pq3etsec.c revision 1.2.4.2 1 /* $NetBSD: pq3etsec.c,v 1.2.4.2 2011/03/05 20:51:34 rmind Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include "opt_inet.h"
38
39 #include <sys/cdefs.h>
40
41 #include <sys/param.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44 #include <sys/mbuf.h>
45 #include <sys/ioctl.h>
46 #include <sys/intr.h>
47 #include <sys/bus.h>
48 #include <sys/kernel.h>
49 #include <sys/kmem.h>
50 #include <sys/proc.h>
51 #include <sys/atomic.h>
52 #include <sys/callout.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_ether.h>
57 #include <net/if_media.h>
58
59 #include <dev/mii/miivar.h>
60
61 #include "ioconf.h"
62
63 #include <net/bpf.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_offload.h>
70 #endif /* INET */
71 #ifdef INET6
72 #include <netinet6/in6.h>
73 #include <netinet/ip6.h>
74 #endif
75 #include <netinet6/in6_offload.h>
76
77
78 #include <powerpc/spr.h>
79 #include <powerpc/booke/spr.h>
80
81 #include <powerpc/booke/cpuvar.h>
82 #include <powerpc/booke/e500var.h>
83 #include <powerpc/booke/e500reg.h>
84 #include <powerpc/booke/etsecreg.h>
85
86 #define M_HASFCB M_LINK2 /* tx packet has FCB prepended */
87
88 #define ETSEC_MAXTXMBUFS 30
89 #define ETSEC_NTXSEGS 30
90 #define ETSEC_MAXRXMBUFS 511
91 #define ETSEC_MINRXMBUFS 32
92 #define ETSEC_NRXSEGS 1
93
94 #define IFCAP_RCTRL_IPCSEN IFCAP_CSUM_IPv4_Rx
95 #define IFCAP_RCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Rx\
96 |IFCAP_CSUM_UDPv4_Rx\
97 |IFCAP_CSUM_TCPv6_Rx\
98 |IFCAP_CSUM_UDPv6_Rx)
99
100 #define IFCAP_TCTRL_IPCSEN IFCAP_CSUM_IPv4_Tx
101 #define IFCAP_TCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Tx\
102 |IFCAP_CSUM_UDPv4_Tx\
103 |IFCAP_CSUM_TCPv6_Tx\
104 |IFCAP_CSUM_UDPv6_Tx)
105
106 #define IFCAP_ETSEC (IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
107 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
108
109 #define M_CSUM_IP (M_CSUM_CIP|M_CSUM_CTU)
110 #define M_CSUM_IP6 (M_CSUM_TCPv6|M_CSUM_UDPv6)
111 #define M_CSUM_TUP (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
112 #define M_CSUM_UDP (M_CSUM_UDPv4|M_CSUM_UDPv6)
113 #define M_CSUM_IP4 (M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
114 #define M_CSUM_CIP (M_CSUM_IPv4)
115 #define M_CSUM_CTU (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
116
117 struct pq3etsec_txqueue {
118 bus_dmamap_t txq_descmap;
119 volatile struct txbd *txq_consumer;
120 volatile struct txbd *txq_producer;
121 volatile struct txbd *txq_first;
122 volatile struct txbd *txq_last;
123 struct ifqueue txq_mbufs;
124 struct mbuf *txq_next;
125 #ifdef ETSEC_DEBUG
126 struct mbuf *txq_lmbufs[512];
127 #endif
128 uint32_t txq_qmask;
129 uint32_t txq_free;
130 uint32_t txq_threshold;
131 uint32_t txq_lastintr;
132 bus_size_t txq_reg_tbase;
133 bus_dma_segment_t txq_descmap_seg;
134 };
135
136 struct pq3etsec_rxqueue {
137 bus_dmamap_t rxq_descmap;
138 volatile struct rxbd *rxq_consumer;
139 volatile struct rxbd *rxq_producer;
140 volatile struct rxbd *rxq_first;
141 volatile struct rxbd *rxq_last;
142 struct mbuf *rxq_mhead;
143 struct mbuf **rxq_mtail;
144 struct mbuf *rxq_mconsumer;
145 #ifdef ETSEC_DEBUG
146 struct mbuf *rxq_mbufs[512];
147 #endif
148 uint32_t rxq_qmask;
149 uint32_t rxq_inuse;
150 uint32_t rxq_threshold;
151 bus_size_t rxq_reg_rbase;
152 bus_size_t rxq_reg_rbptr;
153 bus_dma_segment_t rxq_descmap_seg;
154 };
155
156 struct pq3etsec_mapcache {
157 u_int dmc_nmaps;
158 u_int dmc_maxseg;
159 u_int dmc_maxmaps;
160 u_int dmc_maxmapsize;
161 bus_dmamap_t dmc_maps[0];
162 };
163
164 struct pq3etsec_softc {
165 device_t sc_dev;
166 struct ethercom sc_ec;
167 #define sc_if sc_ec.ec_if
168 struct mii_data sc_mii;
169 bus_space_tag_t sc_bst;
170 bus_space_handle_t sc_bsh;
171 bus_dma_tag_t sc_dmat;
172 int sc_phy_addr;
173 prop_dictionary_t sc_intrmap;
174 uint32_t sc_intrmask;
175
176 uint32_t sc_soft_flags;
177 #define SOFT_RESET 0x0001
178 #define SOFT_RXINTR 0x0010
179 #define SOFT_RXBSY 0x0020
180 #define SOFT_TXINTR 0x0100
181 #define SOFT_TXERROR 0x0200
182
183 struct pq3etsec_txqueue sc_txq;
184 struct pq3etsec_rxqueue sc_rxq;
185 uint32_t sc_txerrors;
186 uint32_t sc_rxerrors;
187
188 size_t sc_rx_adjlen;
189
190 /*
191 * Copies of various ETSEC registers.
192 */
193 uint32_t sc_imask;
194 uint32_t sc_maccfg1;
195 uint32_t sc_maccfg2;
196 uint32_t sc_maxfrm;
197 uint32_t sc_ecntrl;
198 uint32_t sc_dmactrl;
199 uint32_t sc_macstnaddr1;
200 uint32_t sc_macstnaddr2;
201 uint32_t sc_tctrl;
202 uint32_t sc_rctrl;
203 uint32_t sc_gaddr[16];
204 uint64_t sc_macaddrs[15];
205
206 void *sc_tx_ih;
207 void *sc_rx_ih;
208 void *sc_error_ih;
209 void *sc_soft_ih;
210
211 kmutex_t *sc_lock;
212
213 struct evcnt sc_ev_tx_stall;
214 struct evcnt sc_ev_tx_intr;
215 struct evcnt sc_ev_rx_stall;
216 struct evcnt sc_ev_rx_intr;
217 struct evcnt sc_ev_error_intr;
218 struct evcnt sc_ev_soft_intr;
219 struct evcnt sc_ev_tx_pause;
220 struct evcnt sc_ev_rx_pause;
221 struct evcnt sc_ev_mii_ticks;
222
223 struct callout sc_mii_callout;
224 uint64_t sc_mii_last_tick;
225
226 struct ifqueue sc_rx_bufcache;
227 struct pq3etsec_mapcache *sc_rx_mapcache;
228 struct pq3etsec_mapcache *sc_tx_mapcache;
229 };
230
231 static int pq3etsec_match(device_t, cfdata_t, void *);
232 static void pq3etsec_attach(device_t, device_t, void *);
233
234 static void pq3etsec_ifstart(struct ifnet *);
235 static void pq3etsec_ifwatchdog(struct ifnet *);
236 static int pq3etsec_ifinit(struct ifnet *);
237 static void pq3etsec_ifstop(struct ifnet *, int);
238 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
239
240 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
241 struct pq3etsec_mapcache **, size_t, size_t, size_t, size_t);
242 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
243 struct pq3etsec_mapcache *);
244 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
245 struct pq3etsec_mapcache *);
246 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
247 struct pq3etsec_mapcache *, bus_dmamap_t);
248
249 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
250 struct pq3etsec_txqueue *, u_int);
251 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
252 struct pq3etsec_txqueue *);
253 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
254 struct pq3etsec_txqueue *);
255 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
256 struct pq3etsec_txqueue *);
257 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
258 struct pq3etsec_txqueue *, struct mbuf *m);
259 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
260 struct pq3etsec_txqueue *);
261
262 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
263 struct pq3etsec_rxqueue *, u_int);
264 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
265 struct pq3etsec_rxqueue *);
266 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
267 struct pq3etsec_rxqueue *, bool);
268 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
269 struct pq3etsec_rxqueue *);
270
271 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
272
273 static void pq3etsec_mii_tick(void *);
274 static int pq3etsec_rx_intr(void *);
275 static int pq3etsec_tx_intr(void *);
276 static int pq3etsec_error_intr(void *);
277 static void pq3etsec_soft_intr(void *);
278
279 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
280 pq3etsec_match, pq3etsec_attach, NULL, NULL);
281
282 static int
283 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
284 {
285
286 if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
287 return 0;
288
289 return 1;
290 }
291
292 static inline uint32_t
293 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
294 {
295 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
296 }
297
298 static inline void
299 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
300 {
301 bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
302 }
303
304 static int
305 pq3etsec_mii_readreg(device_t self, int phy, int reg)
306 {
307 struct pq3etsec_softc * const sc = device_private(self);
308 uint32_t miimcom = etsec_read(sc, MIIMCOM);
309
310 // int s = splnet();
311
312 etsec_write(sc, MIIMADD,
313 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
314
315 etsec_write(sc, IEVENT, IEVENT_MMRD);
316 etsec_write(sc, MIIMCOM, 0); /* clear any past bits */
317 etsec_write(sc, MIIMCOM, MIIMCOM_READ);
318 #if 0
319 sc->sc_imask |= IEVENT_MMRD;
320 etsec_write(sc, IMASK, sc->sc_imask);
321 #endif
322
323 while (etsec_read(sc, MIIMIND) != 0) {
324 delay(1);
325 }
326 int data = etsec_read(sc, MIIMSTAT);
327
328 if (miimcom == MIIMCOM_SCAN)
329 etsec_write(sc, MIIMCOM, miimcom);
330
331 #if 0
332 aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
333 __func__, phy, reg, data);
334 #endif
335 etsec_write(sc, IEVENT, IEVENT_MMRD);
336 // splx(s);
337 return data;
338 }
339
340 static void
341 pq3etsec_mii_writereg(device_t self, int phy, int reg, int data)
342 {
343 struct pq3etsec_softc * const sc = device_private(self);
344 uint32_t miimcom = etsec_read(sc, MIIMCOM);
345
346 #if 0
347 aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
348 __func__, phy, reg, data);
349 #endif
350
351 // int s = splnet();
352 etsec_write(sc, IEVENT, IEVENT_MMWR);
353 etsec_write(sc, MIIMADD,
354 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
355 etsec_write(sc, MIIMCOM, 0); /* clear any past bits */
356 etsec_write(sc, MIIMCON, data);
357
358 #if 0
359 sc->sc_imask |= IEVENT_MMWR;
360 etsec_write(sc, IMASK, sc->sc_imask);
361 #endif
362
363 int timo = 1000; /* 1ms */
364 while ((etsec_read(sc, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
365 delay(1);
366 }
367
368 if (miimcom == MIIMCOM_SCAN)
369 etsec_write(sc, MIIMCOM, miimcom);
370 etsec_write(sc, IEVENT, IEVENT_MMWR);
371 // splx(s);
372 }
373
374 static void
375 pq3etsec_mii_statchg(device_t self)
376 {
377 struct pq3etsec_softc * const sc = device_private(self);
378 struct mii_data * const mii = &sc->sc_mii;
379
380 uint32_t maccfg1 = sc->sc_maccfg1;
381 uint32_t maccfg2 = sc->sc_maccfg2;
382 uint32_t ecntrl = sc->sc_ecntrl;
383
384 maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
385 maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
386
387 if (sc->sc_mii.mii_media_active & IFM_FDX) {
388 maccfg2 |= MACCFG2_FD;
389 }
390
391 /*
392 * Now deal with the flow control bits.
393 */
394 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
395 && (mii->mii_media_active & IFM_ETH_FMASK)) {
396 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
397 maccfg1 |= MACCFG1_RX_FLOW;
398 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
399 maccfg1 |= MACCFG1_TX_FLOW;
400 }
401
402 /*
403 * Now deal with the speed.
404 */
405 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
406 maccfg2 |= MACCFG2_IFMODE_GMII;
407 } else {
408 maccfg2 |= MACCFG2_IFMODE_MII;
409 ecntrl &= ~ECNTRL_R100M;
410 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
411 ecntrl |= ECNTRL_R100M;
412 }
413 }
414
415 /*
416 * If things are different, re-init things.
417 */
418 if (maccfg1 != sc->sc_maccfg1
419 || maccfg2 != sc->sc_maccfg2
420 || ecntrl != sc->sc_ecntrl) {
421 if (sc->sc_if.if_flags & IFF_RUNNING)
422 atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
423 sc->sc_maccfg1 = maccfg1;
424 sc->sc_maccfg2 = maccfg2;
425 sc->sc_ecntrl = ecntrl;
426 }
427 }
428
429 #if 0
430 static void
431 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
432 {
433 struct pq3etsec_softc * const sc = ifp->if_softc;
434
435 mii_pollstat(&sc->sc_mii);
436 ether_mediastatus(ifp, ifmr);
437 ifmr->ifm_status = sc->sc_mii.mii_media_status;
438 ifmr->ifm_active = sc->sc_mii.mii_media_active;
439 }
440
441 static int
442 pq3etsec_mediachange(struct ifnet *ifp)
443 {
444 struct pq3etsec_softc * const sc = ifp->if_softc;
445
446 if ((ifp->if_flags & IFF_UP) == 0)
447 return 0;
448
449 int rv = mii_mediachg(&sc->sc_mii);
450 return (rv == ENXIO) ? 0 : rv;
451 }
452 #endif
453
454 static void
455 pq3etsec_attach(device_t parent, device_t self, void *aux)
456 {
457 struct cpunode_softc * const psc = device_private(parent);
458 struct pq3etsec_softc * const sc = device_private(self);
459 struct cpunode_attach_args * const cna = aux;
460 struct cpunode_locators * const cnl = &cna->cna_locs;
461 int error;
462
463 psc->sc_children |= cna->cna_childmask;
464 sc->sc_dev = self;
465 sc->sc_bst = cna->cna_memt;
466 sc->sc_dmat = &booke_bus_dma_tag;
467
468 /*
469 * If we have a common MDIO bus, if all off instance 1.
470 */
471 device_t miiself = (self->dv_cfdata->cf_flags & 0x100)
472 ? tsec_cd.cd_devs[0]
473 : self;
474
475 /*
476 * See if the phy is in the config file...
477 */
478 if (self->dv_cfdata->cf_flags & 0x3f) {
479 sc->sc_phy_addr = (self->dv_cfdata->cf_flags & 0x3f) - 1;
480 } else {
481 unsigned char prop_name[20];
482 snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
483 cnl->cnl_instance);
484 sc->sc_phy_addr = board_info_get_number(prop_name);
485 }
486 aprint_normal(" phy %d", sc->sc_phy_addr);
487
488 error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
489 &sc->sc_bsh);
490 if (error) {
491 aprint_error(": error mapping registers: %d\n", error);
492 return;
493 }
494
495 /*
496 * Assume firmware has aready set the mac address and fetch it
497 * before we reinit it.
498 */
499 sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
500 sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
501 sc->sc_rctrl = RCTRL_DEFAULT;
502 sc->sc_maccfg2 = MACCFG2_DEFAULT;
503
504 if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
505 size_t len;
506 const uint8_t *mac_addr =
507 board_info_get_data("tsec-mac-addr-base", &len);
508 KASSERT(len == ETHER_ADDR_LEN);
509 sc->sc_macstnaddr2 =
510 (mac_addr[1] << 24)
511 | (mac_addr[0] << 16);
512 sc->sc_macstnaddr1 =
513 ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
514 | (mac_addr[4] << 16)
515 | (mac_addr[3] << 8)
516 | (mac_addr[2] << 0);
517 #if 0
518 aprint_error(": mac-address unknown\n");
519 return;
520 #endif
521 }
522
523 char enaddr[ETHER_ADDR_LEN] = {
524 [0] = sc->sc_macstnaddr2 >> 16,
525 [1] = sc->sc_macstnaddr2 >> 24,
526 [2] = sc->sc_macstnaddr1 >> 0,
527 [3] = sc->sc_macstnaddr1 >> 8,
528 [4] = sc->sc_macstnaddr1 >> 16,
529 [5] = sc->sc_macstnaddr1 >> 24,
530 };
531
532 error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
533 if (error) {
534 aprint_error(": failed to init rxq: %d\n", error);
535 return;
536 }
537
538 error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
539 if (error) {
540 aprint_error(": failed to init txq: %d\n", error);
541 return;
542 }
543
544 error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
545 ETSEC_MAXRXMBUFS, ETSEC_MINRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
546 if (error) {
547 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
548 return;
549 }
550
551 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
552 ETSEC_MAXTXMBUFS, ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
553 if (error) {
554 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
555 return;
556 }
557
558 sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
559 pq3etsec_tx_intr, sc);
560 if (sc->sc_tx_ih == NULL) {
561 aprint_error(": failed to establish tx interrupt: %d\n",
562 cnl->cnl_intrs[0]);
563 return;
564 }
565
566 sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
567 pq3etsec_rx_intr, sc);
568 if (sc->sc_rx_ih == NULL) {
569 aprint_error(": failed to establish rx interrupt: %d\n",
570 cnl->cnl_intrs[1]);
571 return;
572 }
573
574 sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
575 pq3etsec_error_intr, sc);
576 if (sc->sc_error_ih == NULL) {
577 aprint_error(": failed to establish error interrupt: %d\n",
578 cnl->cnl_intrs[2]);
579 return;
580 }
581
582 sc->sc_soft_ih = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
583 pq3etsec_soft_intr, sc);
584 if (sc->sc_soft_ih == NULL) {
585 aprint_error(": failed to establish soft interrupt\n");
586 return;
587 }
588
589 aprint_normal("\n");
590
591 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
592
593 callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
594 callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
595
596 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
597 ether_sprintf(enaddr));
598
599 const char * const xname = device_xname(sc->sc_dev);
600 struct ethercom * const ec = &sc->sc_ec;
601 struct ifnet * const ifp = &ec->ec_if;
602
603 ec->ec_mii = &sc->sc_mii;
604
605 sc->sc_mii.mii_ifp = ifp;
606 sc->sc_mii.mii_readreg = pq3etsec_mii_readreg;
607 sc->sc_mii.mii_writereg = pq3etsec_mii_writereg;
608 sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
609
610 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
611 ether_mediastatus);
612
613 mii_attach(miiself, &sc->sc_mii, 0xffffffff,
614 sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
615
616 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
617 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
618 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
619 } else {
620 callout_schedule(&sc->sc_mii_callout, hz);
621 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
622 }
623
624 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
625 | ETHERCAP_JUMBO_MTU;
626
627 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
628 ifp->if_softc = sc;
629 ifp->if_capabilities = IFCAP_ETSEC;
630 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
631 ifp->if_ioctl = pq3etsec_ifioctl;
632 ifp->if_start = pq3etsec_ifstart;
633 ifp->if_watchdog = pq3etsec_ifwatchdog;
634 ifp->if_init = pq3etsec_ifinit;
635 ifp->if_stop = pq3etsec_ifstop;
636 IFQ_SET_READY(&ifp->if_snd);
637
638 pq3etsec_ifstop(ifp, true);
639
640 /*
641 * Attach the interface.
642 */
643 if_attach(ifp);
644 ether_ifattach(ifp, enaddr);
645
646 evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
647 NULL, xname, "rx stall");
648 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
649 NULL, xname, "tx stall");
650 evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
651 NULL, xname, "tx intr");
652 evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
653 NULL, xname, "rx intr");
654 evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
655 NULL, xname, "error intr");
656 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
657 NULL, xname, "soft intr");
658 evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
659 NULL, xname, "tx pause");
660 evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
661 NULL, xname, "rx pause");
662 evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
663 NULL, xname, "mii ticks");
664 }
665
666 static uint64_t
667 pq3etsec_macaddr_create(const uint8_t *lladdr)
668 {
669 uint64_t macaddr = 0;
670
671 lladdr += ETHER_ADDR_LEN;
672 for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
673 macaddr = (macaddr << 8) | *--lladdr;
674 }
675 return macaddr << 16;
676 }
677
678 static int
679 pq3etsec_ifinit(struct ifnet *ifp)
680 {
681 struct pq3etsec_softc * const sc = ifp->if_softc;
682 int error = 0;
683
684 sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
685 if (ifp->if_mtu > ETHERMTU_JUMBO)
686 return error;
687
688 KASSERT(ifp->if_flags & IFF_UP);
689
690 /*
691 * Stop the interface (steps 1 to 4 in the Soft Reset and
692 * Reconfigurating Procedure.
693 */
694 pq3etsec_ifstop(ifp, 0);
695
696 /*
697 * If our frame size has changed (or it's our first time through)
698 * destroy the existing transmit mapcache.
699 */
700 if (sc->sc_tx_mapcache != NULL
701 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
702 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
703 sc->sc_tx_mapcache = NULL;
704 }
705
706 if (sc->sc_tx_mapcache == NULL) {
707 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
708 ETSEC_MAXTXMBUFS, ETSEC_MAXTXMBUFS, sc->sc_maxfrm,
709 ETSEC_NTXSEGS);
710 if (error)
711 return error;
712 }
713
714 sc->sc_ev_mii_ticks.ev_count++;
715 mii_tick(&sc->sc_mii);
716
717 if (ifp->if_flags & IFF_PROMISC) {
718 sc->sc_rctrl |= RCTRL_PROM;
719 } else {
720 sc->sc_rctrl &= ~RCTRL_PROM;
721 }
722
723 uint32_t rctrl_prsdep = 0;
724 sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
725 if (VLAN_ATTACHED(&sc->sc_ec)) {
726 sc->sc_rctrl |= RCTRL_VLEX;
727 rctrl_prsdep = RCTRL_PRSDEP_L2;
728 }
729 if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
730 sc->sc_rctrl |= RCTRL_IPCSEN;
731 rctrl_prsdep = RCTRL_PRSDEP_L3;
732 }
733 if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
734 sc->sc_rctrl |= RCTRL_TUCSEN;
735 rctrl_prsdep = RCTRL_PRSDEP_L4;
736 }
737 sc->sc_rctrl |= rctrl_prsdep;
738 #if 0
739 if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
740 aprint_normal_dev(sc->sc_dev,
741 "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
742 sc->sc_rctrl,
743 __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
744 __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
745 __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
746 __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
747 #endif
748
749 sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
750 if (VLAN_ATTACHED(&sc->sc_ec)) /* is this really true */
751 sc->sc_tctrl |= TCTRL_VLINS;
752 if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
753 sc->sc_tctrl |= TCTRL_IPCSEN;
754 if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
755 sc->sc_tctrl |= TCTRL_TUCSEN;
756 #if 0
757 if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
758 aprint_normal_dev(sc->sc_dev,
759 "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
760 sc->sc_tctrl,
761 __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
762 __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
763 __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
764 #endif
765
766 sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
767
768 const uint64_t macstnaddr =
769 pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
770
771 sc->sc_imask = IEVENT_DPE;
772
773 /* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
774 pq3etsec_rxq_reset(sc, &sc->sc_rxq);
775 pq3etsec_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
776
777 /* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
778 pq3etsec_txq_reset(sc, &sc->sc_txq);
779
780 /* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
781 KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
782 etsec_write(sc, MAXFRM, sc->sc_maxfrm);
783 etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
784 etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >> 0));
785 etsec_write(sc, MACCFG1, sc->sc_maccfg1);
786 etsec_write(sc, MACCFG2, sc->sc_maccfg2);
787 etsec_write(sc, ECNTRL, sc->sc_ecntrl);
788
789 /* 8. Setup group address hash table (GADDR0-GADDR15) */
790 pq3etsec_mc_setup(sc);
791
792 /* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
793 etsec_write(sc, MRBLR, MCLBYTES);
794
795 /* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
796 sc->sc_dmactrl |= DMACTRL_DEFAULT;
797 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
798
799 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
800 etsec_write(sc, TQUEUE, TQUEUE_EN0);
801 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
802
803 etsec_write(sc, TCTRL, sc->sc_tctrl); /* for TOE stuff */
804
805 /* 12. Enable receive queues in RQUEUE, */
806 etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
807 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
808
809 /* and optionally set TOE functionality in RCTRL. */
810 etsec_write(sc, RCTRL, sc->sc_rctrl);
811 sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
812 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
813 sc->sc_rx_adjlen += sizeof(struct rxfcb);
814
815 /* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
816 etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
817
818 /* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
819 etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
820
821 /* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
822 sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
823 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
824
825 /* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
826 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
827 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
828
829 sc->sc_soft_flags = 0;
830
831 etsec_write(sc, IMASK, sc->sc_imask);
832
833 ifp->if_flags |= IFF_RUNNING;
834
835 return error;
836 }
837
838 static void
839 pq3etsec_ifstop(struct ifnet *ifp, int disable)
840 {
841 struct pq3etsec_softc * const sc = ifp->if_softc;
842
843 KASSERT(!cpu_intr_p());
844 const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
845 /*
846 * Clear the GTSC and GRSC from the interrupt mask until
847 * we are ready for them. Then clear them from IEVENT,
848 * request the graceful shutdown, and then enable the
849 * GTSC and GRSC bits in the mask. This should cause the
850 * error interrupt to fire which will issue a wakeup to
851 * allow us to resume.
852 */
853
854 /*
855 * 1. Set GRS/GTS bits in DMACTRL register
856 */
857 sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
858 etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
859 etsec_write(sc, IEVENT, imask_gsc_mask);
860 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
861
862 if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
863 /*
864 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
865 */
866 etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
867
868 u_int timo = 1000;
869 uint32_t ievent = etsec_read(sc, IEVENT);
870 while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
871 if (--timo == 0) {
872 aprint_error_dev(sc->sc_dev,
873 "WARNING: "
874 "request to stop failed (IEVENT=%#x)\n",
875 ievent);
876 break;
877 }
878 delay(10);
879 ievent = etsec_read(sc, IEVENT);
880 }
881 }
882
883 /*
884 * Now reset the controller.
885 *
886 * 3. Set SOFT_RESET bit in MACCFG1 register
887 * 4. Clear SOFT_RESET bit in MACCFG1 register
888 */
889 etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
890 etsec_write(sc, MACCFG1, 0);
891 etsec_write(sc, IMASK, 0);
892 etsec_write(sc, IEVENT, ~0);
893 sc->sc_imask = 0;
894 ifp->if_flags &= ~IFF_RUNNING;
895
896 uint32_t tbipa = etsec_read(sc, TBIPA);
897 if (tbipa == sc->sc_phy_addr) {
898 aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
899 etsec_write(sc, TBIPA, 0x1f);
900 }
901 uint32_t miimcfg = etsec_read(sc, MIIMCFG);
902 etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
903 etsec_write(sc, MIIMCFG, miimcfg);
904
905 /*
906 * Let's consume any remaing transmitted packets. And if we are
907 * disabling the interface, purge ourselves of any untransmitted
908 * packets. But don't consume any received packets, just drop them.
909 * If we aren't disabling the interface, save the mbufs in the
910 * receive queue for reuse.
911 */
912 pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
913 pq3etsec_txq_consume(sc, &sc->sc_txq);
914 if (disable) {
915 pq3etsec_txq_purge(sc, &sc->sc_txq);
916 IF_PURGE(&ifp->if_snd);
917 }
918 }
919
920 static void
921 pq3etsec_ifwatchdog(struct ifnet *ifp)
922 {
923 }
924
925 static void
926 pq3etsec_mc_setup(
927 struct pq3etsec_softc *sc)
928 {
929 struct ethercom * const ec = &sc->sc_ec;
930 struct ifnet * const ifp = &sc->sc_if;
931 struct ether_multi *enm;
932 struct ether_multistep step;
933 uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
934 const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
935
936 memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
937 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
938
939 ifp->if_flags &= ~IFF_ALLMULTI;
940
941 ETHER_FIRST_MULTI(step, ec, enm);
942 for (u_int i = 0; enm != NULL; ) {
943 const char *addr = enm->enm_addrlo;
944 if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
945 ifp->if_flags |= IFF_ALLMULTI;
946 memset(gaddr, 0xff, 32 << (crc_shift & 1));
947 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
948 break;
949 }
950 if ((sc->sc_rctrl & RCTRL_EMEN)
951 && i < __arraycount(sc->sc_macaddrs)) {
952 sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
953 } else {
954 uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
955 #if 0
956 printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
957 ether_sprintf(addr), crc,
958 crc >> crc_shift,
959 crc >> (crc_shift + 5),
960 (crc >> crc_shift) & 31,
961 1 << (((crc >> crc_shift) & 31) ^ 31));
962 #endif
963 /*
964 * The documentation doesn't completely follow PowerPC
965 * bit order. The BE crc32 (H) for 01:00:5E:00:00:01
966 * is 0x7fa32d9b. By empirical testing, the
967 * corresponding hash bit is word 3, bit 31 (ppc bit
968 * order). Since 3 << 31 | 31 is 0x7f, we deduce
969 * H[0:2] selects the register while H[3:7] selects
970 * the bit (ppc bit order).
971 */
972 crc >>= crc_shift;
973 gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
974 }
975 ETHER_NEXT_MULTI(step, enm);
976 }
977 for (u_int i = 0; i < 8; i++) {
978 etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
979 etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
980 #if 0
981 if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
982 printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
983 i, IGADDR(i), etsec_read(sc, IGADDR(i)),
984 i, GADDR(i), etsec_read(sc, GADDR(i)));
985 #endif
986 }
987 for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
988 uint64_t macaddr = sc->sc_macaddrs[i];
989 etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
990 etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >> 0));
991 #if 0
992 if (macaddr)
993 printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
994 i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
995 i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
996 #endif
997 }
998 }
999
1000 static int
1001 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1002 {
1003 struct pq3etsec_softc *sc = ifp->if_softc;
1004 struct ifreq * const ifr = data;
1005 const int s = splnet();
1006 int error;
1007
1008 switch (cmd) {
1009 case SIOCSIFMEDIA:
1010 case SIOCGIFMEDIA:
1011 /* Flow control requires full-duplex mode. */
1012 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1013 (ifr->ifr_media & IFM_FDX) == 0)
1014 ifr->ifr_media &= ~IFM_ETH_FMASK;
1015 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1016 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1017 /* We can do both TXPAUSE and RXPAUSE. */
1018 ifr->ifr_media |=
1019 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1020 }
1021 }
1022 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1023 break;
1024
1025 default:
1026 error = ether_ioctl(ifp, cmd, data);
1027 if (error != ENETRESET)
1028 break;
1029
1030 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1031 error = 0;
1032 if (ifp->if_flags & IFF_RUNNING)
1033 pq3etsec_mc_setup(sc);
1034 break;
1035 }
1036 error = pq3etsec_ifinit(ifp);
1037 break;
1038 }
1039
1040 splx(s);
1041 return error;
1042 }
1043
1044 static void
1045 pq3etsec_rxq_desc_presync(
1046 struct pq3etsec_softc *sc,
1047 struct pq3etsec_rxqueue *rxq,
1048 volatile struct rxbd *rxbd,
1049 size_t count)
1050 {
1051 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1052 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1053 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1054 }
1055
1056 static void
1057 pq3etsec_rxq_desc_postsync(
1058 struct pq3etsec_softc *sc,
1059 struct pq3etsec_rxqueue *rxq,
1060 volatile struct rxbd *rxbd,
1061 size_t count)
1062 {
1063 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1064 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1065 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1066 }
1067
1068 static void
1069 pq3etsec_txq_desc_presync(
1070 struct pq3etsec_softc *sc,
1071 struct pq3etsec_txqueue *txq,
1072 volatile struct txbd *txbd,
1073 size_t count)
1074 {
1075 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1076 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1077 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1078 }
1079
1080 static void
1081 pq3etsec_txq_desc_postsync(
1082 struct pq3etsec_softc *sc,
1083 struct pq3etsec_txqueue *txq,
1084 volatile struct txbd *txbd,
1085 size_t count)
1086 {
1087 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1088 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1089 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1090 }
1091
1092 static bus_dmamap_t
1093 pq3etsec_mapcache_get(
1094 struct pq3etsec_softc *sc,
1095 struct pq3etsec_mapcache *dmc)
1096 {
1097 if (dmc->dmc_nmaps == 0) {
1098 bus_dmamap_t map;
1099 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1100 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1101 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &map);
1102 if (error) {
1103 aprint_error_dev(sc->sc_dev,
1104 "failed to allocate a %zuB map: %d\n",
1105 dmc->dmc_maxmapsize, error);
1106 return NULL;
1107 }
1108 return map;
1109 }
1110
1111 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1112 return dmc->dmc_maps[--dmc->dmc_nmaps];
1113 }
1114
1115 static void
1116 pq3etsec_mapcache_put(
1117 struct pq3etsec_softc *sc,
1118 struct pq3etsec_mapcache *dmc,
1119 bus_dmamap_t map)
1120 {
1121 KASSERT(map != NULL);
1122 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1123 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1124 }
1125
1126 static void
1127 pq3etsec_mapcache_destroy(
1128 struct pq3etsec_softc *sc,
1129 struct pq3etsec_mapcache *dmc)
1130 {
1131 const size_t dmc_size =
1132 offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1133
1134 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1135 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1136 }
1137 kmem_free(dmc, dmc_size);
1138 }
1139
1140 static int
1141 pq3etsec_mapcache_create(
1142 struct pq3etsec_softc *sc,
1143 struct pq3etsec_mapcache **dmc_p,
1144 size_t maxmaps,
1145 size_t minmaps,
1146 size_t maxmapsize,
1147 size_t maxseg)
1148 {
1149 const size_t dmc_size =
1150 offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1151 struct pq3etsec_mapcache * const dmc = kmem_zalloc(dmc_size, KM_SLEEP);
1152
1153 dmc->dmc_maxmaps = maxmaps;
1154 dmc->dmc_nmaps = minmaps;
1155 dmc->dmc_maxmapsize = maxmapsize;
1156 dmc->dmc_maxseg = maxseg;
1157
1158 for (u_int i = 0; i < minmaps; i++) {
1159 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1160 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1161 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1162 if (error) {
1163 aprint_error_dev(sc->sc_dev,
1164 "failed to creat dma map cache "
1165 "entry %u of %zu (max %zu): %d\n",
1166 i, minmaps, maxmaps, error);
1167 while (i-- > 0) {
1168 bus_dmamap_destroy(sc->sc_dmat,
1169 dmc->dmc_maps[i]);
1170 }
1171 kmem_free(dmc, dmc_size);
1172 return error;
1173 }
1174 KASSERT(dmc->dmc_maps[i] != NULL);
1175 }
1176
1177 *dmc_p = dmc;
1178
1179 return 0;
1180 }
1181
1182 #if 0
1183 static void
1184 pq3etsec_dmamem_free(
1185 bus_dma_tag_t dmat,
1186 size_t map_size,
1187 bus_dma_segment_t *seg,
1188 bus_dmamap_t map,
1189 void *kvap)
1190 {
1191 bus_dmamap_destroy(dmat, map);
1192 bus_dmamem_unmap(dmat, kvap, map_size);
1193 bus_dmamem_free(dmat, seg, 1);
1194 }
1195 #endif
1196
1197 static int
1198 pq3etsec_dmamem_alloc(
1199 bus_dma_tag_t dmat,
1200 size_t map_size,
1201 bus_dma_segment_t *seg,
1202 bus_dmamap_t *map,
1203 void **kvap)
1204 {
1205 int error;
1206 int nseg;
1207
1208 *kvap = NULL;
1209 *map = NULL;
1210
1211 error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1212 seg, 1, &nseg, 0);
1213 if (error)
1214 return error;
1215
1216 KASSERT(nseg == 1);
1217
1218 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1219 BUS_DMA_COHERENT);
1220 if (error == 0) {
1221 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1222 map);
1223 if (error == 0) {
1224 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1225 NULL, 0);
1226 if (error == 0)
1227 return 0;
1228 bus_dmamap_destroy(dmat, *map);
1229 *map = NULL;
1230 }
1231 bus_dmamem_unmap(dmat, *kvap, map_size);
1232 *kvap = NULL;
1233 }
1234 bus_dmamem_free(dmat, seg, nseg);
1235 return 0;
1236 }
1237
1238 static struct mbuf *
1239 pq3etsec_rx_buf_alloc(
1240 struct pq3etsec_softc *sc)
1241 {
1242 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1243 if (m == NULL) {
1244 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1245 return NULL;
1246 }
1247 MCLGET(m, M_DONTWAIT);
1248 if ((m->m_flags & M_EXT) == 0) {
1249 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1250 m_freem(m);
1251 return NULL;
1252 }
1253 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1254
1255 bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1256 if (map == NULL) {
1257 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1258 m_freem(m);
1259 return NULL;
1260 }
1261 M_SETCTX(m, map);
1262 m->m_len = m->m_pkthdr.len = MCLBYTES;
1263 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1264 BUS_DMA_READ|BUS_DMA_NOWAIT);
1265 if (error) {
1266 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1267 error);
1268 M_SETCTX(m, NULL);
1269 m_freem(m);
1270 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1271 return NULL;
1272 }
1273 KASSERT(map->dm_mapsize == MCLBYTES);
1274 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1275 BUS_DMASYNC_PREREAD);
1276
1277 return m;
1278 }
1279
1280 static void
1281 pq3etsec_rx_map_unload(
1282 struct pq3etsec_softc *sc,
1283 struct mbuf *m)
1284 {
1285 KASSERT(m);
1286 for (; m != NULL; m = m->m_next) {
1287 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1288 KASSERT(map);
1289 KASSERT(map->dm_mapsize == MCLBYTES);
1290 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1291 BUS_DMASYNC_POSTREAD);
1292 bus_dmamap_unload(sc->sc_dmat, map);
1293 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1294 M_SETCTX(m, NULL);
1295 }
1296 }
1297
1298 static bool
1299 pq3etsec_rxq_produce(
1300 struct pq3etsec_softc *sc,
1301 struct pq3etsec_rxqueue *rxq)
1302 {
1303 volatile struct rxbd *producer = rxq->rxq_producer;
1304 #if 0
1305 size_t inuse = rxq->rxq_inuse;
1306 #endif
1307 while (rxq->rxq_inuse < rxq->rxq_threshold) {
1308 struct mbuf *m;
1309 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1310 if (m == NULL) {
1311 m = pq3etsec_rx_buf_alloc(sc);
1312 if (m == NULL) {
1313 printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1314 break;
1315 }
1316 }
1317 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1318 KASSERT(map);
1319
1320 #ifdef ETSEC_DEBUG
1321 KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1322 rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1323 #endif
1324
1325 /* rxbd_len is write-only by the ETSEC */
1326 producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1327 membar_producer();
1328 producer->rxbd_flags |= RXBD_E;
1329 if (__predict_false(rxq->rxq_mhead == NULL)) {
1330 KASSERT(producer == rxq->rxq_consumer);
1331 rxq->rxq_mconsumer = m;
1332 }
1333 *rxq->rxq_mtail = m;
1334 rxq->rxq_mtail = &m->m_next;
1335 m->m_len = MCLBYTES;
1336 m->m_next = NULL;
1337 rxq->rxq_inuse++;
1338 if (++producer == rxq->rxq_last) {
1339 membar_producer();
1340 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1341 rxq->rxq_last - rxq->rxq_producer);
1342 producer = rxq->rxq_producer = rxq->rxq_first;
1343 }
1344 }
1345 if (producer != rxq->rxq_producer) {
1346 membar_producer();
1347 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1348 producer - rxq->rxq_producer);
1349 rxq->rxq_producer = producer;
1350 }
1351 uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1352 if (qhlt) {
1353 KASSERT(qhlt & rxq->rxq_qmask);
1354 sc->sc_ev_rx_stall.ev_count++;
1355 etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1356 }
1357 #if 0
1358 aprint_normal_dev(sc->sc_dev,
1359 "%s: buffers inuse went from %zu to %zu\n",
1360 __func__, inuse, rxq->rxq_inuse);
1361 #endif
1362 return true;
1363 }
1364
1365 static bool
1366 pq3etsec_rx_offload(
1367 struct pq3etsec_softc *sc,
1368 struct mbuf *m,
1369 const struct rxfcb *fcb)
1370 {
1371 if (fcb->rxfcb_flags & RXFCB_VLN) {
1372 VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1373 m_freem(m); return false);
1374 }
1375 if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1376 || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1377 return true;
1378 int csum_flags = 0;
1379 if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1380 csum_flags |= M_CSUM_IPv4;
1381 if (fcb->rxfcb_flags & RXFCB_EIP)
1382 csum_flags |= M_CSUM_IPv4_BAD;
1383 }
1384 if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1385 int ipv_flags;
1386 if (fcb->rxfcb_flags & RXFCB_IP6)
1387 ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1388 else
1389 ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1390 if (fcb->rxfcb_pro == IPPROTO_TCP) {
1391 csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1392 } else {
1393 csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1394 }
1395 if (fcb->rxfcb_flags & RXFCB_ETU)
1396 csum_flags |= M_CSUM_TCP_UDP_BAD;
1397 }
1398
1399 m->m_pkthdr.csum_flags = csum_flags;
1400 return true;
1401 }
1402
1403 static void
1404 pq3etsec_rx_input(
1405 struct pq3etsec_softc *sc,
1406 struct mbuf *m,
1407 uint16_t rxbd_flags)
1408 {
1409 struct ifnet * const ifp = &sc->sc_if;
1410
1411 pq3etsec_rx_map_unload(sc, m);
1412
1413 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1414 struct rxfcb fcb = *mtod(m, struct rxfcb *);
1415 if (!pq3etsec_rx_offload(sc, m, &fcb))
1416 return;
1417 }
1418 m_adj(m, sc->sc_rx_adjlen);
1419
1420 if (rxbd_flags & RXBD_M)
1421 m->m_flags |= M_PROMISC;
1422 if (rxbd_flags & RXBD_BC)
1423 m->m_flags |= M_BCAST;
1424 if (rxbd_flags & RXBD_MC)
1425 m->m_flags |= M_MCAST;
1426 m->m_flags |= M_HASFCS;
1427 m->m_pkthdr.rcvif = &sc->sc_if;
1428
1429 ifp->if_ipackets++;
1430 ifp->if_ibytes += m->m_pkthdr.len;
1431
1432 /*
1433 * Let's give it to the network subsystm to deal with.
1434 */
1435 int s = splnet();
1436 bpf_mtap(ifp, m);
1437 (*ifp->if_input)(ifp, m);
1438 splx(s);
1439 }
1440
1441 static void
1442 pq3etsec_rxq_consume(
1443 struct pq3etsec_softc *sc,
1444 struct pq3etsec_rxqueue *rxq)
1445 {
1446 struct ifnet * const ifp = &sc->sc_if;
1447 volatile struct rxbd *consumer = rxq->rxq_consumer;
1448 size_t rxconsumed = 0;
1449
1450 etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1451
1452 for (;;) {
1453 if (consumer == rxq->rxq_producer) {
1454 rxq->rxq_consumer = consumer;
1455 rxq->rxq_inuse -= rxconsumed;
1456 return;
1457 }
1458 pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1459 const uint16_t rxbd_flags = consumer->rxbd_flags;
1460 if (rxbd_flags & RXBD_E) {
1461 rxq->rxq_consumer = consumer;
1462 rxq->rxq_inuse -= rxconsumed;
1463 return;
1464 }
1465 KASSERT(rxq->rxq_mconsumer != NULL);
1466 #ifdef ETSEC_DEBUG
1467 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1468 #endif
1469 #if 0
1470 printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1471 __func__,
1472 consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1473 mtod(rxq->rxq_mconsumer, int *)[0],
1474 mtod(rxq->rxq_mconsumer, int *)[1],
1475 mtod(rxq->rxq_mconsumer, int *)[2],
1476 mtod(rxq->rxq_mconsumer, int *)[3]);
1477 #endif
1478 /*
1479 * We own this packet again. Clear all flags except wrap.
1480 */
1481 rxconsumed++;
1482 consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1483
1484 /*
1485 * If this descriptor has the LAST bit set and no errors,
1486 * it's a valid input packet.
1487 */
1488 if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1489 size_t rxbd_len = consumer->rxbd_len;
1490 struct mbuf *m = rxq->rxq_mhead;
1491 struct mbuf *m_last = rxq->rxq_mconsumer;
1492 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1493 rxq->rxq_mtail = &rxq->rxq_mhead;
1494 rxq->rxq_mconsumer = rxq->rxq_mhead;
1495 m_last->m_next = NULL;
1496 m_last->m_len = rxbd_len & (MCLBYTES - 1);
1497 m->m_pkthdr.len = rxbd_len;
1498 pq3etsec_rx_input(sc, m, rxbd_flags);
1499 } else if (rxbd_flags & RXBD_L) {
1500 KASSERT(rxbd_flags & RXBD_ERRORS);
1501 struct mbuf *m;
1502 /*
1503 * We encountered an error, take the mbufs and add
1504 * then to the rx bufcache so we can reuse them.
1505 */
1506 ifp->if_ierrors++;
1507 for (m = rxq->rxq_mhead;
1508 m != rxq->rxq_mconsumer;
1509 m = m->m_next) {
1510 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1511 }
1512 m = rxq->rxq_mconsumer;
1513 if ((rxq->rxq_mhead = m->m_next) == NULL)
1514 rxq->rxq_mtail = &rxq->rxq_mhead;
1515 rxq->rxq_mconsumer = m->m_next;
1516 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1517 } else {
1518 rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1519 }
1520 #ifdef ETSEC_DEBUG
1521 rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1522 #endif
1523
1524 /*
1525 * Wrap at the last entry!
1526 */
1527 if (rxbd_flags & RXBD_W) {
1528 KASSERT(consumer + 1 == rxq->rxq_last);
1529 consumer = rxq->rxq_first;
1530 } else {
1531 consumer++;
1532 }
1533 #ifdef ETSEC_DEBUG
1534 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1535 #endif
1536 }
1537 }
1538
1539 static void
1540 pq3etsec_rxq_purge(
1541 struct pq3etsec_softc *sc,
1542 struct pq3etsec_rxqueue *rxq,
1543 bool discard)
1544 {
1545 struct mbuf *m;
1546
1547 if ((m = rxq->rxq_mhead) != NULL) {
1548 #ifdef ETSEC_DEBUG
1549 memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1550 #endif
1551
1552 if (discard) {
1553 pq3etsec_rx_map_unload(sc, m);
1554 m_freem(m);
1555 } else {
1556 while (m != NULL) {
1557 struct mbuf *m0 = m->m_next;
1558 m->m_next = NULL;
1559 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1560 m = m0;
1561 }
1562 }
1563
1564 }
1565
1566 rxq->rxq_mconsumer = NULL;
1567 rxq->rxq_mhead = NULL;
1568 rxq->rxq_mtail = &rxq->rxq_mhead;
1569 rxq->rxq_inuse = 0;
1570 }
1571
1572 static void
1573 pq3etsec_rxq_reset(
1574 struct pq3etsec_softc *sc,
1575 struct pq3etsec_rxqueue *rxq)
1576 {
1577 /*
1578 * sync all the descriptors
1579 */
1580 pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1581 rxq->rxq_last - rxq->rxq_first);
1582
1583 /*
1584 * Make sure we own all descriptors in the ring.
1585 */
1586 volatile struct rxbd *rxbd;
1587 for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1588 rxbd->rxbd_flags = RXBD_I;
1589 }
1590
1591 /*
1592 * Last descriptor has the wrap flag.
1593 */
1594 rxbd->rxbd_flags = RXBD_W|RXBD_I;
1595
1596 /*
1597 * Reset the producer consumer indexes.
1598 */
1599 rxq->rxq_consumer = rxq->rxq_first;
1600 rxq->rxq_producer = rxq->rxq_first;
1601 rxq->rxq_inuse = 0;
1602 if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1603 rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1604
1605 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1606
1607 /*
1608 * Restart the transmit at the first descriptor
1609 */
1610 etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1611 }
1612
1613 static int
1614 pq3etsec_rxq_attach(
1615 struct pq3etsec_softc *sc,
1616 struct pq3etsec_rxqueue *rxq,
1617 u_int qno)
1618 {
1619 size_t map_size = PAGE_SIZE;
1620 size_t desc_count = map_size / sizeof(struct rxbd);
1621 int error;
1622 void *descs;
1623
1624 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1625 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1626 if (error)
1627 return error;
1628
1629 memset(descs, 0, map_size);
1630 rxq->rxq_first = descs;
1631 rxq->rxq_last = rxq->rxq_first + desc_count;
1632 rxq->rxq_consumer = descs;
1633 rxq->rxq_producer = descs;
1634
1635 pq3etsec_rxq_purge(sc, rxq, true);
1636 pq3etsec_rxq_reset(sc, rxq);
1637
1638 rxq->rxq_reg_rbase = RBASEn(qno);
1639 rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1640
1641 return 0;
1642 }
1643
1644 static bool
1645 pq3etsec_txq_active_p(
1646 struct pq3etsec_softc * const sc,
1647 struct pq3etsec_txqueue *txq)
1648 {
1649 return !IF_IS_EMPTY(&txq->txq_mbufs);
1650 }
1651
1652 static bool
1653 pq3etsec_txq_fillable_p(
1654 struct pq3etsec_softc * const sc,
1655 struct pq3etsec_txqueue *txq)
1656 {
1657 return txq->txq_free >= txq->txq_threshold;
1658 }
1659
1660 static int
1661 pq3etsec_txq_attach(
1662 struct pq3etsec_softc *sc,
1663 struct pq3etsec_txqueue *txq,
1664 u_int qno)
1665 {
1666 size_t map_size = PAGE_SIZE;
1667 size_t desc_count = map_size / sizeof(struct txbd);
1668 int error;
1669 void *descs;
1670
1671 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1672 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1673 if (error)
1674 return error;
1675
1676 memset(descs, 0, map_size);
1677 txq->txq_first = descs;
1678 txq->txq_last = txq->txq_first + desc_count;
1679 txq->txq_consumer = descs;
1680 txq->txq_producer = descs;
1681
1682 IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1683
1684 txq->txq_reg_tbase = TBASEn(qno);
1685 txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1686
1687 pq3etsec_txq_reset(sc, txq);
1688
1689 return 0;
1690 }
1691
1692 static int
1693 pq3etsec_txq_map_load(
1694 struct pq3etsec_softc *sc,
1695 struct pq3etsec_txqueue *txq,
1696 struct mbuf *m)
1697 {
1698 bus_dmamap_t map;
1699 int error;
1700
1701 map = M_GETCTX(m, bus_dmamap_t);
1702 if (map != NULL)
1703 return 0;
1704
1705 map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1706 if (map == NULL)
1707 return ENOMEM;
1708
1709 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1710 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1711 if (error)
1712 return error;
1713
1714 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1715 BUS_DMASYNC_PREWRITE);
1716 M_SETCTX(m, map);
1717 return 0;
1718 }
1719
1720 static void
1721 pq3etsec_txq_map_unload(
1722 struct pq3etsec_softc *sc,
1723 struct pq3etsec_txqueue *txq,
1724 struct mbuf *m)
1725 {
1726 KASSERT(m);
1727 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1728 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1729 BUS_DMASYNC_POSTWRITE);
1730 bus_dmamap_unload(sc->sc_dmat, map);
1731 pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1732 }
1733
1734 static bool
1735 pq3etsec_txq_produce(
1736 struct pq3etsec_softc *sc,
1737 struct pq3etsec_txqueue *txq,
1738 struct mbuf *m)
1739 {
1740 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1741
1742 if (map->dm_nsegs > txq->txq_free)
1743 return false;
1744
1745 /*
1746 * TCP Offload flag must be set in the first descriptor.
1747 */
1748 volatile struct txbd *producer = txq->txq_producer;
1749 uint16_t last_flags = TXBD_L;
1750 uint16_t first_flags = TXBD_R
1751 | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1752
1753 /*
1754 * If we've produced enough descriptors without consuming any
1755 * we need to ask for an interrupt to reclaim some.
1756 */
1757 txq->txq_lastintr += map->dm_nsegs;
1758 if (txq->txq_lastintr >= txq->txq_threshold
1759 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1760 txq->txq_lastintr = 0;
1761 last_flags |= TXBD_I;
1762 }
1763
1764 #ifdef ETSEC_DEBUG
1765 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1766 #endif
1767 KASSERT(producer != txq->txq_last);
1768 producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1769 producer->txbd_len = map->dm_segs[0].ds_len;
1770
1771 if (map->dm_nsegs > 1) {
1772 volatile struct txbd *start = producer + 1;
1773 size_t count = map->dm_nsegs - 1;
1774 for (u_int i = 1; i < map->dm_nsegs; i++) {
1775 if (__predict_false(++producer == txq->txq_last)) {
1776 producer = txq->txq_first;
1777 if (start < txq->txq_last) {
1778 pq3etsec_txq_desc_presync(sc, txq,
1779 start, txq->txq_last - start);
1780 count -= txq->txq_last - start;
1781 }
1782 start = txq->txq_first;
1783 }
1784 #ifdef ETSEC_DEBUG
1785 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1786 #endif
1787 producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1788 producer->txbd_len = map->dm_segs[i].ds_len;
1789 producer->txbd_flags = TXBD_R
1790 | (producer->txbd_flags & TXBD_W)
1791 | (i == map->dm_nsegs - 1 ? last_flags : 0);
1792 #if 0
1793 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1794 producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1795 #endif
1796 }
1797 pq3etsec_txq_desc_presync(sc, txq, start, count);
1798 } else {
1799 first_flags |= last_flags;
1800 }
1801
1802 membar_producer();
1803 txq->txq_producer->txbd_flags =
1804 first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1805 #if 0
1806 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1807 txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1808 txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1809 #endif
1810 pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1811
1812 /*
1813 * Reduce free count by the number of segments we consumed.
1814 */
1815 txq->txq_free -= map->dm_nsegs;
1816 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1817 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1818 KASSERT(producer->txbd_flags & TXBD_L);
1819 #ifdef ETSEC_DEBUG
1820 txq->txq_lmbufs[producer - txq->txq_first] = m;
1821 #endif
1822
1823 #if 0
1824 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1825 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1826 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1827 #endif
1828
1829 if (++producer == txq->txq_last)
1830 txq->txq_producer = txq->txq_first;
1831 else
1832 txq->txq_producer = producer;
1833 IF_ENQUEUE(&txq->txq_mbufs, m);
1834
1835 /*
1836 * Restart the transmitter.
1837 */
1838 etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT); /* W1C */
1839
1840 return true;
1841 }
1842
1843 static void
1844 pq3etsec_tx_offload(
1845 struct pq3etsec_softc *sc,
1846 struct pq3etsec_txqueue *txq,
1847 struct mbuf **mp)
1848 {
1849 struct mbuf *m = *mp;
1850 u_int csum_flags = m->m_pkthdr.csum_flags;
1851 struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1852
1853 KASSERT(m->m_flags & M_PKTHDR);
1854
1855 /*
1856 * Let see if we are doing any offload first.
1857 */
1858 if (csum_flags == 0 && vtag == 0) {
1859 m->m_flags &= ~M_HASFCB;
1860 return;
1861 }
1862
1863 uint16_t flags = 0;
1864 if (csum_flags & M_CSUM_IP) {
1865 flags |= TXFCB_IP
1866 | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
1867 | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
1868 | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
1869 | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
1870 | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
1871 }
1872 if (vtag) {
1873 flags |= TXFCB_VLN;
1874 }
1875 if (flags == 0) {
1876 m->m_flags &= ~M_HASFCB;
1877 return;
1878 }
1879
1880 struct txfcb fcb;
1881 fcb.txfcb_flags = flags;
1882 if (csum_flags & M_CSUM_IPv4)
1883 fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
1884 else
1885 fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1886 fcb.txfcb_l3os = ETHER_HDR_LEN;
1887 fcb.txfcb_phcs = 0;
1888 fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
1889
1890 #if 0
1891 printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
1892 __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
1893 fcb.txfcb_phcs, fcb.txfcb_vlctl);
1894 #endif
1895
1896 if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
1897 m->m_data -= sizeof(fcb);
1898 m->m_len += sizeof(fcb);
1899 } else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
1900 memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
1901 m->m_data = m->m_pktdat;
1902 m->m_len += sizeof(fcb);
1903 } else {
1904 struct mbuf *mn;
1905 MGET(mn, M_DONTWAIT, m->m_type);
1906 if (mn == NULL) {
1907 if (csum_flags & M_CSUM_IP4) {
1908 #ifdef INET
1909 ip_undefer_csum(m, ETHER_HDR_LEN,
1910 csum_flags & M_CSUM_IP4);
1911 #else
1912 panic("%s: impossible M_CSUM flags %#x",
1913 device_xname(sc->sc_dev), csum_flags);
1914 #endif
1915 } else if (csum_flags & M_CSUM_IP6) {
1916 #ifdef INET6
1917 ip6_undefer_csum(m, ETHER_HDR_LEN,
1918 csum_flags & M_CSUM_IP6);
1919 #else
1920 panic("%s: impossible M_CSUM flags %#x",
1921 device_xname(sc->sc_dev), csum_flags);
1922 #endif
1923 } else if (vtag) {
1924 }
1925
1926 m->m_flags &= ~M_HASFCB;
1927 return;
1928 }
1929
1930 M_MOVE_PKTHDR(mn, m);
1931 mn->m_next = m;
1932 m = mn;
1933 MH_ALIGN(m, sizeof(fcb));
1934 m->m_len = sizeof(fcb);
1935 *mp = m;
1936 }
1937 m->m_pkthdr.len += sizeof(fcb);
1938 m->m_flags |= M_HASFCB;
1939 *mtod(m, struct txfcb *) = fcb;
1940 return;
1941 }
1942
1943 static bool
1944 pq3etsec_txq_enqueue(
1945 struct pq3etsec_softc *sc,
1946 struct pq3etsec_txqueue *txq)
1947 {
1948 for (;;) {
1949 if (IF_QFULL(&txq->txq_mbufs))
1950 return false;
1951 struct mbuf *m = txq->txq_next;
1952 if (m == NULL) {
1953 int s = splnet();
1954 IF_DEQUEUE(&sc->sc_if.if_snd, m);
1955 splx(s);
1956 if (m == NULL)
1957 return true;
1958 M_SETCTX(m, NULL);
1959 pq3etsec_tx_offload(sc, txq, &m);
1960 } else {
1961 txq->txq_next = NULL;
1962 }
1963 int error = pq3etsec_txq_map_load(sc, txq, m);
1964 if (error) {
1965 aprint_error_dev(sc->sc_dev,
1966 "discarded packet due to "
1967 "dmamap load failure: %d\n", error);
1968 m_freem(m);
1969 continue;
1970 }
1971 KASSERT(txq->txq_next == NULL);
1972 if (!pq3etsec_txq_produce(sc, txq, m)) {
1973 txq->txq_next = m;
1974 return false;
1975 }
1976 KASSERT(txq->txq_next == NULL);
1977 }
1978 }
1979
1980 static bool
1981 pq3etsec_txq_consume(
1982 struct pq3etsec_softc *sc,
1983 struct pq3etsec_txqueue *txq)
1984 {
1985 struct ifnet * const ifp = &sc->sc_if;
1986 volatile struct txbd *consumer = txq->txq_consumer;
1987 size_t txfree = 0;
1988
1989 #if 0
1990 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1991 #endif
1992 etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
1993
1994 for (;;) {
1995 if (consumer == txq->txq_producer) {
1996 txq->txq_consumer = consumer;
1997 txq->txq_free += txfree;
1998 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
1999 #if 0
2000 printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2001 __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2002 #endif
2003 KASSERT(txq->txq_lastintr == 0);
2004 KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2005 return true;
2006 }
2007 pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2008 const uint16_t txbd_flags = consumer->txbd_flags;
2009 if (txbd_flags & TXBD_R) {
2010 txq->txq_consumer = consumer;
2011 txq->txq_free += txfree;
2012 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2013 #if 0
2014 printf("%s: freed %zu descriptors\n",
2015 __func__, txfree);
2016 #endif
2017 return pq3etsec_txq_fillable_p(sc, txq);
2018 }
2019
2020 /*
2021 * If this is the last descriptor in the chain, get the
2022 * mbuf, free its dmamap, and free the mbuf chain itself.
2023 */
2024 if (txbd_flags & TXBD_L) {
2025 struct mbuf *m;
2026
2027 IF_DEQUEUE(&txq->txq_mbufs, m);
2028 #ifdef ETSEC_DEBUG
2029 KASSERTMSG(m == txq->txq_lmbufs[consumer-txq->txq_first],
2030 ("%s: %p [%u]: flags %#x m (%p) != %p (%p)", __func__,
2031 consumer, consumer - txq->txq_first, txbd_flags,
2032 m, &txq->txq_lmbufs[consumer-txq->txq_first],
2033 txq->txq_lmbufs[consumer-txq->txq_first]));
2034 #endif
2035 KASSERT(m);
2036 pq3etsec_txq_map_unload(sc, txq, m);
2037 #if 0
2038 printf("%s: mbuf %p: consumed a %u byte packet\n",
2039 __func__, m, m->m_pkthdr.len);
2040 #endif
2041 if (m->m_flags & M_HASFCB)
2042 m_adj(m, sizeof(struct txfcb));
2043 ifp->if_opackets++;
2044 ifp->if_obytes += m->m_pkthdr.len;
2045 if (m->m_flags & M_MCAST)
2046 ifp->if_omcasts++;
2047 if (txbd_flags & TXBD_ERRORS)
2048 ifp->if_oerrors++;
2049 m_freem(m);
2050 #ifdef ETSEC_DEBUG
2051 txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2052 #endif
2053 } else {
2054 #ifdef ETSEC_DEBUG
2055 KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2056 #endif
2057 }
2058
2059 /*
2060 * We own this packet again. Clear all flags except wrap.
2061 */
2062 txfree++;
2063 //consumer->txbd_flags = txbd_flags & TXBD_W;
2064
2065 /*
2066 * Wrap at the last entry!
2067 */
2068 if (txbd_flags & TXBD_W) {
2069 KASSERT(consumer + 1 == txq->txq_last);
2070 consumer = txq->txq_first;
2071 } else {
2072 consumer++;
2073 KASSERT(consumer < txq->txq_last);
2074 }
2075 }
2076 }
2077
2078 static void
2079 pq3etsec_txq_purge(
2080 struct pq3etsec_softc *sc,
2081 struct pq3etsec_txqueue *txq)
2082 {
2083 struct mbuf *m;
2084 KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2085
2086 for (;;) {
2087 IF_DEQUEUE(&txq->txq_mbufs, m);
2088 if (m == NULL)
2089 break;
2090 pq3etsec_txq_map_unload(sc, txq, m);
2091 m_freem(m);
2092 }
2093 if ((m = txq->txq_next) != NULL) {
2094 txq->txq_next = NULL;
2095 pq3etsec_txq_map_unload(sc, txq, m);
2096 m_freem(m);
2097 }
2098 #ifdef ETSEC_DEBUG
2099 memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2100 #endif
2101 }
2102
2103 static void
2104 pq3etsec_txq_reset(
2105 struct pq3etsec_softc *sc,
2106 struct pq3etsec_txqueue *txq)
2107 {
2108 /*
2109 * sync all the descriptors
2110 */
2111 pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2112 txq->txq_last - txq->txq_first);
2113
2114 /*
2115 * Make sure we own all descriptors in the ring.
2116 */
2117 volatile struct txbd *txbd;
2118 for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2119 txbd->txbd_flags = 0;
2120 }
2121
2122 /*
2123 * Last descriptor has the wrap flag.
2124 */
2125 txbd->txbd_flags = TXBD_W;
2126
2127 /*
2128 * Reset the producer consumer indexes.
2129 */
2130 txq->txq_consumer = txq->txq_first;
2131 txq->txq_producer = txq->txq_first;
2132 txq->txq_free = txq->txq_last - txq->txq_first - 1;
2133 txq->txq_threshold = txq->txq_free / 2;
2134 txq->txq_lastintr = 0;
2135
2136 /*
2137 * What do we want to get interrupted on?
2138 */
2139 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2140
2141 /*
2142 * Restart the transmit at the first descriptor
2143 */
2144 etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2145 }
2146
2147 static void
2148 pq3etsec_ifstart(struct ifnet *ifp)
2149 {
2150 struct pq3etsec_softc * const sc = ifp->if_softc;
2151
2152 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2153 softint_schedule(sc->sc_soft_ih);
2154 }
2155
2156 static void
2157 pq3etsec_tx_error(
2158 struct pq3etsec_softc * const sc)
2159 {
2160 struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2161
2162 pq3etsec_txq_consume(sc, txq);
2163
2164 if (pq3etsec_txq_fillable_p(sc, txq))
2165 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2166 if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2167 } else if (sc->sc_txerrors & IEVENT_EBERR) {
2168 }
2169
2170 if (pq3etsec_txq_active_p(sc, txq))
2171 etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2172 if (!pq3etsec_txq_enqueue(sc, txq)) {
2173 sc->sc_ev_tx_stall.ev_count++;
2174 sc->sc_if.if_flags |= IFF_OACTIVE;
2175 }
2176
2177 sc->sc_txerrors = 0;
2178 }
2179
2180 int
2181 pq3etsec_tx_intr(void *arg)
2182 {
2183 struct pq3etsec_softc * const sc = arg;
2184
2185 sc->sc_ev_tx_intr.ev_count++;
2186
2187 uint32_t ievent = etsec_read(sc, IEVENT);
2188 ievent &= IEVENT_TXF|IEVENT_TXB;
2189 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2190
2191 #if 0
2192 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2193 __func__, ievent, etsec_read(sc, IMASK));
2194 #endif
2195
2196 if (ievent == 0)
2197 return 0;
2198
2199 sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2200 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2201 etsec_write(sc, IMASK, sc->sc_imask);
2202 softint_schedule(sc->sc_soft_ih);
2203 return 1;
2204 }
2205
2206 int
2207 pq3etsec_rx_intr(void *arg)
2208 {
2209 struct pq3etsec_softc * const sc = arg;
2210
2211 sc->sc_ev_rx_intr.ev_count++;
2212
2213 uint32_t ievent = etsec_read(sc, IEVENT);
2214 ievent &= IEVENT_RXF|IEVENT_RXB;
2215 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2216 if (ievent == 0)
2217 return 0;
2218
2219 #if 0
2220 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2221 #endif
2222
2223 sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2224 atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2225 etsec_write(sc, IMASK, sc->sc_imask);
2226 softint_schedule(sc->sc_soft_ih);
2227 return 1;
2228 }
2229
2230 int
2231 pq3etsec_error_intr(void *arg)
2232 {
2233 struct pq3etsec_softc * const sc = arg;
2234
2235 sc->sc_ev_error_intr.ev_count++;
2236
2237 for (int rv = 0, soft_flags = 0;; rv = 1) {
2238 uint32_t ievent = etsec_read(sc, IEVENT);
2239 ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2240 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2241 if (ievent == 0) {
2242 if (soft_flags) {
2243 atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2244 softint_schedule(sc->sc_soft_ih);
2245 }
2246 return rv;
2247 }
2248 #if 0
2249 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2250 __func__, ievent, etsec_read(sc, IMASK));
2251 #endif
2252
2253 if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2254 sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2255 etsec_write(sc, IMASK, sc->sc_imask);
2256 wakeup(sc);
2257 }
2258 if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2259 sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2260 etsec_write(sc, IMASK, sc->sc_imask);
2261 wakeup(&sc->sc_mii);
2262 }
2263 if (ievent & IEVENT_BSY) {
2264 soft_flags |= SOFT_RXBSY;
2265 sc->sc_imask &= ~IEVENT_BSY;
2266 etsec_write(sc, IMASK, sc->sc_imask);
2267 }
2268 if (ievent & IEVENT_TXE) {
2269 soft_flags |= SOFT_TXERROR;
2270 sc->sc_imask &= ~IEVENT_TXE;
2271 sc->sc_txerrors |= ievent;
2272 }
2273 if (ievent & IEVENT_TXC) {
2274 sc->sc_ev_tx_pause.ev_count++;
2275 }
2276 if (ievent & IEVENT_RXC) {
2277 sc->sc_ev_rx_pause.ev_count++;
2278 }
2279 if (ievent & IEVENT_DPE) {
2280 soft_flags |= SOFT_RESET;
2281 sc->sc_imask &= ~IEVENT_DPE;
2282 etsec_write(sc, IMASK, sc->sc_imask);
2283 }
2284 }
2285 }
2286
2287 void
2288 pq3etsec_soft_intr(void *arg)
2289 {
2290 struct pq3etsec_softc * const sc = arg;
2291 struct ifnet * const ifp = &sc->sc_if;
2292
2293 mutex_enter(sc->sc_lock);
2294
2295 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2296
2297 sc->sc_ev_soft_intr.ev_count++;
2298
2299 if (soft_flags & SOFT_RESET) {
2300 int s = splnet();
2301 pq3etsec_ifinit(ifp);
2302 splx(s);
2303 soft_flags = 0;
2304 }
2305
2306 if (soft_flags & SOFT_RXBSY) {
2307 struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2308 size_t threshold = 5 * rxq->rxq_threshold / 4;
2309 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2310 threshold = rxq->rxq_last - rxq->rxq_first - 1;
2311 } else {
2312 sc->sc_imask |= IEVENT_BSY;
2313 }
2314 aprint_normal_dev(sc->sc_dev,
2315 "increasing receive buffers from %zu to %zu\n",
2316 rxq->rxq_threshold, threshold);
2317 rxq->rxq_threshold = threshold;
2318 }
2319
2320 if ((soft_flags & SOFT_TXINTR)
2321 || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2322 /*
2323 * Let's do what we came here for. Consume transmitted
2324 * packets off the the transmit ring.
2325 */
2326 if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2327 || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2328 sc->sc_ev_tx_stall.ev_count++;
2329 ifp->if_flags |= IFF_OACTIVE;
2330 } else {
2331 ifp->if_flags &= ~IFF_OACTIVE;
2332 }
2333 sc->sc_imask |= IEVENT_TXF;
2334 }
2335
2336 if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2337 /*
2338 * Let's consume
2339 */
2340 pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2341 sc->sc_imask |= IEVENT_RXF;
2342 }
2343
2344 if (soft_flags & SOFT_TXERROR) {
2345 pq3etsec_tx_error(sc);
2346 sc->sc_imask |= IEVENT_TXE;
2347 }
2348
2349 if (ifp->if_flags & IFF_RUNNING) {
2350 pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2351 etsec_write(sc, IMASK, sc->sc_imask);
2352 } else {
2353 KASSERT((soft_flags & SOFT_RXBSY) == 0);
2354 }
2355
2356 mutex_exit(sc->sc_lock);
2357 }
2358
2359 static void
2360 pq3etsec_mii_tick(void *arg)
2361 {
2362 struct pq3etsec_softc * const sc = arg;
2363 mutex_enter(sc->sc_lock);
2364 callout_ack(&sc->sc_mii_callout);
2365 sc->sc_ev_mii_ticks.ev_count++;
2366 #ifdef DEBUG
2367 uint64_t now = mftb();
2368 if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2369 aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2370 __func__, now - sc->sc_mii_last_tick);
2371 callout_stop(&sc->sc_mii_callout);
2372 }
2373 #endif
2374 mii_tick(&sc->sc_mii);
2375 int s = splnet();
2376 if (sc->sc_soft_flags & SOFT_RESET)
2377 softint_schedule(sc->sc_soft_ih);
2378 splx(s);
2379 callout_schedule(&sc->sc_mii_callout, hz);
2380 sc->sc_mii_last_tick = now;
2381 mutex_exit(sc->sc_lock);
2382 }
2383