size_t count = map->dm_nsegs - 1;
1882 for (u_int i = 1; i < map->dm_nsegs; i++) {
1883 if (__predict_false(++producer == txq->txq_last)) {
1884 producer = txq->txq_first;
1885 if (start < txq->txq_last) {
1886 pq3etsec_txq_desc_presync(sc, txq,
1887 start, txq->txq_last - start);
1888 count -= txq->txq_last - start;
1889 }
1890 start = txq->txq_first;
1891 }
1892 #ifdef ETSEC_DEBUG
1893 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1894 #endif
1895 producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1896 producer->txbd_len = map->dm_segs[i].ds_len;
1897 producer->txbd_flags = TXBD_R
1898 | (producer->txbd_flags & TXBD_W)
1899 | (i == map->dm_nsegs - 1 ? last_flags : 0);
1900 #if 0
1901 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1902 producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1903 #endif
1904 }
1905 pq3etsec_txq_desc_presync(sc, txq, start, count);
1906 } else {
1907 first_flags |= last_flags;
1908 }
1909
1910 membar_producer();
1911 txq->txq_producer->txbd_flags =
1912 first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1913 #if 0
1914 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1915 txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1916 txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1917 #endif
1918 pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1919
1920 /*
1921 * Reduce free count by the number of segments we consumed.
1922 */
1923 txq->txq_free -= map->dm_nsegs;
1924 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1925 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1926 KASSERT(producer->txbd_flags & TXBD_L);
1927 #ifdef ETSEC_DEBUG
1928 txq->txq_lmbufs[producer - txq->txq_first] = m;
1929 #endif
1930
1931 #if 0
1932 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1933 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1934 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1935 #endif
1936
1937 if (++producer == txq->txq_last)
1938 txq->txq_producer = txq->txq_first;
1939 else
1940 txq->txq_producer = producer;
1941 IF_ENQUEUE(&txq->txq_mbufs, m);
1942
1943 /*
1944 * Restart the transmitter.
1945 */
1946 etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT); /* W1C */
1947
1948 return true;
1949 }
1950
1951 static void
1952 pq3etsec_tx_offload(
1953 struct pq3etsec_softc *sc,
1954 struct pq3etsec_txqueue *txq,
1955 struct mbuf **mp)
1956 {
1957 struct mbuf *m = *mp;
1958 u_int csum_flags = m->m_pkthdr.csum_flags;
1959 struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1960
1961 KASSERT(m->m_flags & M_PKTHDR);
1962
1963 /*
1964 * Let see if we are doing any offload first.
1965 */
1966 if (csum_flags == 0 && vtag == 0) {
1967 m->m_flags &= ~M_HASFCB;
1968 return;
1969 }
1970
1971 uint16_t flags = 0;
1972 if (csum_flags & M_CSUM_IP) {
1973 flags |= TXFCB_IP
1974 | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
1975 | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
1976 | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
1977 | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
1978 | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
1979 }
1980 if (vtag) {
1981 flags |= TXFCB_VLN;
1982 }
1983 if (flags == 0) {
1984 m->m_flags &= ~M_HASFCB;
1985 return;
1986 }
1987
1988 struct txfcb fcb;
1989 fcb.txfcb_flags = flags;
1990 if (csum_flags & M_CSUM_IPv4)
1991 fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
1992 else
1993 fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1994 fcb.txfcb_l3os = ETHER_HDR_LEN;
1995 fcb.txfcb_phcs = 0;
1996 fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
1997
1998 #if 0
1999 printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2000 __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2001 fcb.txfcb_phcs, fcb.txfcb_vlctl);
2002 #endif
2003
2004 if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2005 m->m_data -= sizeof(fcb);
2006 m->m_len += sizeof(fcb);
2007 } else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2008 memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2009 m->m_data = m->m_pktdat;
2010 m->m_len += sizeof(fcb);
2011 } else {
2012 struct mbuf *mn;
2013 MGET(mn, M_DONTWAIT, m->m_type);
2014 if (mn == NULL) {
2015 if (csum_flags & M_CSUM_IP4) {
2016 #ifdef INET
2017 ip_undefer_csum(m, ETHER_HDR_LEN,
2018 csum_flags & M_CSUM_IP4);
2019 #else
2020 panic("%s: impossible M_CSUM flags %#x",
2021 device_xname(sc->sc_dev), csum_flags);
2022 #endif
2023 } else if (csum_flags & M_CSUM_IP6) {
2024 #ifdef INET6
2025 ip6_undefer_csum(m, ETHER_HDR_LEN,
2026 csum_flags & M_CSUM_IP6);
2027 #else
2028 panic("%s: impossible M_CSUM flags %#x",
2029 device_xname(sc->sc_dev), csum_flags);
2030 #endif
2031 } else if (vtag) {
2032 }
2033
2034 m->m_flags &= ~M_HASFCB;
2035 return;
2036 }
2037
2038 M_MOVE_PKTHDR(mn, m);
2039 mn->m_next = m;
2040 m = mn;
2041 MH_ALIGN(m, sizeof(fcb));
2042 m->m_len = sizeof(fcb);
2043 *mp = m;
2044 }
2045 m->m_pkthdr.len += sizeof(fcb);
2046 m->m_flags |= M_HASFCB;
2047 *mtod(m, struct txfcb *) = fcb;
2048 return;
2049 }
2050
2051 static bool
2052 pq3etsec_txq_enqueue(
2053 struct pq3etsec_softc *sc,
2054 struct pq3etsec_txqueue *txq)
2055 {
2056 for (;;) {
2057 if (IF_QFULL(&txq->txq_mbufs))
2058 return false;
2059 struct mbuf *m = txq->txq_next;
2060 if (m == NULL) {
2061 int s = splnet();
2062 IF_DEQUEUE(&sc->sc_if.if_snd, m);
2063 splx(s);
2064 if (m == NULL)
2065 return true;
2066 M_SETCTX(m, NULL);
2067 pq3etsec_tx_offload(sc, txq, &m);
2068 } else {
2069 txq->txq_next = NULL;
2070 }
2071 int error = pq3etsec_txq_map_load(sc, txq, m);
2072 if (error) {
2073 aprint_error_dev(sc->sc_dev,
2074 "discarded packet due to "
2075 "dmamap load failure: %d\n", error);
2076 m_freem(m);
2077 continue;
2078 }
2079 KASSERT(txq->txq_next == NULL);
2080 if (!pq3etsec_txq_produce(sc, txq, m)) {
2081 txq->txq_next = m;
2082 return false;
2083 }
2084 KASSERT(txq->txq_next == NULL);
2085 }
2086 }
2087
2088 static bool
2089 pq3etsec_txq_consume(
2090 struct pq3etsec_softc *sc,
2091 struct pq3etsec_txqueue *txq)
2092 {
2093 struct ifnet * const ifp = &sc->sc_if;
2094 volatile struct txbd *consumer = txq->txq_consumer;
2095 size_t txfree = 0;
2096
2097 #if 0
2098 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2099 #endif
2100 etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2101
2102 for (;;) {
2103 if (consumer == txq->txq_producer) {
2104 txq->txq_consumer = consumer;
2105 txq->txq_free += txfree;
2106 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2107 #if 0
2108 printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2109 __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2110 #endif
2111 KASSERT(txq->txq_lastintr == 0);
2112 KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2113 return true;
2114 }
2115 pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2116 const uint16_t txbd_flags = consumer->txbd_flags;
2117 if (txbd_flags & TXBD_R) {
2118 txq->txq_consumer = consumer;
2119 txq->txq_free += txfree;
2120 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2121 #if 0
2122 printf("%s: freed %zu descriptors\n",
2123 __func__, txfree);
2124 #endif
2125 return pq3etsec_txq_fillable_p(sc, txq);
2126 }
2127
2128 /*
2129 * If this is the last descriptor in the chain, get the
2130 * mbuf, free its dmamap, and free the mbuf chain itself.
2131 */
2132 if (txbd_flags & TXBD_L) {
2133 struct mbuf *m;
2134
2135 IF_DEQUEUE(&txq->txq_mbufs, m);
2136 #ifdef ETSEC_DEBUG
2137 KASSERTMSG(
2138 m == txq->txq_lmbufs[consumer-txq->txq_first],
2139 "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2140 __func__, consumer, consumer - txq->txq_first,
2141 txbd_flags, m,
2142 &txq->txq_lmbufs[consumer-txq->txq_first],
2143 txq->txq_lmbufs[consumer-txq->txq_first]);
2144 #endif
2145 KASSERT(m);
2146 pq3etsec_txq_map_unload(sc, txq, m);
2147 #if 0
2148 printf("%s: mbuf %p: consumed a %u byte packet\n",
2149 __func__, m, m->m_pkthdr.len);
2150 #endif
2151 if (m->m_flags & M_HASFCB)
2152 m_adj(m, sizeof(struct txfcb));
2153 ifp->if_opackets++;
2154 ifp->if_obytes += m->m_pkthdr.len;
2155 if (m->m_flags & M_MCAST)
2156 ifp->if_omcasts++;
2157 if (txbd_flags & TXBD_ERRORS)
2158 ifp->if_oerrors++;
2159 m_freem(m);
2160 #ifdef ETSEC_DEBUG
2161 txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2162 #endif
2163 } else {
2164 #ifdef ETSEC_DEBUG
2165 KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2166 #endif
2167 }
2168
2169 /*
2170 * We own this packet again. Clear all flags except wrap.
2171 */
2172 txfree++;
2173 //consumer->txbd_flags = txbd_flags & TXBD_W;
2174
2175 /*
2176 * Wrap at the last entry!
2177 */
2178 if (txbd_flags & TXBD_W) {
2179 KASSERT(consumer + 1 == txq->txq_last);
2180 consumer = txq->txq_first;
2181 } else {
2182 consumer++;
2183 KASSERT(consumer < txq->txq_last);
2184 }
2185 }
2186 }
2187
2188 static void
2189 pq3etsec_txq_purge(
2190 struct pq3etsec_softc *sc,
2191 struct pq3etsec_txqueue *txq)
2192 {
2193 struct mbuf *m;
2194 KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2195
2196 for (;;) {
2197 IF_DEQUEUE(&txq->txq_mbufs, m);
2198 if (m == NULL)
2199 break;
2200 pq3etsec_txq_map_unload(sc, txq, m);
2201 m_freem(m);
2202 }
2203 if ((m = txq->txq_next) != NULL) {
2204 txq->txq_next = NULL;
2205 pq3etsec_txq_map_unload(sc, txq, m);
2206 m_freem(m);
2207 }
2208 #ifdef ETSEC_DEBUG
2209 memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2210 #endif
2211 }
2212
2213 static void
2214 pq3etsec_txq_reset(
2215 struct pq3etsec_softc *sc,
2216 struct pq3etsec_txqueue *txq)
2217 {
2218 /*
2219 * sync all the descriptors
2220 */
2221 pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2222 txq->txq_last - txq->txq_first);
2223
2224 /*
2225 * Make sure we own all descriptors in the ring.
2226 */
2227 volatile struct txbd *txbd;
2228 for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2229 txbd->txbd_flags = 0;
2230 }
2231
2232 /*
2233 * Last descriptor has the wrap flag.
2234 */
2235 txbd->txbd_flags = TXBD_W;
2236
2237 /*
2238 * Reset the producer consumer indexes.
2239 */
2240 txq->txq_consumer = txq->txq_first;
2241 txq->txq_producer = txq->txq_first;
2242 txq->txq_free = txq->txq_last - txq->txq_first - 1;
2243 txq->txq_threshold = txq->txq_free / 2;
2244 txq->txq_lastintr = 0;
2245
2246 /*
2247 * What do we want to get interrupted on?
2248 */
2249 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2250
2251 /*
2252 * Restart the transmit at the first descriptor
2253 */
2254 etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2255 }
2256
2257 static void
2258 pq3etsec_ifstart(struct ifnet *ifp)
2259 {
2260 struct pq3etsec_softc * const sc = ifp->if_softc;
2261
2262 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2263 softint_schedule(sc->sc_soft_ih);
2264 }
2265
2266 static void
2267 pq3etsec_tx_error(
2268 struct pq3etsec_softc * const sc)
2269 {
2270 struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2271
2272 pq3etsec_txq_consume(sc, txq);
2273
2274 if (pq3etsec_txq_fillable_p(sc, txq))
2275 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2276 if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2277 } else if (sc->sc_txerrors & IEVENT_EBERR) {
2278 }
2279
2280 if (pq3etsec_txq_active_p(sc, txq))
2281 etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2282 if (!pq3etsec_txq_enqueue(sc, txq)) {
2283 sc->sc_ev_tx_stall.ev_count++;
2284 sc->sc_if.if_flags |= IFF_OACTIVE;
2285 }
2286
2287 sc->sc_txerrors = 0;
2288 }
2289
2290 int
2291 pq3etsec_tx_intr(void *arg)
2292 {
2293 struct pq3etsec_softc * const sc = arg;
2294
2295 sc->sc_ev_tx_intr.ev_count++;
2296
2297 uint32_t ievent = etsec_read(sc, IEVENT);
2298 ievent &= IEVENT_TXF|IEVENT_TXB;
2299 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2300
2301 #if 0
2302 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2303 __func__, ievent, etsec_read(sc, IMASK));
2304 #endif
2305
2306 if (ievent == 0)
2307 return 0;
2308
2309 sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2310 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2311 etsec_write(sc, IMASK, sc->sc_imask);
2312 softint_schedule(sc->sc_soft_ih);
2313 return 1;
2314 }
2315
2316 int
2317 pq3etsec_rx_intr(void *arg)
2318 {
2319 struct pq3etsec_softc * const sc = arg;
2320
2321 sc->sc_ev_rx_intr.ev_count++;
2322
2323 uint32_t ievent = etsec_read(sc, IEVENT);
2324 ievent &= IEVENT_RXF|IEVENT_RXB;
2325 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2326 if (ievent == 0)
2327 return 0;
2328
2329 #if 0
2330 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2331 #endif
2332
2333 sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2334 atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2335 etsec_write(sc, IMASK, sc->sc_imask);
2336 softint_schedule(sc->sc_soft_ih);
2337 return 1;
2338 }
2339
2340 int
2341 pq3etsec_error_intr(void *arg)
2342 {
2343 struct pq3etsec_softc * const sc = arg;
2344
2345 sc->sc_ev_error_intr.ev_count++;
2346
2347 for (int rv = 0, soft_flags = 0;; rv = 1) {
2348 uint32_t ievent = etsec_read(sc, IEVENT);
2349 ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2350 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2351 if (ievent == 0) {
2352 if (soft_flags) {
2353 atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2354 softint_schedule(sc->sc_soft_ih);
2355 }
2356 return rv;
2357 }
2358 #if 0
2359 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2360 __func__, ievent, etsec_read(sc, IMASK));
2361 #endif
2362
2363 if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2364 sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2365 etsec_write(sc, IMASK, sc->sc_imask);
2366 wakeup(sc);
2367 }
2368 if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2369 sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2370 etsec_write(sc, IMASK, sc->sc_imask);
2371 wakeup(&sc->sc_mii);
2372 }
2373 if (ievent & IEVENT_BSY) {
2374 soft_flags |= SOFT_RXBSY;
2375 sc->sc_imask &= ~IEVENT_BSY;
2376 etsec_write(sc, IMASK, sc->sc_imask);
2377 }
2378 if (ievent & IEVENT_TXE) {
2379 soft_flags |= SOFT_TXERROR;
2380 sc->sc_imask &= ~IEVENT_TXE;
2381 sc->sc_txerrors |= ievent;
2382 }
2383 if (ievent & IEVENT_TXC) {
2384 sc->sc_ev_tx_pause.ev_count++;
2385 }
2386 if (ievent & IEVENT_RXC) {
2387 sc->sc_ev_rx_pause.ev_count++;
2388 }
2389 if (ievent & IEVENT_DPE) {
2390 soft_flags |= SOFT_RESET;
2391 sc->sc_imask &= ~IEVENT_DPE;
2392 etsec_write(sc, IMASK, sc->sc_imask);
2393 }
2394 }
2395 }
2396
2397 void
2398 pq3etsec_soft_intr(void *arg)
2399 {
2400 struct pq3etsec_softc * const sc = arg;
2401 struct ifnet * const ifp = &sc->sc_if;
2402
2403 mutex_enter(sc->sc_lock);
2404
2405 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2406
2407 sc->sc_ev_soft_intr.ev_count++;
2408
2409 if (soft_flags & SOFT_RESET) {
2410 int s = splnet();
2411 pq3etsec_ifinit(ifp);
2412 splx(s);
2413 soft_flags = 0;
2414 }
2415
2416 if (soft_flags & SOFT_RXBSY) {
2417 struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2418 size_t threshold = 5 * rxq->rxq_threshold / 4;
2419 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2420 threshold = rxq->rxq_last - rxq->rxq_first - 1;
2421 } else {
2422 sc->sc_imask |= IEVENT_BSY;
2423 }
2424 aprint_normal_dev(sc->sc_dev,
2425 "increasing receive buffers from %zu to %zu\n",
2426 rxq->rxq_threshold, threshold);
2427 rxq->rxq_threshold = threshold;
2428 }
2429
2430 if ((soft_flags & SOFT_TXINTR)
2431 || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2432 /*
2433 * Let's do what we came here for. Consume transmitted
2434 * packets off the the transmit ring.
2435 */
2436 if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2437 || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2438 sc->sc_ev_tx_stall.ev_count++;
2439 ifp->if_flags |= IFF_OACTIVE;
2440 } else {
2441 ifp->if_flags &= ~IFF_OACTIVE;
2442 }
2443 sc->sc_imask |= IEVENT_TXF;
2444 }
2445
2446 if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2447 /*
2448 * Let's consume
2449 */
2450 pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2451 sc->sc_imask |= IEVENT_RXF;
2452 }
2453
2454 if (soft_flags & SOFT_TXERROR) {
2455 pq3etsec_tx_error(sc);
2456 sc->sc_imask |= IEVENT_TXE;
2457 }
2458
2459 if (ifp->if_flags & IFF_RUNNING) {
2460 pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2461 etsec_write(sc, IMASK, sc->sc_imask);
2462 } else {
2463 KASSERT((soft_flags & SOFT_RXBSY) == 0);
2464 }
2465
2466 mutex_exit(sc->sc_lock);
2467 }
2468
2469 static void
2470 pq3etsec_mii_tick(void *arg)
2471 {
2472 struct pq3etsec_softc * const sc = arg;
2473 mutex_enter(sc->sc_lock);
2474 callout_ack(&sc->sc_mii_callout);
2475 sc->sc_ev_mii_ticks.ev_count++;
2476 #ifdef DEBUG
2477 uint64_t now = mftb();
2478 if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2479 aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2480 __func__, now - sc->sc_mii_last_tick);
2481 callout_stop(&sc->sc_mii_callout);
2482 }
2483 #endif
2484 mii_tick(&sc->sc_mii);
2485 int s = splnet();
2486 if (sc->sc_soft_flags & SOFT_RESET)
2487 softint_schedule(sc->sc_soft_ih);
2488 splx(s);
2489 callout_schedule(&sc->sc_mii_callout, hz);
2490 #ifdef DEBUG
2491 sc->sc_mii_last_tick = now;
2492 #endif
2493 mutex_exit(sc->sc_lock);
2494 }
2495