pq3etsec.c revision 1.2.4.3 1 /* $NetBSD: pq3etsec.c,v 1.2.4.3 2011/04/21 01:41:19 rmind Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include "opt_inet.h"
38
39 #include <sys/cdefs.h>
40
41 #include <sys/param.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44 #include <sys/mbuf.h>
45 #include <sys/ioctl.h>
46 #include <sys/intr.h>
47 #include <sys/bus.h>
48 #include <sys/kernel.h>
49 #include <sys/kmem.h>
50 #include <sys/proc.h>
51 #include <sys/atomic.h>
52 #include <sys/callout.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_ether.h>
57 #include <net/if_media.h>
58
59 #include <dev/mii/miivar.h>
60
61 #include "ioconf.h"
62
63 #include <net/bpf.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_offload.h>
70 #endif /* INET */
71 #ifdef INET6
72 #include <netinet6/in6.h>
73 #include <netinet/ip6.h>
74 #endif
75 #include <netinet6/in6_offload.h>
76
77
78 #include <powerpc/spr.h>
79 #include <powerpc/booke/spr.h>
80
81 #include <powerpc/booke/cpuvar.h>
82 #include <powerpc/booke/e500var.h>
83 #include <powerpc/booke/e500reg.h>
84 #include <powerpc/booke/etsecreg.h>
85
86 #define M_HASFCB M_LINK2 /* tx packet has FCB prepended */
87
88 #define ETSEC_MAXTXMBUFS 30
89 #define ETSEC_NTXSEGS 30
90 #define ETSEC_MAXRXMBUFS 511
91 #define ETSEC_MINRXMBUFS 32
92 #define ETSEC_NRXSEGS 1
93
94 #define IFCAP_RCTRL_IPCSEN IFCAP_CSUM_IPv4_Rx
95 #define IFCAP_RCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Rx\
96 |IFCAP_CSUM_UDPv4_Rx\
97 |IFCAP_CSUM_TCPv6_Rx\
98 |IFCAP_CSUM_UDPv6_Rx)
99
100 #define IFCAP_TCTRL_IPCSEN IFCAP_CSUM_IPv4_Tx
101 #define IFCAP_TCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Tx\
102 |IFCAP_CSUM_UDPv4_Tx\
103 |IFCAP_CSUM_TCPv6_Tx\
104 |IFCAP_CSUM_UDPv6_Tx)
105
106 #define IFCAP_ETSEC (IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
107 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
108
109 #define M_CSUM_IP (M_CSUM_CIP|M_CSUM_CTU)
110 #define M_CSUM_IP6 (M_CSUM_TCPv6|M_CSUM_UDPv6)
111 #define M_CSUM_TUP (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
112 #define M_CSUM_UDP (M_CSUM_UDPv4|M_CSUM_UDPv6)
113 #define M_CSUM_IP4 (M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
114 #define M_CSUM_CIP (M_CSUM_IPv4)
115 #define M_CSUM_CTU (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
116
117 struct pq3etsec_txqueue {
118 bus_dmamap_t txq_descmap;
119 volatile struct txbd *txq_consumer;
120 volatile struct txbd *txq_producer;
121 volatile struct txbd *txq_first;
122 volatile struct txbd *txq_last;
123 struct ifqueue txq_mbufs;
124 struct mbuf *txq_next;
125 #ifdef ETSEC_DEBUG
126 struct mbuf *txq_lmbufs[512];
127 #endif
128 uint32_t txq_qmask;
129 uint32_t txq_free;
130 uint32_t txq_threshold;
131 uint32_t txq_lastintr;
132 bus_size_t txq_reg_tbase;
133 bus_dma_segment_t txq_descmap_seg;
134 };
135
136 struct pq3etsec_rxqueue {
137 bus_dmamap_t rxq_descmap;
138 volatile struct rxbd *rxq_consumer;
139 volatile struct rxbd *rxq_producer;
140 volatile struct rxbd *rxq_first;
141 volatile struct rxbd *rxq_last;
142 struct mbuf *rxq_mhead;
143 struct mbuf **rxq_mtail;
144 struct mbuf *rxq_mconsumer;
145 #ifdef ETSEC_DEBUG
146 struct mbuf *rxq_mbufs[512];
147 #endif
148 uint32_t rxq_qmask;
149 uint32_t rxq_inuse;
150 uint32_t rxq_threshold;
151 bus_size_t rxq_reg_rbase;
152 bus_size_t rxq_reg_rbptr;
153 bus_dma_segment_t rxq_descmap_seg;
154 };
155
156 struct pq3etsec_mapcache {
157 u_int dmc_nmaps;
158 u_int dmc_maxseg;
159 u_int dmc_maxmaps;
160 u_int dmc_maxmapsize;
161 bus_dmamap_t dmc_maps[0];
162 };
163
164 struct pq3etsec_softc {
165 device_t sc_dev;
166 struct ethercom sc_ec;
167 #define sc_if sc_ec.ec_if
168 struct mii_data sc_mii;
169 bus_space_tag_t sc_bst;
170 bus_space_handle_t sc_bsh;
171 bus_dma_tag_t sc_dmat;
172 int sc_phy_addr;
173 prop_dictionary_t sc_intrmap;
174 uint32_t sc_intrmask;
175
176 uint32_t sc_soft_flags;
177 #define SOFT_RESET 0x0001
178 #define SOFT_RXINTR 0x0010
179 #define SOFT_RXBSY 0x0020
180 #define SOFT_TXINTR 0x0100
181 #define SOFT_TXERROR 0x0200
182
183 struct pq3etsec_txqueue sc_txq;
184 struct pq3etsec_rxqueue sc_rxq;
185 uint32_t sc_txerrors;
186 uint32_t sc_rxerrors;
187
188 size_t sc_rx_adjlen;
189
190 /*
191 * Copies of various ETSEC registers.
192 */
193 uint32_t sc_imask;
194 uint32_t sc_maccfg1;
195 uint32_t sc_maccfg2;
196 uint32_t sc_maxfrm;
197 uint32_t sc_ecntrl;
198 uint32_t sc_dmactrl;
199 uint32_t sc_macstnaddr1;
200 uint32_t sc_macstnaddr2;
201 uint32_t sc_tctrl;
202 uint32_t sc_rctrl;
203 uint32_t sc_gaddr[16];
204 uint64_t sc_macaddrs[15];
205
206 void *sc_tx_ih;
207 void *sc_rx_ih;
208 void *sc_error_ih;
209 void *sc_soft_ih;
210
211 kmutex_t *sc_lock;
212
213 struct evcnt sc_ev_tx_stall;
214 struct evcnt sc_ev_tx_intr;
215 struct evcnt sc_ev_rx_stall;
216 struct evcnt sc_ev_rx_intr;
217 struct evcnt sc_ev_error_intr;
218 struct evcnt sc_ev_soft_intr;
219 struct evcnt sc_ev_tx_pause;
220 struct evcnt sc_ev_rx_pause;
221 struct evcnt sc_ev_mii_ticks;
222
223 struct callout sc_mii_callout;
224 uint64_t sc_mii_last_tick;
225
226 struct ifqueue sc_rx_bufcache;
227 struct pq3etsec_mapcache *sc_rx_mapcache;
228 struct pq3etsec_mapcache *sc_tx_mapcache;
229 };
230
231 static int pq3etsec_match(device_t, cfdata_t, void *);
232 static void pq3etsec_attach(device_t, device_t, void *);
233
234 static void pq3etsec_ifstart(struct ifnet *);
235 static void pq3etsec_ifwatchdog(struct ifnet *);
236 static int pq3etsec_ifinit(struct ifnet *);
237 static void pq3etsec_ifstop(struct ifnet *, int);
238 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
239
240 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
241 struct pq3etsec_mapcache **, size_t, size_t, size_t, size_t);
242 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
243 struct pq3etsec_mapcache *);
244 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
245 struct pq3etsec_mapcache *);
246 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
247 struct pq3etsec_mapcache *, bus_dmamap_t);
248
249 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
250 struct pq3etsec_txqueue *, u_int);
251 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
252 struct pq3etsec_txqueue *);
253 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
254 struct pq3etsec_txqueue *);
255 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
256 struct pq3etsec_txqueue *);
257 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
258 struct pq3etsec_txqueue *, struct mbuf *m);
259 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
260 struct pq3etsec_txqueue *);
261
262 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
263 struct pq3etsec_rxqueue *, u_int);
264 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
265 struct pq3etsec_rxqueue *);
266 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
267 struct pq3etsec_rxqueue *, bool);
268 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
269 struct pq3etsec_rxqueue *);
270
271 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
272
273 static void pq3etsec_mii_tick(void *);
274 static int pq3etsec_rx_intr(void *);
275 static int pq3etsec_tx_intr(void *);
276 static int pq3etsec_error_intr(void *);
277 static void pq3etsec_soft_intr(void *);
278
279 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
280 pq3etsec_match, pq3etsec_attach, NULL, NULL);
281
282 static int
283 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
284 {
285
286 if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
287 return 0;
288
289 return 1;
290 }
291
292 static inline uint32_t
293 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
294 {
295 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
296 }
297
298 static inline void
299 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
300 {
301 bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
302 }
303
304 static int
305 pq3etsec_mii_readreg(device_t self, int phy, int reg)
306 {
307 struct pq3etsec_softc * const sc = device_private(self);
308 uint32_t miimcom = etsec_read(sc, MIIMCOM);
309
310 // int s = splnet();
311
312 etsec_write(sc, MIIMADD,
313 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
314
315 etsec_write(sc, IEVENT, IEVENT_MMRD);
316 etsec_write(sc, MIIMCOM, 0); /* clear any past bits */
317 etsec_write(sc, MIIMCOM, MIIMCOM_READ);
318 #if 0
319 sc->sc_imask |= IEVENT_MMRD;
320 etsec_write(sc, IMASK, sc->sc_imask);
321 #endif
322
323 while (etsec_read(sc, MIIMIND) != 0) {
324 delay(1);
325 }
326 int data = etsec_read(sc, MIIMSTAT);
327
328 if (miimcom == MIIMCOM_SCAN)
329 etsec_write(sc, MIIMCOM, miimcom);
330
331 #if 0
332 aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
333 __func__, phy, reg, data);
334 #endif
335 etsec_write(sc, IEVENT, IEVENT_MMRD);
336 // splx(s);
337 return data;
338 }
339
340 static void
341 pq3etsec_mii_writereg(device_t self, int phy, int reg, int data)
342 {
343 struct pq3etsec_softc * const sc = device_private(self);
344 uint32_t miimcom = etsec_read(sc, MIIMCOM);
345
346 #if 0
347 aprint_normal_dev(sc->sc_dev, "%s: phy %d reg %d: %#x\n",
348 __func__, phy, reg, data);
349 #endif
350
351 // int s = splnet();
352 etsec_write(sc, IEVENT, IEVENT_MMWR);
353 etsec_write(sc, MIIMADD,
354 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
355 etsec_write(sc, MIIMCOM, 0); /* clear any past bits */
356 etsec_write(sc, MIIMCON, data);
357
358 #if 0
359 sc->sc_imask |= IEVENT_MMWR;
360 etsec_write(sc, IMASK, sc->sc_imask);
361 #endif
362
363 int timo = 1000; /* 1ms */
364 while ((etsec_read(sc, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
365 delay(1);
366 }
367
368 if (miimcom == MIIMCOM_SCAN)
369 etsec_write(sc, MIIMCOM, miimcom);
370 etsec_write(sc, IEVENT, IEVENT_MMWR);
371 // splx(s);
372 }
373
374 static void
375 pq3etsec_mii_statchg(device_t self)
376 {
377 struct pq3etsec_softc * const sc = device_private(self);
378 struct mii_data * const mii = &sc->sc_mii;
379
380 uint32_t maccfg1 = sc->sc_maccfg1;
381 uint32_t maccfg2 = sc->sc_maccfg2;
382 uint32_t ecntrl = sc->sc_ecntrl;
383
384 maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
385 maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
386
387 if (sc->sc_mii.mii_media_active & IFM_FDX) {
388 maccfg2 |= MACCFG2_FD;
389 }
390
391 /*
392 * Now deal with the flow control bits.
393 */
394 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
395 && (mii->mii_media_active & IFM_ETH_FMASK)) {
396 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
397 maccfg1 |= MACCFG1_RX_FLOW;
398 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
399 maccfg1 |= MACCFG1_TX_FLOW;
400 }
401
402 /*
403 * Now deal with the speed.
404 */
405 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
406 maccfg2 |= MACCFG2_IFMODE_GMII;
407 } else {
408 maccfg2 |= MACCFG2_IFMODE_MII;
409 ecntrl &= ~ECNTRL_R100M;
410 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
411 ecntrl |= ECNTRL_R100M;
412 }
413 }
414
415 /*
416 * If things are different, re-init things.
417 */
418 if (maccfg1 != sc->sc_maccfg1
419 || maccfg2 != sc->sc_maccfg2
420 || ecntrl != sc->sc_ecntrl) {
421 if (sc->sc_if.if_flags & IFF_RUNNING)
422 atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
423 sc->sc_maccfg1 = maccfg1;
424 sc->sc_maccfg2 = maccfg2;
425 sc->sc_ecntrl = ecntrl;
426 }
427 }
428
429 #if 0
430 static void
431 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
432 {
433 struct pq3etsec_softc * const sc = ifp->if_softc;
434
435 mii_pollstat(&sc->sc_mii);
436 ether_mediastatus(ifp, ifmr);
437 ifmr->ifm_status = sc->sc_mii.mii_media_status;
438 ifmr->ifm_active = sc->sc_mii.mii_media_active;
439 }
440
441 static int
442 pq3etsec_mediachange(struct ifnet *ifp)
443 {
444 struct pq3etsec_softc * const sc = ifp->if_softc;
445
446 if ((ifp->if_flags & IFF_UP) == 0)
447 return 0;
448
449 int rv = mii_mediachg(&sc->sc_mii);
450 return (rv == ENXIO) ? 0 : rv;
451 }
452 #endif
453
454 static void
455 pq3etsec_attach(device_t parent, device_t self, void *aux)
456 {
457 struct cpunode_softc * const psc = device_private(parent);
458 struct pq3etsec_softc * const sc = device_private(self);
459 struct cpunode_attach_args * const cna = aux;
460 struct cpunode_locators * const cnl = &cna->cna_locs;
461 int error;
462
463 psc->sc_children |= cna->cna_childmask;
464 sc->sc_dev = self;
465 sc->sc_bst = cna->cna_memt;
466 sc->sc_dmat = &booke_bus_dma_tag;
467
468 /*
469 * If we have a common MDIO bus, if all off instance 1.
470 */
471 device_t miiself = (self->dv_cfdata->cf_flags & 0x100)
472 ? tsec_cd.cd_devs[0]
473 : self;
474
475 /*
476 * See if the phy is in the config file...
477 */
478 if (self->dv_cfdata->cf_flags & 0x3f) {
479 sc->sc_phy_addr = (self->dv_cfdata->cf_flags & 0x3f) - 1;
480 } else {
481 unsigned char prop_name[20];
482 snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
483 cnl->cnl_instance);
484 sc->sc_phy_addr = board_info_get_number(prop_name);
485 }
486 aprint_normal(" phy %d", sc->sc_phy_addr);
487
488 error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
489 &sc->sc_bsh);
490 if (error) {
491 aprint_error(": error mapping registers: %d\n", error);
492 return;
493 }
494
495 /*
496 * Assume firmware has aready set the mac address and fetch it
497 * before we reinit it.
498 */
499 sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
500 sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
501 sc->sc_rctrl = RCTRL_DEFAULT;
502 sc->sc_maccfg2 = MACCFG2_DEFAULT;
503
504 if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
505 size_t len;
506 const uint8_t *mac_addr =
507 board_info_get_data("tsec-mac-addr-base", &len);
508 KASSERT(len == ETHER_ADDR_LEN);
509 sc->sc_macstnaddr2 =
510 (mac_addr[1] << 24)
511 | (mac_addr[0] << 16);
512 sc->sc_macstnaddr1 =
513 ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
514 | (mac_addr[4] << 16)
515 | (mac_addr[3] << 8)
516 | (mac_addr[2] << 0);
517 #if 0
518 aprint_error(": mac-address unknown\n");
519 return;
520 #endif
521 }
522
523 char enaddr[ETHER_ADDR_LEN] = {
524 [0] = sc->sc_macstnaddr2 >> 16,
525 [1] = sc->sc_macstnaddr2 >> 24,
526 [2] = sc->sc_macstnaddr1 >> 0,
527 [3] = sc->sc_macstnaddr1 >> 8,
528 [4] = sc->sc_macstnaddr1 >> 16,
529 [5] = sc->sc_macstnaddr1 >> 24,
530 };
531
532 error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
533 if (error) {
534 aprint_error(": failed to init rxq: %d\n", error);
535 return;
536 }
537
538 error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
539 if (error) {
540 aprint_error(": failed to init txq: %d\n", error);
541 return;
542 }
543
544 error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
545 ETSEC_MAXRXMBUFS, ETSEC_MINRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
546 if (error) {
547 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
548 return;
549 }
550
551 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
552 ETSEC_MAXTXMBUFS, ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
553 if (error) {
554 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
555 return;
556 }
557
558 sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
559 pq3etsec_tx_intr, sc);
560 if (sc->sc_tx_ih == NULL) {
561 aprint_error(": failed to establish tx interrupt: %d\n",
562 cnl->cnl_intrs[0]);
563 return;
564 }
565
566 sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
567 pq3etsec_rx_intr, sc);
568 if (sc->sc_rx_ih == NULL) {
569 aprint_error(": failed to establish rx interrupt: %d\n",
570 cnl->cnl_intrs[1]);
571 return;
572 }
573
574 sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
575 pq3etsec_error_intr, sc);
576 if (sc->sc_error_ih == NULL) {
577 aprint_error(": failed to establish error interrupt: %d\n",
578 cnl->cnl_intrs[2]);
579 return;
580 }
581
582 sc->sc_soft_ih = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
583 pq3etsec_soft_intr, sc);
584 if (sc->sc_soft_ih == NULL) {
585 aprint_error(": failed to establish soft interrupt\n");
586 return;
587 }
588
589 aprint_normal("\n");
590
591 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
592
593 callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
594 callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
595
596 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
597 ether_sprintf(enaddr));
598
599 const char * const xname = device_xname(sc->sc_dev);
600 struct ethercom * const ec = &sc->sc_ec;
601 struct ifnet * const ifp = &ec->ec_if;
602
603 ec->ec_mii = &sc->sc_mii;
604
605 sc->sc_mii.mii_ifp = ifp;
606 sc->sc_mii.mii_readreg = pq3etsec_mii_readreg;
607 sc->sc_mii.mii_writereg = pq3etsec_mii_writereg;
608 sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
609
610 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
611 ether_mediastatus);
612
613 if (sc->sc_phy_addr < 32) {
614 mii_attach(miiself, &sc->sc_mii, 0xffffffff,
615 sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
616
617 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
618 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
619 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
620 } else {
621 callout_schedule(&sc->sc_mii_callout, hz);
622 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
623 }
624 } else {
625 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
626 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
627 }
628
629 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
630 | ETHERCAP_JUMBO_MTU;
631
632 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
633 ifp->if_softc = sc;
634 ifp->if_capabilities = IFCAP_ETSEC;
635 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
636 ifp->if_ioctl = pq3etsec_ifioctl;
637 ifp->if_start = pq3etsec_ifstart;
638 ifp->if_watchdog = pq3etsec_ifwatchdog;
639 ifp->if_init = pq3etsec_ifinit;
640 ifp->if_stop = pq3etsec_ifstop;
641 IFQ_SET_READY(&ifp->if_snd);
642
643 pq3etsec_ifstop(ifp, true);
644
645 /*
646 * Attach the interface.
647 */
648 if_attach(ifp);
649 ether_ifattach(ifp, enaddr);
650
651 evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
652 NULL, xname, "rx stall");
653 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
654 NULL, xname, "tx stall");
655 evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
656 NULL, xname, "tx intr");
657 evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
658 NULL, xname, "rx intr");
659 evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
660 NULL, xname, "error intr");
661 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
662 NULL, xname, "soft intr");
663 evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
664 NULL, xname, "tx pause");
665 evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
666 NULL, xname, "rx pause");
667 evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
668 NULL, xname, "mii ticks");
669 }
670
671 static uint64_t
672 pq3etsec_macaddr_create(const uint8_t *lladdr)
673 {
674 uint64_t macaddr = 0;
675
676 lladdr += ETHER_ADDR_LEN;
677 for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
678 macaddr = (macaddr << 8) | *--lladdr;
679 }
680 return macaddr << 16;
681 }
682
683 static int
684 pq3etsec_ifinit(struct ifnet *ifp)
685 {
686 struct pq3etsec_softc * const sc = ifp->if_softc;
687 int error = 0;
688
689 sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
690 if (ifp->if_mtu > ETHERMTU_JUMBO)
691 return error;
692
693 KASSERT(ifp->if_flags & IFF_UP);
694
695 /*
696 * Stop the interface (steps 1 to 4 in the Soft Reset and
697 * Reconfigurating Procedure.
698 */
699 pq3etsec_ifstop(ifp, 0);
700
701 /*
702 * If our frame size has changed (or it's our first time through)
703 * destroy the existing transmit mapcache.
704 */
705 if (sc->sc_tx_mapcache != NULL
706 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
707 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
708 sc->sc_tx_mapcache = NULL;
709 }
710
711 if (sc->sc_tx_mapcache == NULL) {
712 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
713 ETSEC_MAXTXMBUFS, ETSEC_MAXTXMBUFS, sc->sc_maxfrm,
714 ETSEC_NTXSEGS);
715 if (error)
716 return error;
717 }
718
719 sc->sc_ev_mii_ticks.ev_count++;
720 mii_tick(&sc->sc_mii);
721
722 if (ifp->if_flags & IFF_PROMISC) {
723 sc->sc_rctrl |= RCTRL_PROM;
724 } else {
725 sc->sc_rctrl &= ~RCTRL_PROM;
726 }
727
728 uint32_t rctrl_prsdep = 0;
729 sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
730 if (VLAN_ATTACHED(&sc->sc_ec)) {
731 sc->sc_rctrl |= RCTRL_VLEX;
732 rctrl_prsdep = RCTRL_PRSDEP_L2;
733 }
734 if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
735 sc->sc_rctrl |= RCTRL_IPCSEN;
736 rctrl_prsdep = RCTRL_PRSDEP_L3;
737 }
738 if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
739 sc->sc_rctrl |= RCTRL_TUCSEN;
740 rctrl_prsdep = RCTRL_PRSDEP_L4;
741 }
742 sc->sc_rctrl |= rctrl_prsdep;
743 #if 0
744 if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
745 aprint_normal_dev(sc->sc_dev,
746 "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
747 sc->sc_rctrl,
748 __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
749 __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
750 __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
751 __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
752 #endif
753
754 sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
755 if (VLAN_ATTACHED(&sc->sc_ec)) /* is this really true */
756 sc->sc_tctrl |= TCTRL_VLINS;
757 if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
758 sc->sc_tctrl |= TCTRL_IPCSEN;
759 if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
760 sc->sc_tctrl |= TCTRL_TUCSEN;
761 #if 0
762 if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
763 aprint_normal_dev(sc->sc_dev,
764 "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
765 sc->sc_tctrl,
766 __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
767 __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
768 __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
769 #endif
770
771 sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
772
773 const uint64_t macstnaddr =
774 pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
775
776 sc->sc_imask = IEVENT_DPE;
777
778 /* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
779 pq3etsec_rxq_reset(sc, &sc->sc_rxq);
780 pq3etsec_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
781
782 /* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
783 pq3etsec_txq_reset(sc, &sc->sc_txq);
784
785 /* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
786 KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
787 etsec_write(sc, MAXFRM, sc->sc_maxfrm);
788 etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
789 etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >> 0));
790 etsec_write(sc, MACCFG1, sc->sc_maccfg1);
791 etsec_write(sc, MACCFG2, sc->sc_maccfg2);
792 etsec_write(sc, ECNTRL, sc->sc_ecntrl);
793
794 /* 8. Setup group address hash table (GADDR0-GADDR15) */
795 pq3etsec_mc_setup(sc);
796
797 /* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
798 etsec_write(sc, MRBLR, MCLBYTES);
799
800 /* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
801 sc->sc_dmactrl |= DMACTRL_DEFAULT;
802 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
803
804 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
805 etsec_write(sc, TQUEUE, TQUEUE_EN0);
806 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
807
808 etsec_write(sc, TCTRL, sc->sc_tctrl); /* for TOE stuff */
809
810 /* 12. Enable receive queues in RQUEUE, */
811 etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
812 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
813
814 /* and optionally set TOE functionality in RCTRL. */
815 etsec_write(sc, RCTRL, sc->sc_rctrl);
816 sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
817 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
818 sc->sc_rx_adjlen += sizeof(struct rxfcb);
819
820 /* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
821 etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
822
823 /* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
824 etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
825
826 /* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
827 sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
828 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
829
830 /* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
831 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
832 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
833
834 sc->sc_soft_flags = 0;
835
836 etsec_write(sc, IMASK, sc->sc_imask);
837
838 ifp->if_flags |= IFF_RUNNING;
839
840 return error;
841 }
842
843 static void
844 pq3etsec_ifstop(struct ifnet *ifp, int disable)
845 {
846 struct pq3etsec_softc * const sc = ifp->if_softc;
847
848 KASSERT(!cpu_intr_p());
849 const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
850 /*
851 * Clear the GTSC and GRSC from the interrupt mask until
852 * we are ready for them. Then clear them from IEVENT,
853 * request the graceful shutdown, and then enable the
854 * GTSC and GRSC bits in the mask. This should cause the
855 * error interrupt to fire which will issue a wakeup to
856 * allow us to resume.
857 */
858
859 /*
860 * 1. Set GRS/GTS bits in DMACTRL register
861 */
862 sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
863 etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
864 etsec_write(sc, IEVENT, imask_gsc_mask);
865 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
866
867 if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
868 /*
869 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
870 */
871 etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
872
873 u_int timo = 1000;
874 uint32_t ievent = etsec_read(sc, IEVENT);
875 while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
876 if (--timo == 0) {
877 aprint_error_dev(sc->sc_dev,
878 "WARNING: "
879 "request to stop failed (IEVENT=%#x)\n",
880 ievent);
881 break;
882 }
883 delay(10);
884 ievent = etsec_read(sc, IEVENT);
885 }
886 }
887
888 /*
889 * Now reset the controller.
890 *
891 * 3. Set SOFT_RESET bit in MACCFG1 register
892 * 4. Clear SOFT_RESET bit in MACCFG1 register
893 */
894 etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
895 etsec_write(sc, MACCFG1, 0);
896 etsec_write(sc, IMASK, 0);
897 etsec_write(sc, IEVENT, ~0);
898 sc->sc_imask = 0;
899 ifp->if_flags &= ~IFF_RUNNING;
900
901 uint32_t tbipa = etsec_read(sc, TBIPA);
902 if (tbipa == sc->sc_phy_addr) {
903 aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
904 etsec_write(sc, TBIPA, 0x1f);
905 }
906 uint32_t miimcfg = etsec_read(sc, MIIMCFG);
907 etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
908 etsec_write(sc, MIIMCFG, miimcfg);
909
910 /*
911 * Let's consume any remaing transmitted packets. And if we are
912 * disabling the interface, purge ourselves of any untransmitted
913 * packets. But don't consume any received packets, just drop them.
914 * If we aren't disabling the interface, save the mbufs in the
915 * receive queue for reuse.
916 */
917 pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
918 pq3etsec_txq_consume(sc, &sc->sc_txq);
919 if (disable) {
920 pq3etsec_txq_purge(sc, &sc->sc_txq);
921 IF_PURGE(&ifp->if_snd);
922 }
923 }
924
925 static void
926 pq3etsec_ifwatchdog(struct ifnet *ifp)
927 {
928 }
929
930 static void
931 pq3etsec_mc_setup(
932 struct pq3etsec_softc *sc)
933 {
934 struct ethercom * const ec = &sc->sc_ec;
935 struct ifnet * const ifp = &sc->sc_if;
936 struct ether_multi *enm;
937 struct ether_multistep step;
938 uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
939 const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
940
941 memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
942 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
943
944 ifp->if_flags &= ~IFF_ALLMULTI;
945
946 ETHER_FIRST_MULTI(step, ec, enm);
947 for (u_int i = 0; enm != NULL; ) {
948 const char *addr = enm->enm_addrlo;
949 if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
950 ifp->if_flags |= IFF_ALLMULTI;
951 memset(gaddr, 0xff, 32 << (crc_shift & 1));
952 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
953 break;
954 }
955 if ((sc->sc_rctrl & RCTRL_EMEN)
956 && i < __arraycount(sc->sc_macaddrs)) {
957 sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
958 } else {
959 uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
960 #if 0
961 printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
962 ether_sprintf(addr), crc,
963 crc >> crc_shift,
964 crc >> (crc_shift + 5),
965 (crc >> crc_shift) & 31,
966 1 << (((crc >> crc_shift) & 31) ^ 31));
967 #endif
968 /*
969 * The documentation doesn't completely follow PowerPC
970 * bit order. The BE crc32 (H) for 01:00:5E:00:00:01
971 * is 0x7fa32d9b. By empirical testing, the
972 * corresponding hash bit is word 3, bit 31 (ppc bit
973 * order). Since 3 << 31 | 31 is 0x7f, we deduce
974 * H[0:2] selects the register while H[3:7] selects
975 * the bit (ppc bit order).
976 */
977 crc >>= crc_shift;
978 gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
979 }
980 ETHER_NEXT_MULTI(step, enm);
981 }
982 for (u_int i = 0; i < 8; i++) {
983 etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
984 etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
985 #if 0
986 if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
987 printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
988 i, IGADDR(i), etsec_read(sc, IGADDR(i)),
989 i, GADDR(i), etsec_read(sc, GADDR(i)));
990 #endif
991 }
992 for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
993 uint64_t macaddr = sc->sc_macaddrs[i];
994 etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
995 etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >> 0));
996 #if 0
997 if (macaddr)
998 printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
999 i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1000 i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1001 #endif
1002 }
1003 }
1004
1005 static int
1006 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1007 {
1008 struct pq3etsec_softc *sc = ifp->if_softc;
1009 struct ifreq * const ifr = data;
1010 const int s = splnet();
1011 int error;
1012
1013 switch (cmd) {
1014 case SIOCSIFMEDIA:
1015 case SIOCGIFMEDIA:
1016 /* Flow control requires full-duplex mode. */
1017 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1018 (ifr->ifr_media & IFM_FDX) == 0)
1019 ifr->ifr_media &= ~IFM_ETH_FMASK;
1020 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1021 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1022 /* We can do both TXPAUSE and RXPAUSE. */
1023 ifr->ifr_media |=
1024 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1025 }
1026 }
1027 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1028 break;
1029
1030 default:
1031 error = ether_ioctl(ifp, cmd, data);
1032 if (error != ENETRESET)
1033 break;
1034
1035 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1036 error = 0;
1037 if (ifp->if_flags & IFF_RUNNING)
1038 pq3etsec_mc_setup(sc);
1039 break;
1040 }
1041 error = pq3etsec_ifinit(ifp);
1042 break;
1043 }
1044
1045 splx(s);
1046 return error;
1047 }
1048
1049 static void
1050 pq3etsec_rxq_desc_presync(
1051 struct pq3etsec_softc *sc,
1052 struct pq3etsec_rxqueue *rxq,
1053 volatile struct rxbd *rxbd,
1054 size_t count)
1055 {
1056 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1057 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1058 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1059 }
1060
1061 static void
1062 pq3etsec_rxq_desc_postsync(
1063 struct pq3etsec_softc *sc,
1064 struct pq3etsec_rxqueue *rxq,
1065 volatile struct rxbd *rxbd,
1066 size_t count)
1067 {
1068 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1069 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1070 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1071 }
1072
1073 static void
1074 pq3etsec_txq_desc_presync(
1075 struct pq3etsec_softc *sc,
1076 struct pq3etsec_txqueue *txq,
1077 volatile struct txbd *txbd,
1078 size_t count)
1079 {
1080 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1081 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1082 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1083 }
1084
1085 static void
1086 pq3etsec_txq_desc_postsync(
1087 struct pq3etsec_softc *sc,
1088 struct pq3etsec_txqueue *txq,
1089 volatile struct txbd *txbd,
1090 size_t count)
1091 {
1092 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1093 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1094 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1095 }
1096
1097 static bus_dmamap_t
1098 pq3etsec_mapcache_get(
1099 struct pq3etsec_softc *sc,
1100 struct pq3etsec_mapcache *dmc)
1101 {
1102 if (dmc->dmc_nmaps == 0) {
1103 bus_dmamap_t map;
1104 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1105 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1106 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &map);
1107 if (error) {
1108 aprint_error_dev(sc->sc_dev,
1109 "failed to allocate a %zuB map: %d\n",
1110 dmc->dmc_maxmapsize, error);
1111 return NULL;
1112 }
1113 return map;
1114 }
1115
1116 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1117 return dmc->dmc_maps[--dmc->dmc_nmaps];
1118 }
1119
1120 static void
1121 pq3etsec_mapcache_put(
1122 struct pq3etsec_softc *sc,
1123 struct pq3etsec_mapcache *dmc,
1124 bus_dmamap_t map)
1125 {
1126 KASSERT(map != NULL);
1127 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1128 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1129 }
1130
1131 static void
1132 pq3etsec_mapcache_destroy(
1133 struct pq3etsec_softc *sc,
1134 struct pq3etsec_mapcache *dmc)
1135 {
1136 const size_t dmc_size =
1137 offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1138
1139 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1140 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1141 }
1142 kmem_free(dmc, dmc_size);
1143 }
1144
1145 static int
1146 pq3etsec_mapcache_create(
1147 struct pq3etsec_softc *sc,
1148 struct pq3etsec_mapcache **dmc_p,
1149 size_t maxmaps,
1150 size_t minmaps,
1151 size_t maxmapsize,
1152 size_t maxseg)
1153 {
1154 const size_t dmc_size =
1155 offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1156 struct pq3etsec_mapcache * const dmc = kmem_zalloc(dmc_size, KM_SLEEP);
1157
1158 dmc->dmc_maxmaps = maxmaps;
1159 dmc->dmc_nmaps = minmaps;
1160 dmc->dmc_maxmapsize = maxmapsize;
1161 dmc->dmc_maxseg = maxseg;
1162
1163 for (u_int i = 0; i < minmaps; i++) {
1164 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1165 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1166 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1167 if (error) {
1168 aprint_error_dev(sc->sc_dev,
1169 "failed to creat dma map cache "
1170 "entry %u of %zu (max %zu): %d\n",
1171 i, minmaps, maxmaps, error);
1172 while (i-- > 0) {
1173 bus_dmamap_destroy(sc->sc_dmat,
1174 dmc->dmc_maps[i]);
1175 }
1176 kmem_free(dmc, dmc_size);
1177 return error;
1178 }
1179 KASSERT(dmc->dmc_maps[i] != NULL);
1180 }
1181
1182 *dmc_p = dmc;
1183
1184 return 0;
1185 }
1186
1187 #if 0
1188 static void
1189 pq3etsec_dmamem_free(
1190 bus_dma_tag_t dmat,
1191 size_t map_size,
1192 bus_dma_segment_t *seg,
1193 bus_dmamap_t map,
1194 void *kvap)
1195 {
1196 bus_dmamap_destroy(dmat, map);
1197 bus_dmamem_unmap(dmat, kvap, map_size);
1198 bus_dmamem_free(dmat, seg, 1);
1199 }
1200 #endif
1201
1202 static int
1203 pq3etsec_dmamem_alloc(
1204 bus_dma_tag_t dmat,
1205 size_t map_size,
1206 bus_dma_segment_t *seg,
1207 bus_dmamap_t *map,
1208 void **kvap)
1209 {
1210 int error;
1211 int nseg;
1212
1213 *kvap = NULL;
1214 *map = NULL;
1215
1216 error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1217 seg, 1, &nseg, 0);
1218 if (error)
1219 return error;
1220
1221 KASSERT(nseg == 1);
1222
1223 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1224 BUS_DMA_COHERENT);
1225 if (error == 0) {
1226 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1227 map);
1228 if (error == 0) {
1229 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1230 NULL, 0);
1231 if (error == 0)
1232 return 0;
1233 bus_dmamap_destroy(dmat, *map);
1234 *map = NULL;
1235 }
1236 bus_dmamem_unmap(dmat, *kvap, map_size);
1237 *kvap = NULL;
1238 }
1239 bus_dmamem_free(dmat, seg, nseg);
1240 return 0;
1241 }
1242
1243 static struct mbuf *
1244 pq3etsec_rx_buf_alloc(
1245 struct pq3etsec_softc *sc)
1246 {
1247 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1248 if (m == NULL) {
1249 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1250 return NULL;
1251 }
1252 MCLGET(m, M_DONTWAIT);
1253 if ((m->m_flags & M_EXT) == 0) {
1254 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1255 m_freem(m);
1256 return NULL;
1257 }
1258 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1259
1260 bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1261 if (map == NULL) {
1262 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1263 m_freem(m);
1264 return NULL;
1265 }
1266 M_SETCTX(m, map);
1267 m->m_len = m->m_pkthdr.len = MCLBYTES;
1268 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1269 BUS_DMA_READ|BUS_DMA_NOWAIT);
1270 if (error) {
1271 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1272 error);
1273 M_SETCTX(m, NULL);
1274 m_freem(m);
1275 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1276 return NULL;
1277 }
1278 KASSERT(map->dm_mapsize == MCLBYTES);
1279 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1280 BUS_DMASYNC_PREREAD);
1281
1282 return m;
1283 }
1284
1285 static void
1286 pq3etsec_rx_map_unload(
1287 struct pq3etsec_softc *sc,
1288 struct mbuf *m)
1289 {
1290 KASSERT(m);
1291 for (; m != NULL; m = m->m_next) {
1292 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1293 KASSERT(map);
1294 KASSERT(map->dm_mapsize == MCLBYTES);
1295 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1296 BUS_DMASYNC_POSTREAD);
1297 bus_dmamap_unload(sc->sc_dmat, map);
1298 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1299 M_SETCTX(m, NULL);
1300 }
1301 }
1302
1303 static bool
1304 pq3etsec_rxq_produce(
1305 struct pq3etsec_softc *sc,
1306 struct pq3etsec_rxqueue *rxq)
1307 {
1308 volatile struct rxbd *producer = rxq->rxq_producer;
1309 #if 0
1310 size_t inuse = rxq->rxq_inuse;
1311 #endif
1312 while (rxq->rxq_inuse < rxq->rxq_threshold) {
1313 struct mbuf *m;
1314 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1315 if (m == NULL) {
1316 m = pq3etsec_rx_buf_alloc(sc);
1317 if (m == NULL) {
1318 printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1319 break;
1320 }
1321 }
1322 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1323 KASSERT(map);
1324
1325 #ifdef ETSEC_DEBUG
1326 KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1327 rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1328 #endif
1329
1330 /* rxbd_len is write-only by the ETSEC */
1331 producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1332 membar_producer();
1333 producer->rxbd_flags |= RXBD_E;
1334 if (__predict_false(rxq->rxq_mhead == NULL)) {
1335 KASSERT(producer == rxq->rxq_consumer);
1336 rxq->rxq_mconsumer = m;
1337 }
1338 *rxq->rxq_mtail = m;
1339 rxq->rxq_mtail = &m->m_next;
1340 m->m_len = MCLBYTES;
1341 m->m_next = NULL;
1342 rxq->rxq_inuse++;
1343 if (++producer == rxq->rxq_last) {
1344 membar_producer();
1345 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1346 rxq->rxq_last - rxq->rxq_producer);
1347 producer = rxq->rxq_producer = rxq->rxq_first;
1348 }
1349 }
1350 if (producer != rxq->rxq_producer) {
1351 membar_producer();
1352 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1353 producer - rxq->rxq_producer);
1354 rxq->rxq_producer = producer;
1355 }
1356 uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1357 if (qhlt) {
1358 KASSERT(qhlt & rxq->rxq_qmask);
1359 sc->sc_ev_rx_stall.ev_count++;
1360 etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1361 }
1362 #if 0
1363 aprint_normal_dev(sc->sc_dev,
1364 "%s: buffers inuse went from %zu to %zu\n",
1365 __func__, inuse, rxq->rxq_inuse);
1366 #endif
1367 return true;
1368 }
1369
1370 static bool
1371 pq3etsec_rx_offload(
1372 struct pq3etsec_softc *sc,
1373 struct mbuf *m,
1374 const struct rxfcb *fcb)
1375 {
1376 if (fcb->rxfcb_flags & RXFCB_VLN) {
1377 VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1378 m_freem(m); return false);
1379 }
1380 if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1381 || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1382 return true;
1383 int csum_flags = 0;
1384 if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1385 csum_flags |= M_CSUM_IPv4;
1386 if (fcb->rxfcb_flags & RXFCB_EIP)
1387 csum_flags |= M_CSUM_IPv4_BAD;
1388 }
1389 if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1390 int ipv_flags;
1391 if (fcb->rxfcb_flags & RXFCB_IP6)
1392 ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1393 else
1394 ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1395 if (fcb->rxfcb_pro == IPPROTO_TCP) {
1396 csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1397 } else {
1398 csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1399 }
1400 if (fcb->rxfcb_flags & RXFCB_ETU)
1401 csum_flags |= M_CSUM_TCP_UDP_BAD;
1402 }
1403
1404 m->m_pkthdr.csum_flags = csum_flags;
1405 return true;
1406 }
1407
1408 static void
1409 pq3etsec_rx_input(
1410 struct pq3etsec_softc *sc,
1411 struct mbuf *m,
1412 uint16_t rxbd_flags)
1413 {
1414 struct ifnet * const ifp = &sc->sc_if;
1415
1416 pq3etsec_rx_map_unload(sc, m);
1417
1418 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1419 struct rxfcb fcb = *mtod(m, struct rxfcb *);
1420 if (!pq3etsec_rx_offload(sc, m, &fcb))
1421 return;
1422 }
1423 m_adj(m, sc->sc_rx_adjlen);
1424
1425 if (rxbd_flags & RXBD_M)
1426 m->m_flags |= M_PROMISC;
1427 if (rxbd_flags & RXBD_BC)
1428 m->m_flags |= M_BCAST;
1429 if (rxbd_flags & RXBD_MC)
1430 m->m_flags |= M_MCAST;
1431 m->m_flags |= M_HASFCS;
1432 m->m_pkthdr.rcvif = &sc->sc_if;
1433
1434 ifp->if_ipackets++;
1435 ifp->if_ibytes += m->m_pkthdr.len;
1436
1437 /*
1438 * Let's give it to the network subsystm to deal with.
1439 */
1440 int s = splnet();
1441 bpf_mtap(ifp, m);
1442 (*ifp->if_input)(ifp, m);
1443 splx(s);
1444 }
1445
1446 static void
1447 pq3etsec_rxq_consume(
1448 struct pq3etsec_softc *sc,
1449 struct pq3etsec_rxqueue *rxq)
1450 {
1451 struct ifnet * const ifp = &sc->sc_if;
1452 volatile struct rxbd *consumer = rxq->rxq_consumer;
1453 size_t rxconsumed = 0;
1454
1455 etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1456
1457 for (;;) {
1458 if (consumer == rxq->rxq_producer) {
1459 rxq->rxq_consumer = consumer;
1460 rxq->rxq_inuse -= rxconsumed;
1461 return;
1462 }
1463 pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1464 const uint16_t rxbd_flags = consumer->rxbd_flags;
1465 if (rxbd_flags & RXBD_E) {
1466 rxq->rxq_consumer = consumer;
1467 rxq->rxq_inuse -= rxconsumed;
1468 return;
1469 }
1470 KASSERT(rxq->rxq_mconsumer != NULL);
1471 #ifdef ETSEC_DEBUG
1472 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1473 #endif
1474 #if 0
1475 printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1476 __func__,
1477 consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1478 mtod(rxq->rxq_mconsumer, int *)[0],
1479 mtod(rxq->rxq_mconsumer, int *)[1],
1480 mtod(rxq->rxq_mconsumer, int *)[2],
1481 mtod(rxq->rxq_mconsumer, int *)[3]);
1482 #endif
1483 /*
1484 * We own this packet again. Clear all flags except wrap.
1485 */
1486 rxconsumed++;
1487 consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1488
1489 /*
1490 * If this descriptor has the LAST bit set and no errors,
1491 * it's a valid input packet.
1492 */
1493 if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1494 size_t rxbd_len = consumer->rxbd_len;
1495 struct mbuf *m = rxq->rxq_mhead;
1496 struct mbuf *m_last = rxq->rxq_mconsumer;
1497 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1498 rxq->rxq_mtail = &rxq->rxq_mhead;
1499 rxq->rxq_mconsumer = rxq->rxq_mhead;
1500 m_last->m_next = NULL;
1501 m_last->m_len = rxbd_len & (MCLBYTES - 1);
1502 m->m_pkthdr.len = rxbd_len;
1503 pq3etsec_rx_input(sc, m, rxbd_flags);
1504 } else if (rxbd_flags & RXBD_L) {
1505 KASSERT(rxbd_flags & RXBD_ERRORS);
1506 struct mbuf *m;
1507 /*
1508 * We encountered an error, take the mbufs and add
1509 * then to the rx bufcache so we can reuse them.
1510 */
1511 ifp->if_ierrors++;
1512 for (m = rxq->rxq_mhead;
1513 m != rxq->rxq_mconsumer;
1514 m = m->m_next) {
1515 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1516 }
1517 m = rxq->rxq_mconsumer;
1518 if ((rxq->rxq_mhead = m->m_next) == NULL)
1519 rxq->rxq_mtail = &rxq->rxq_mhead;
1520 rxq->rxq_mconsumer = m->m_next;
1521 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1522 } else {
1523 rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1524 }
1525 #ifdef ETSEC_DEBUG
1526 rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1527 #endif
1528
1529 /*
1530 * Wrap at the last entry!
1531 */
1532 if (rxbd_flags & RXBD_W) {
1533 KASSERT(consumer + 1 == rxq->rxq_last);
1534 consumer = rxq->rxq_first;
1535 } else {
1536 consumer++;
1537 }
1538 #ifdef ETSEC_DEBUG
1539 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1540 #endif
1541 }
1542 }
1543
1544 static void
1545 pq3etsec_rxq_purge(
1546 struct pq3etsec_softc *sc,
1547 struct pq3etsec_rxqueue *rxq,
1548 bool discard)
1549 {
1550 struct mbuf *m;
1551
1552 if ((m = rxq->rxq_mhead) != NULL) {
1553 #ifdef ETSEC_DEBUG
1554 memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1555 #endif
1556
1557 if (discard) {
1558 pq3etsec_rx_map_unload(sc, m);
1559 m_freem(m);
1560 } else {
1561 while (m != NULL) {
1562 struct mbuf *m0 = m->m_next;
1563 m->m_next = NULL;
1564 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1565 m = m0;
1566 }
1567 }
1568
1569 }
1570
1571 rxq->rxq_mconsumer = NULL;
1572 rxq->rxq_mhead = NULL;
1573 rxq->rxq_mtail = &rxq->rxq_mhead;
1574 rxq->rxq_inuse = 0;
1575 }
1576
1577 static void
1578 pq3etsec_rxq_reset(
1579 struct pq3etsec_softc *sc,
1580 struct pq3etsec_rxqueue *rxq)
1581 {
1582 /*
1583 * sync all the descriptors
1584 */
1585 pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1586 rxq->rxq_last - rxq->rxq_first);
1587
1588 /*
1589 * Make sure we own all descriptors in the ring.
1590 */
1591 volatile struct rxbd *rxbd;
1592 for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1593 rxbd->rxbd_flags = RXBD_I;
1594 }
1595
1596 /*
1597 * Last descriptor has the wrap flag.
1598 */
1599 rxbd->rxbd_flags = RXBD_W|RXBD_I;
1600
1601 /*
1602 * Reset the producer consumer indexes.
1603 */
1604 rxq->rxq_consumer = rxq->rxq_first;
1605 rxq->rxq_producer = rxq->rxq_first;
1606 rxq->rxq_inuse = 0;
1607 if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1608 rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1609
1610 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1611
1612 /*
1613 * Restart the transmit at the first descriptor
1614 */
1615 etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1616 }
1617
1618 static int
1619 pq3etsec_rxq_attach(
1620 struct pq3etsec_softc *sc,
1621 struct pq3etsec_rxqueue *rxq,
1622 u_int qno)
1623 {
1624 size_t map_size = PAGE_SIZE;
1625 size_t desc_count = map_size / sizeof(struct rxbd);
1626 int error;
1627 void *descs;
1628
1629 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1630 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1631 if (error)
1632 return error;
1633
1634 memset(descs, 0, map_size);
1635 rxq->rxq_first = descs;
1636 rxq->rxq_last = rxq->rxq_first + desc_count;
1637 rxq->rxq_consumer = descs;
1638 rxq->rxq_producer = descs;
1639
1640 pq3etsec_rxq_purge(sc, rxq, true);
1641 pq3etsec_rxq_reset(sc, rxq);
1642
1643 rxq->rxq_reg_rbase = RBASEn(qno);
1644 rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1645
1646 return 0;
1647 }
1648
1649 static bool
1650 pq3etsec_txq_active_p(
1651 struct pq3etsec_softc * const sc,
1652 struct pq3etsec_txqueue *txq)
1653 {
1654 return !IF_IS_EMPTY(&txq->txq_mbufs);
1655 }
1656
1657 static bool
1658 pq3etsec_txq_fillable_p(
1659 struct pq3etsec_softc * const sc,
1660 struct pq3etsec_txqueue *txq)
1661 {
1662 return txq->txq_free >= txq->txq_threshold;
1663 }
1664
1665 static int
1666 pq3etsec_txq_attach(
1667 struct pq3etsec_softc *sc,
1668 struct pq3etsec_txqueue *txq,
1669 u_int qno)
1670 {
1671 size_t map_size = PAGE_SIZE;
1672 size_t desc_count = map_size / sizeof(struct txbd);
1673 int error;
1674 void *descs;
1675
1676 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1677 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1678 if (error)
1679 return error;
1680
1681 memset(descs, 0, map_size);
1682 txq->txq_first = descs;
1683 txq->txq_last = txq->txq_first + desc_count;
1684 txq->txq_consumer = descs;
1685 txq->txq_producer = descs;
1686
1687 IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1688
1689 txq->txq_reg_tbase = TBASEn(qno);
1690 txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1691
1692 pq3etsec_txq_reset(sc, txq);
1693
1694 return 0;
1695 }
1696
1697 static int
1698 pq3etsec_txq_map_load(
1699 struct pq3etsec_softc *sc,
1700 struct pq3etsec_txqueue *txq,
1701 struct mbuf *m)
1702 {
1703 bus_dmamap_t map;
1704 int error;
1705
1706 map = M_GETCTX(m, bus_dmamap_t);
1707 if (map != NULL)
1708 return 0;
1709
1710 map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1711 if (map == NULL)
1712 return ENOMEM;
1713
1714 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1715 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1716 if (error)
1717 return error;
1718
1719 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1720 BUS_DMASYNC_PREWRITE);
1721 M_SETCTX(m, map);
1722 return 0;
1723 }
1724
1725 static void
1726 pq3etsec_txq_map_unload(
1727 struct pq3etsec_softc *sc,
1728 struct pq3etsec_txqueue *txq,
1729 struct mbuf *m)
1730 {
1731 KASSERT(m);
1732 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1733 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1734 BUS_DMASYNC_POSTWRITE);
1735 bus_dmamap_unload(sc->sc_dmat, map);
1736 pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1737 }
1738
1739 static bool
1740 pq3etsec_txq_produce(
1741 struct pq3etsec_softc *sc,
1742 struct pq3etsec_txqueue *txq,
1743 struct mbuf *m)
1744 {
1745 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1746
1747 if (map->dm_nsegs > txq->txq_free)
1748 return false;
1749
1750 /*
1751 * TCP Offload flag must be set in the first descriptor.
1752 */
1753 volatile struct txbd *producer = txq->txq_producer;
1754 uint16_t last_flags = TXBD_L;
1755 uint16_t first_flags = TXBD_R
1756 | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1757
1758 /*
1759 * If we've produced enough descriptors without consuming any
1760 * we need to ask for an interrupt to reclaim some.
1761 */
1762 txq->txq_lastintr += map->dm_nsegs;
1763 if (txq->txq_lastintr >= txq->txq_threshold
1764 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1765 txq->txq_lastintr = 0;
1766 last_flags |= TXBD_I;
1767 }
1768
1769 #ifdef ETSEC_DEBUG
1770 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1771 #endif
1772 KASSERT(producer != txq->txq_last);
1773 producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1774 producer->txbd_len = map->dm_segs[0].ds_len;
1775
1776 if (map->dm_nsegs > 1) {
1777 volatile struct txbd *start = producer + 1;
1778 size_t count = map->dm_nsegs - 1;
1779 for (u_int i = 1; i < map->dm_nsegs; i++) {
1780 if (__predict_false(++producer == txq->txq_last)) {
1781 producer = txq->txq_first;
1782 if (start < txq->txq_last) {
1783 pq3etsec_txq_desc_presync(sc, txq,
1784 start, txq->txq_last - start);
1785 count -= txq->txq_last - start;
1786 }
1787 start = txq->txq_first;
1788 }
1789 #ifdef ETSEC_DEBUG
1790 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1791 #endif
1792 producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1793 producer->txbd_len = map->dm_segs[i].ds_len;
1794 producer->txbd_flags = TXBD_R
1795 | (producer->txbd_flags & TXBD_W)
1796 | (i == map->dm_nsegs - 1 ? last_flags : 0);
1797 #if 0
1798 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1799 producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1800 #endif
1801 }
1802 pq3etsec_txq_desc_presync(sc, txq, start, count);
1803 } else {
1804 first_flags |= last_flags;
1805 }
1806
1807 membar_producer();
1808 txq->txq_producer->txbd_flags =
1809 first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1810 #if 0
1811 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1812 txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1813 txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1814 #endif
1815 pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1816
1817 /*
1818 * Reduce free count by the number of segments we consumed.
1819 */
1820 txq->txq_free -= map->dm_nsegs;
1821 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1822 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1823 KASSERT(producer->txbd_flags & TXBD_L);
1824 #ifdef ETSEC_DEBUG
1825 txq->txq_lmbufs[producer - txq->txq_first] = m;
1826 #endif
1827
1828 #if 0
1829 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1830 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1831 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1832 #endif
1833
1834 if (++producer == txq->txq_last)
1835 txq->txq_producer = txq->txq_first;
1836 else
1837 txq->txq_producer = producer;
1838 IF_ENQUEUE(&txq->txq_mbufs, m);
1839
1840 /*
1841 * Restart the transmitter.
1842 */
1843 etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT); /* W1C */
1844
1845 return true;
1846 }
1847
1848 static void
1849 pq3etsec_tx_offload(
1850 struct pq3etsec_softc *sc,
1851 struct pq3etsec_txqueue *txq,
1852 struct mbuf **mp)
1853 {
1854 struct mbuf *m = *mp;
1855 u_int csum_flags = m->m_pkthdr.csum_flags;
1856 struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1857
1858 KASSERT(m->m_flags & M_PKTHDR);
1859
1860 /*
1861 * Let see if we are doing any offload first.
1862 */
1863 if (csum_flags == 0 && vtag == 0) {
1864 m->m_flags &= ~M_HASFCB;
1865 return;
1866 }
1867
1868 uint16_t flags = 0;
1869 if (csum_flags & M_CSUM_IP) {
1870 flags |= TXFCB_IP
1871 | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
1872 | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
1873 | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
1874 | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
1875 | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
1876 }
1877 if (vtag) {
1878 flags |= TXFCB_VLN;
1879 }
1880 if (flags == 0) {
1881 m->m_flags &= ~M_HASFCB;
1882 return;
1883 }
1884
1885 struct txfcb fcb;
1886 fcb.txfcb_flags = flags;
1887 if (csum_flags & M_CSUM_IPv4)
1888 fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
1889 else
1890 fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1891 fcb.txfcb_l3os = ETHER_HDR_LEN;
1892 fcb.txfcb_phcs = 0;
1893 fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
1894
1895 #if 0
1896 printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
1897 __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
1898 fcb.txfcb_phcs, fcb.txfcb_vlctl);
1899 #endif
1900
1901 if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
1902 m->m_data -= sizeof(fcb);
1903 m->m_len += sizeof(fcb);
1904 } else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
1905 memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
1906 m->m_data = m->m_pktdat;
1907 m->m_len += sizeof(fcb);
1908 } else {
1909 struct mbuf *mn;
1910 MGET(mn, M_DONTWAIT, m->m_type);
1911 if (mn == NULL) {
1912 if (csum_flags & M_CSUM_IP4) {
1913 #ifdef INET
1914 ip_undefer_csum(m, ETHER_HDR_LEN,
1915 csum_flags & M_CSUM_IP4);
1916 #else
1917 panic("%s: impossible M_CSUM flags %#x",
1918 device_xname(sc->sc_dev), csum_flags);
1919 #endif
1920 } else if (csum_flags & M_CSUM_IP6) {
1921 #ifdef INET6
1922 ip6_undefer_csum(m, ETHER_HDR_LEN,
1923 csum_flags & M_CSUM_IP6);
1924 #else
1925 panic("%s: impossible M_CSUM flags %#x",
1926 device_xname(sc->sc_dev), csum_flags);
1927 #endif
1928 } else if (vtag) {
1929 }
1930
1931 m->m_flags &= ~M_HASFCB;
1932 return;
1933 }
1934
1935 M_MOVE_PKTHDR(mn, m);
1936 mn->m_next = m;
1937 m = mn;
1938 MH_ALIGN(m, sizeof(fcb));
1939 m->m_len = sizeof(fcb);
1940 *mp = m;
1941 }
1942 m->m_pkthdr.len += sizeof(fcb);
1943 m->m_flags |= M_HASFCB;
1944 *mtod(m, struct txfcb *) = fcb;
1945 return;
1946 }
1947
1948 static bool
1949 pq3etsec_txq_enqueue(
1950 struct pq3etsec_softc *sc,
1951 struct pq3etsec_txqueue *txq)
1952 {
1953 for (;;) {
1954 if (IF_QFULL(&txq->txq_mbufs))
1955 return false;
1956 struct mbuf *m = txq->txq_next;
1957 if (m == NULL) {
1958 int s = splnet();
1959 IF_DEQUEUE(&sc->sc_if.if_snd, m);
1960 splx(s);
1961 if (m == NULL)
1962 return true;
1963 M_SETCTX(m, NULL);
1964 pq3etsec_tx_offload(sc, txq, &m);
1965 } else {
1966 txq->txq_next = NULL;
1967 }
1968 int error = pq3etsec_txq_map_load(sc, txq, m);
1969 if (error) {
1970 aprint_error_dev(sc->sc_dev,
1971 "discarded packet due to "
1972 "dmamap load failure: %d\n", error);
1973 m_freem(m);
1974 continue;
1975 }
1976 KASSERT(txq->txq_next == NULL);
1977 if (!pq3etsec_txq_produce(sc, txq, m)) {
1978 txq->txq_next = m;
1979 return false;
1980 }
1981 KASSERT(txq->txq_next == NULL);
1982 }
1983 }
1984
1985 static bool
1986 pq3etsec_txq_consume(
1987 struct pq3etsec_softc *sc,
1988 struct pq3etsec_txqueue *txq)
1989 {
1990 struct ifnet * const ifp = &sc->sc_if;
1991 volatile struct txbd *consumer = txq->txq_consumer;
1992 size_t txfree = 0;
1993
1994 #if 0
1995 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1996 #endif
1997 etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
1998
1999 for (;;) {
2000 if (consumer == txq->txq_producer) {
2001 txq->txq_consumer = consumer;
2002 txq->txq_free += txfree;
2003 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2004 #if 0
2005 printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2006 __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2007 #endif
2008 KASSERT(txq->txq_lastintr == 0);
2009 KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2010 return true;
2011 }
2012 pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2013 const uint16_t txbd_flags = consumer->txbd_flags;
2014 if (txbd_flags & TXBD_R) {
2015 txq->txq_consumer = consumer;
2016 txq->txq_free += txfree;
2017 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2018 #if 0
2019 printf("%s: freed %zu descriptors\n",
2020 __func__, txfree);
2021 #endif
2022 return pq3etsec_txq_fillable_p(sc, txq);
2023 }
2024
2025 /*
2026 * If this is the last descriptor in the chain, get the
2027 * mbuf, free its dmamap, and free the mbuf chain itself.
2028 */
2029 if (txbd_flags & TXBD_L) {
2030 struct mbuf *m;
2031
2032 IF_DEQUEUE(&txq->txq_mbufs, m);
2033 #ifdef ETSEC_DEBUG
2034 KASSERTMSG(m == txq->txq_lmbufs[consumer-txq->txq_first],
2035 ("%s: %p [%u]: flags %#x m (%p) != %p (%p)", __func__,
2036 consumer, consumer - txq->txq_first, txbd_flags,
2037 m, &txq->txq_lmbufs[consumer-txq->txq_first],
2038 txq->txq_lmbufs[consumer-txq->txq_first]));
2039 #endif
2040 KASSERT(m);
2041 pq3etsec_txq_map_unload(sc, txq, m);
2042 #if 0
2043 printf("%s: mbuf %p: consumed a %u byte packet\n",
2044 __func__, m, m->m_pkthdr.len);
2045 #endif
2046 if (m->m_flags & M_HASFCB)
2047 m_adj(m, sizeof(struct txfcb));
2048 ifp->if_opackets++;
2049 ifp->if_obytes += m->m_pkthdr.len;
2050 if (m->m_flags & M_MCAST)
2051 ifp->if_omcasts++;
2052 if (txbd_flags & TXBD_ERRORS)
2053 ifp->if_oerrors++;
2054 m_freem(m);
2055 #ifdef ETSEC_DEBUG
2056 txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2057 #endif
2058 } else {
2059 #ifdef ETSEC_DEBUG
2060 KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2061 #endif
2062 }
2063
2064 /*
2065 * We own this packet again. Clear all flags except wrap.
2066 */
2067 txfree++;
2068 //consumer->txbd_flags = txbd_flags & TXBD_W;
2069
2070 /*
2071 * Wrap at the last entry!
2072 */
2073 if (txbd_flags & TXBD_W) {
2074 KASSERT(consumer + 1 == txq->txq_last);
2075 consumer = txq->txq_first;
2076 } else {
2077 consumer++;
2078 KASSERT(consumer < txq->txq_last);
2079 }
2080 }
2081 }
2082
2083 static void
2084 pq3etsec_txq_purge(
2085 struct pq3etsec_softc *sc,
2086 struct pq3etsec_txqueue *txq)
2087 {
2088 struct mbuf *m;
2089 KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2090
2091 for (;;) {
2092 IF_DEQUEUE(&txq->txq_mbufs, m);
2093 if (m == NULL)
2094 break;
2095 pq3etsec_txq_map_unload(sc, txq, m);
2096 m_freem(m);
2097 }
2098 if ((m = txq->txq_next) != NULL) {
2099 txq->txq_next = NULL;
2100 pq3etsec_txq_map_unload(sc, txq, m);
2101 m_freem(m);
2102 }
2103 #ifdef ETSEC_DEBUG
2104 memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2105 #endif
2106 }
2107
2108 static void
2109 pq3etsec_txq_reset(
2110 struct pq3etsec_softc *sc,
2111 struct pq3etsec_txqueue *txq)
2112 {
2113 /*
2114 * sync all the descriptors
2115 */
2116 pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2117 txq->txq_last - txq->txq_first);
2118
2119 /*
2120 * Make sure we own all descriptors in the ring.
2121 */
2122 volatile struct txbd *txbd;
2123 for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2124 txbd->txbd_flags = 0;
2125 }
2126
2127 /*
2128 * Last descriptor has the wrap flag.
2129 */
2130 txbd->txbd_flags = TXBD_W;
2131
2132 /*
2133 * Reset the producer consumer indexes.
2134 */
2135 txq->txq_consumer = txq->txq_first;
2136 txq->txq_producer = txq->txq_first;
2137 txq->txq_free = txq->txq_last - txq->txq_first - 1;
2138 txq->txq_threshold = txq->txq_free / 2;
2139 txq->txq_lastintr = 0;
2140
2141 /*
2142 * What do we want to get interrupted on?
2143 */
2144 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2145
2146 /*
2147 * Restart the transmit at the first descriptor
2148 */
2149 etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2150 }
2151
2152 static void
2153 pq3etsec_ifstart(struct ifnet *ifp)
2154 {
2155 struct pq3etsec_softc * const sc = ifp->if_softc;
2156
2157 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2158 softint_schedule(sc->sc_soft_ih);
2159 }
2160
2161 static void
2162 pq3etsec_tx_error(
2163 struct pq3etsec_softc * const sc)
2164 {
2165 struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2166
2167 pq3etsec_txq_consume(sc, txq);
2168
2169 if (pq3etsec_txq_fillable_p(sc, txq))
2170 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2171 if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2172 } else if (sc->sc_txerrors & IEVENT_EBERR) {
2173 }
2174
2175 if (pq3etsec_txq_active_p(sc, txq))
2176 etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2177 if (!pq3etsec_txq_enqueue(sc, txq)) {
2178 sc->sc_ev_tx_stall.ev_count++;
2179 sc->sc_if.if_flags |= IFF_OACTIVE;
2180 }
2181
2182 sc->sc_txerrors = 0;
2183 }
2184
2185 int
2186 pq3etsec_tx_intr(void *arg)
2187 {
2188 struct pq3etsec_softc * const sc = arg;
2189
2190 sc->sc_ev_tx_intr.ev_count++;
2191
2192 uint32_t ievent = etsec_read(sc, IEVENT);
2193 ievent &= IEVENT_TXF|IEVENT_TXB;
2194 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2195
2196 #if 0
2197 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2198 __func__, ievent, etsec_read(sc, IMASK));
2199 #endif
2200
2201 if (ievent == 0)
2202 return 0;
2203
2204 sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2205 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2206 etsec_write(sc, IMASK, sc->sc_imask);
2207 softint_schedule(sc->sc_soft_ih);
2208 return 1;
2209 }
2210
2211 int
2212 pq3etsec_rx_intr(void *arg)
2213 {
2214 struct pq3etsec_softc * const sc = arg;
2215
2216 sc->sc_ev_rx_intr.ev_count++;
2217
2218 uint32_t ievent = etsec_read(sc, IEVENT);
2219 ievent &= IEVENT_RXF|IEVENT_RXB;
2220 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2221 if (ievent == 0)
2222 return 0;
2223
2224 #if 0
2225 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2226 #endif
2227
2228 sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2229 atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2230 etsec_write(sc, IMASK, sc->sc_imask);
2231 softint_schedule(sc->sc_soft_ih);
2232 return 1;
2233 }
2234
2235 int
2236 pq3etsec_error_intr(void *arg)
2237 {
2238 struct pq3etsec_softc * const sc = arg;
2239
2240 sc->sc_ev_error_intr.ev_count++;
2241
2242 for (int rv = 0, soft_flags = 0;; rv = 1) {
2243 uint32_t ievent = etsec_read(sc, IEVENT);
2244 ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2245 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2246 if (ievent == 0) {
2247 if (soft_flags) {
2248 atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2249 softint_schedule(sc->sc_soft_ih);
2250 }
2251 return rv;
2252 }
2253 #if 0
2254 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2255 __func__, ievent, etsec_read(sc, IMASK));
2256 #endif
2257
2258 if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2259 sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2260 etsec_write(sc, IMASK, sc->sc_imask);
2261 wakeup(sc);
2262 }
2263 if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2264 sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2265 etsec_write(sc, IMASK, sc->sc_imask);
2266 wakeup(&sc->sc_mii);
2267 }
2268 if (ievent & IEVENT_BSY) {
2269 soft_flags |= SOFT_RXBSY;
2270 sc->sc_imask &= ~IEVENT_BSY;
2271 etsec_write(sc, IMASK, sc->sc_imask);
2272 }
2273 if (ievent & IEVENT_TXE) {
2274 soft_flags |= SOFT_TXERROR;
2275 sc->sc_imask &= ~IEVENT_TXE;
2276 sc->sc_txerrors |= ievent;
2277 }
2278 if (ievent & IEVENT_TXC) {
2279 sc->sc_ev_tx_pause.ev_count++;
2280 }
2281 if (ievent & IEVENT_RXC) {
2282 sc->sc_ev_rx_pause.ev_count++;
2283 }
2284 if (ievent & IEVENT_DPE) {
2285 soft_flags |= SOFT_RESET;
2286 sc->sc_imask &= ~IEVENT_DPE;
2287 etsec_write(sc, IMASK, sc->sc_imask);
2288 }
2289 }
2290 }
2291
2292 void
2293 pq3etsec_soft_intr(void *arg)
2294 {
2295 struct pq3etsec_softc * const sc = arg;
2296 struct ifnet * const ifp = &sc->sc_if;
2297
2298 mutex_enter(sc->sc_lock);
2299
2300 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2301
2302 sc->sc_ev_soft_intr.ev_count++;
2303
2304 if (soft_flags & SOFT_RESET) {
2305 int s = splnet();
2306 pq3etsec_ifinit(ifp);
2307 splx(s);
2308 soft_flags = 0;
2309 }
2310
2311 if (soft_flags & SOFT_RXBSY) {
2312 struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2313 size_t threshold = 5 * rxq->rxq_threshold / 4;
2314 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2315 threshold = rxq->rxq_last - rxq->rxq_first - 1;
2316 } else {
2317 sc->sc_imask |= IEVENT_BSY;
2318 }
2319 aprint_normal_dev(sc->sc_dev,
2320 "increasing receive buffers from %zu to %zu\n",
2321 rxq->rxq_threshold, threshold);
2322 rxq->rxq_threshold = threshold;
2323 }
2324
2325 if ((soft_flags & SOFT_TXINTR)
2326 || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2327 /*
2328 * Let's do what we came here for. Consume transmitted
2329 * packets off the the transmit ring.
2330 */
2331 if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2332 || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2333 sc->sc_ev_tx_stall.ev_count++;
2334 ifp->if_flags |= IFF_OACTIVE;
2335 } else {
2336 ifp->if_flags &= ~IFF_OACTIVE;
2337 }
2338 sc->sc_imask |= IEVENT_TXF;
2339 }
2340
2341 if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2342 /*
2343 * Let's consume
2344 */
2345 pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2346 sc->sc_imask |= IEVENT_RXF;
2347 }
2348
2349 if (soft_flags & SOFT_TXERROR) {
2350 pq3etsec_tx_error(sc);
2351 sc->sc_imask |= IEVENT_TXE;
2352 }
2353
2354 if (ifp->if_flags & IFF_RUNNING) {
2355 pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2356 etsec_write(sc, IMASK, sc->sc_imask);
2357 } else {
2358 KASSERT((soft_flags & SOFT_RXBSY) == 0);
2359 }
2360
2361 mutex_exit(sc->sc_lock);
2362 }
2363
2364 static void
2365 pq3etsec_mii_tick(void *arg)
2366 {
2367 struct pq3etsec_softc * const sc = arg;
2368 mutex_enter(sc->sc_lock);
2369 callout_ack(&sc->sc_mii_callout);
2370 sc->sc_ev_mii_ticks.ev_count++;
2371 #ifdef DEBUG
2372 uint64_t now = mftb();
2373 if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2374 aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2375 __func__, now - sc->sc_mii_last_tick);
2376 callout_stop(&sc->sc_mii_callout);
2377 }
2378 #endif
2379 mii_tick(&sc->sc_mii);
2380 int s = splnet();
2381 if (sc->sc_soft_flags & SOFT_RESET)
2382 softint_schedule(sc->sc_soft_ih);
2383 splx(s);
2384 callout_schedule(&sc->sc_mii_callout, hz);
2385 sc->sc_mii_last_tick = now;
2386 mutex_exit(sc->sc_lock);
2387 }
2388