pq3etsec.c revision 1.21 1 /* $NetBSD: pq3etsec.c,v 1.21 2015/01/16 05:50:15 nonaka Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include "opt_inet.h"
38 #include "opt_mpc85xx.h"
39
40 #include <sys/cdefs.h>
41
42 __KERNEL_RCSID(0, "$NetBSD: pq3etsec.c,v 1.21 2015/01/16 05:50:15 nonaka Exp $");
43
44 #include <sys/param.h>
45 #include <sys/cpu.h>
46 #include <sys/device.h>
47 #include <sys/mbuf.h>
48 #include <sys/ioctl.h>
49 #include <sys/intr.h>
50 #include <sys/bus.h>
51 #include <sys/kernel.h>
52 #include <sys/kmem.h>
53 #include <sys/proc.h>
54 #include <sys/atomic.h>
55 #include <sys/callout.h>
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_ether.h>
60 #include <net/if_media.h>
61
62 #include <dev/mii/miivar.h>
63
64 #include <net/bpf.h>
65
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #include <netinet/in_offload.h>
71 #endif /* INET */
72 #ifdef INET6
73 #include <netinet6/in6.h>
74 #include <netinet/ip6.h>
75 #endif
76 #include <netinet6/in6_offload.h>
77
78
79 #include <powerpc/spr.h>
80 #include <powerpc/booke/spr.h>
81
82 #include <powerpc/booke/cpuvar.h>
83 #include <powerpc/booke/e500var.h>
84 #include <powerpc/booke/e500reg.h>
85 #include <powerpc/booke/etsecreg.h>
86
87 #define M_HASFCB M_LINK2 /* tx packet has FCB prepended */
88
89 #define ETSEC_MAXTXMBUFS 30
90 #define ETSEC_NTXSEGS 30
91 #define ETSEC_MAXRXMBUFS 511
92 #define ETSEC_MINRXMBUFS 32
93 #define ETSEC_NRXSEGS 1
94
95 #define IFCAP_RCTRL_IPCSEN IFCAP_CSUM_IPv4_Rx
96 #define IFCAP_RCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Rx\
97 |IFCAP_CSUM_UDPv4_Rx\
98 |IFCAP_CSUM_TCPv6_Rx\
99 |IFCAP_CSUM_UDPv6_Rx)
100
101 #define IFCAP_TCTRL_IPCSEN IFCAP_CSUM_IPv4_Tx
102 #define IFCAP_TCTRL_TUCSEN (IFCAP_CSUM_TCPv4_Tx\
103 |IFCAP_CSUM_UDPv4_Tx\
104 |IFCAP_CSUM_TCPv6_Tx\
105 |IFCAP_CSUM_UDPv6_Tx)
106
107 #define IFCAP_ETSEC (IFCAP_RCTRL_IPCSEN|IFCAP_RCTRL_TUCSEN\
108 |IFCAP_TCTRL_IPCSEN|IFCAP_TCTRL_TUCSEN)
109
110 #define M_CSUM_IP (M_CSUM_CIP|M_CSUM_CTU)
111 #define M_CSUM_IP6 (M_CSUM_TCPv6|M_CSUM_UDPv6)
112 #define M_CSUM_TUP (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
113 #define M_CSUM_UDP (M_CSUM_UDPv4|M_CSUM_UDPv6)
114 #define M_CSUM_IP4 (M_CSUM_IPv4|M_CSUM_UDPv4|M_CSUM_TCPv4)
115 #define M_CSUM_CIP (M_CSUM_IPv4)
116 #define M_CSUM_CTU (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)
117
118 struct pq3etsec_txqueue {
119 bus_dmamap_t txq_descmap;
120 volatile struct txbd *txq_consumer;
121 volatile struct txbd *txq_producer;
122 volatile struct txbd *txq_first;
123 volatile struct txbd *txq_last;
124 struct ifqueue txq_mbufs;
125 struct mbuf *txq_next;
126 #ifdef ETSEC_DEBUG
127 struct mbuf *txq_lmbufs[512];
128 #endif
129 uint32_t txq_qmask;
130 uint32_t txq_free;
131 uint32_t txq_threshold;
132 uint32_t txq_lastintr;
133 bus_size_t txq_reg_tbase;
134 bus_dma_segment_t txq_descmap_seg;
135 };
136
137 struct pq3etsec_rxqueue {
138 bus_dmamap_t rxq_descmap;
139 volatile struct rxbd *rxq_consumer;
140 volatile struct rxbd *rxq_producer;
141 volatile struct rxbd *rxq_first;
142 volatile struct rxbd *rxq_last;
143 struct mbuf *rxq_mhead;
144 struct mbuf **rxq_mtail;
145 struct mbuf *rxq_mconsumer;
146 #ifdef ETSEC_DEBUG
147 struct mbuf *rxq_mbufs[512];
148 #endif
149 uint32_t rxq_qmask;
150 uint32_t rxq_inuse;
151 uint32_t rxq_threshold;
152 bus_size_t rxq_reg_rbase;
153 bus_size_t rxq_reg_rbptr;
154 bus_dma_segment_t rxq_descmap_seg;
155 };
156
157 struct pq3etsec_mapcache {
158 u_int dmc_nmaps;
159 u_int dmc_maxseg;
160 u_int dmc_maxmaps;
161 u_int dmc_maxmapsize;
162 bus_dmamap_t dmc_maps[0];
163 };
164
165 struct pq3etsec_softc {
166 device_t sc_dev;
167 device_t sc_mdio_dev;
168 struct ethercom sc_ec;
169 #define sc_if sc_ec.ec_if
170 struct mii_data sc_mii;
171 bus_space_tag_t sc_bst;
172 bus_space_handle_t sc_bsh;
173 bus_space_handle_t sc_mdio_bsh;
174 bus_dma_tag_t sc_dmat;
175 int sc_phy_addr;
176 prop_dictionary_t sc_intrmap;
177 uint32_t sc_intrmask;
178
179 uint32_t sc_soft_flags;
180 #define SOFT_RESET 0x0001
181 #define SOFT_RXINTR 0x0010
182 #define SOFT_RXBSY 0x0020
183 #define SOFT_TXINTR 0x0100
184 #define SOFT_TXERROR 0x0200
185
186 struct pq3etsec_txqueue sc_txq;
187 struct pq3etsec_rxqueue sc_rxq;
188 uint32_t sc_txerrors;
189 uint32_t sc_rxerrors;
190
191 size_t sc_rx_adjlen;
192
193 /*
194 * Copies of various ETSEC registers.
195 */
196 uint32_t sc_imask;
197 uint32_t sc_maccfg1;
198 uint32_t sc_maccfg2;
199 uint32_t sc_maxfrm;
200 uint32_t sc_ecntrl;
201 uint32_t sc_dmactrl;
202 uint32_t sc_macstnaddr1;
203 uint32_t sc_macstnaddr2;
204 uint32_t sc_tctrl;
205 uint32_t sc_rctrl;
206 uint32_t sc_gaddr[16];
207 uint64_t sc_macaddrs[15];
208
209 void *sc_tx_ih;
210 void *sc_rx_ih;
211 void *sc_error_ih;
212 void *sc_soft_ih;
213
214 kmutex_t *sc_lock;
215
216 struct evcnt sc_ev_tx_stall;
217 struct evcnt sc_ev_tx_intr;
218 struct evcnt sc_ev_rx_stall;
219 struct evcnt sc_ev_rx_intr;
220 struct evcnt sc_ev_error_intr;
221 struct evcnt sc_ev_soft_intr;
222 struct evcnt sc_ev_tx_pause;
223 struct evcnt sc_ev_rx_pause;
224 struct evcnt sc_ev_mii_ticks;
225
226 struct callout sc_mii_callout;
227 uint64_t sc_mii_last_tick;
228
229 struct ifqueue sc_rx_bufcache;
230 struct pq3etsec_mapcache *sc_rx_mapcache;
231 struct pq3etsec_mapcache *sc_tx_mapcache;
232 };
233
234 struct pq3mdio_softc {
235 device_t mdio_dev;
236
237 kmutex_t *mdio_lock;
238
239 bus_space_tag_t mdio_bst;
240 bus_space_handle_t mdio_bsh;
241 };
242
243 static int pq3etsec_match(device_t, cfdata_t, void *);
244 static void pq3etsec_attach(device_t, device_t, void *);
245
246 static int pq3mdio_match(device_t, cfdata_t, void *);
247 static void pq3mdio_attach(device_t, device_t, void *);
248
249 static void pq3etsec_ifstart(struct ifnet *);
250 static void pq3etsec_ifwatchdog(struct ifnet *);
251 static int pq3etsec_ifinit(struct ifnet *);
252 static void pq3etsec_ifstop(struct ifnet *, int);
253 static int pq3etsec_ifioctl(struct ifnet *, u_long, void *);
254
255 static int pq3etsec_mapcache_create(struct pq3etsec_softc *,
256 struct pq3etsec_mapcache **, size_t, size_t, size_t);
257 static void pq3etsec_mapcache_destroy(struct pq3etsec_softc *,
258 struct pq3etsec_mapcache *);
259 static bus_dmamap_t pq3etsec_mapcache_get(struct pq3etsec_softc *,
260 struct pq3etsec_mapcache *);
261 static void pq3etsec_mapcache_put(struct pq3etsec_softc *,
262 struct pq3etsec_mapcache *, bus_dmamap_t);
263
264 static int pq3etsec_txq_attach(struct pq3etsec_softc *,
265 struct pq3etsec_txqueue *, u_int);
266 static void pq3etsec_txq_purge(struct pq3etsec_softc *,
267 struct pq3etsec_txqueue *);
268 static void pq3etsec_txq_reset(struct pq3etsec_softc *,
269 struct pq3etsec_txqueue *);
270 static bool pq3etsec_txq_consume(struct pq3etsec_softc *,
271 struct pq3etsec_txqueue *);
272 static bool pq3etsec_txq_produce(struct pq3etsec_softc *,
273 struct pq3etsec_txqueue *, struct mbuf *m);
274 static bool pq3etsec_txq_active_p(struct pq3etsec_softc *,
275 struct pq3etsec_txqueue *);
276
277 static int pq3etsec_rxq_attach(struct pq3etsec_softc *,
278 struct pq3etsec_rxqueue *, u_int);
279 static bool pq3etsec_rxq_produce(struct pq3etsec_softc *,
280 struct pq3etsec_rxqueue *);
281 static void pq3etsec_rxq_purge(struct pq3etsec_softc *,
282 struct pq3etsec_rxqueue *, bool);
283 static void pq3etsec_rxq_reset(struct pq3etsec_softc *,
284 struct pq3etsec_rxqueue *);
285
286 static void pq3etsec_mc_setup(struct pq3etsec_softc *);
287
288 static void pq3etsec_mii_tick(void *);
289 static int pq3etsec_rx_intr(void *);
290 static int pq3etsec_tx_intr(void *);
291 static int pq3etsec_error_intr(void *);
292 static void pq3etsec_soft_intr(void *);
293
294 CFATTACH_DECL_NEW(pq3etsec, sizeof(struct pq3etsec_softc),
295 pq3etsec_match, pq3etsec_attach, NULL, NULL);
296
297 CFATTACH_DECL_NEW(pq3mdio_tsec, sizeof(struct pq3mdio_softc),
298 pq3mdio_match, pq3mdio_attach, NULL, NULL);
299
300 CFATTACH_DECL_NEW(pq3mdio_cpunode, sizeof(struct pq3mdio_softc),
301 pq3mdio_match, pq3mdio_attach, NULL, NULL);
302
303 static inline uint32_t
304 etsec_mdio_read(struct pq3mdio_softc *mdio, bus_size_t off)
305 {
306 return bus_space_read_4(mdio->mdio_bst, mdio->mdio_bsh, off);
307 }
308
309 static inline void
310 etsec_mdio_write(struct pq3mdio_softc *mdio, bus_size_t off, uint32_t data)
311 {
312 bus_space_write_4(mdio->mdio_bst, mdio->mdio_bsh, off, data);
313 }
314
315 static inline uint32_t
316 etsec_read(struct pq3etsec_softc *sc, bus_size_t off)
317 {
318 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, off);
319 }
320
321 static int
322 pq3mdio_find(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
323 {
324 return strcmp(cf->cf_name, "mdio") == 0;
325 }
326
327 static int
328 pq3mdio_match(device_t parent, cfdata_t cf, void *aux)
329 {
330 const uint16_t svr = (mfspr(SPR_SVR) & ~0x80000) >> 16;
331 const bool p1025_p = (svr == (SVR_P1025v1 >> 16)
332 || svr == (SVR_P1016v1 >> 16));
333
334 if (device_is_a(parent, "cpunode")) {
335 if (!p1025_p
336 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
337 return 0;
338
339 return 1;
340 }
341
342 if (device_is_a(parent, "tsec")) {
343 if (p1025_p
344 || !e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
345 return 0;
346
347 return 1;
348 }
349
350 return 0;
351 }
352
353 static void
354 pq3mdio_attach(device_t parent, device_t self, void *aux)
355 {
356 struct pq3mdio_softc * const mdio = device_private(self);
357 struct cpunode_attach_args * const cna = aux;
358 struct cpunode_locators * const cnl = &cna->cna_locs;
359
360 mdio->mdio_dev = self;
361 mdio->mdio_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
362
363 if (device_is_a(parent, "cpunode")) {
364 struct cpunode_softc * const psc = device_private(parent);
365 psc->sc_children |= cna->cna_childmask;
366
367 mdio->mdio_bst = cna->cna_memt;
368 if (bus_space_map(mdio->mdio_bst, cnl->cnl_addr,
369 cnl->cnl_size, 0, &mdio->mdio_bsh) != 0) {
370 aprint_error(": error mapping registers @ %#x\n",
371 cnl->cnl_addr);
372 return;
373 }
374 } else {
375 struct pq3etsec_softc * const sc = device_private(parent);
376
377 KASSERT(device_is_a(parent, "tsec"));
378 KASSERTMSG(cnl->cnl_addr == ETSEC1_BASE
379 || cnl->cnl_addr == ETSEC2_BASE
380 || cnl->cnl_addr == ETSEC3_BASE
381 || cnl->cnl_addr == ETSEC4_BASE,
382 "unknown tsec addr %x", cnl->cnl_addr);
383
384 mdio->mdio_bst = sc->sc_bst;
385 mdio->mdio_bsh = sc->sc_bsh;
386 }
387
388 aprint_normal("\n");
389 }
390
391 static int
392 pq3mdio_mii_readreg(device_t self, int phy, int reg)
393 {
394 struct pq3mdio_softc * const mdio = device_private(self);
395 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
396
397 mutex_enter(mdio->mdio_lock);
398
399 etsec_mdio_write(mdio, MIIMADD,
400 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
401
402 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
403 etsec_mdio_write(mdio, MIIMCOM, MIIMCOM_READ);
404
405 while (etsec_mdio_read(mdio, MIIMIND) != 0) {
406 delay(1);
407 }
408 int data = etsec_mdio_read(mdio, MIIMSTAT);
409
410 if (miimcom == MIIMCOM_SCAN)
411 etsec_mdio_write(mdio, MIIMCOM, miimcom);
412
413 #if 0
414 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
415 __func__, phy, reg, data);
416 #endif
417 mutex_exit(mdio->mdio_lock);
418 return data;
419 }
420
421 static void
422 pq3mdio_mii_writereg(device_t self, int phy, int reg, int data)
423 {
424 struct pq3mdio_softc * const mdio = device_private(self);
425 uint32_t miimcom = etsec_mdio_read(mdio, MIIMCOM);
426
427 #if 0
428 aprint_normal_dev(mdio->mdio_dev, "%s: phy %d reg %d: %#x\n",
429 __func__, phy, reg, data);
430 #endif
431
432 mutex_enter(mdio->mdio_lock);
433
434 etsec_mdio_write(mdio, MIIMADD,
435 __SHIFTIN(phy, MIIMADD_PHY) | __SHIFTIN(reg, MIIMADD_REG));
436 etsec_mdio_write(mdio, MIIMCOM, 0); /* clear any past bits */
437 etsec_mdio_write(mdio, MIIMCON, data);
438
439 int timo = 1000; /* 1ms */
440 while ((etsec_mdio_read(mdio, MIIMIND) & MIIMIND_BUSY) && --timo > 0) {
441 delay(1);
442 }
443
444 if (miimcom == MIIMCOM_SCAN)
445 etsec_mdio_write(mdio, MIIMCOM, miimcom);
446
447 mutex_exit(mdio->mdio_lock);
448 }
449
450 static inline void
451 etsec_write(struct pq3etsec_softc *sc, bus_size_t off, uint32_t data)
452 {
453 bus_space_write_4(sc->sc_bst, sc->sc_bsh, off, data);
454 }
455
456 static void
457 pq3etsec_mii_statchg(struct ifnet *ifp)
458 {
459 struct pq3etsec_softc * const sc = ifp->if_softc;
460 struct mii_data * const mii = &sc->sc_mii;
461
462 uint32_t maccfg1 = sc->sc_maccfg1;
463 uint32_t maccfg2 = sc->sc_maccfg2;
464 uint32_t ecntrl = sc->sc_ecntrl;
465
466 maccfg1 &= ~(MACCFG1_TX_FLOW|MACCFG1_RX_FLOW);
467 maccfg2 &= ~(MACCFG2_IFMODE|MACCFG2_FD);
468
469 if (sc->sc_mii.mii_media_active & IFM_FDX) {
470 maccfg2 |= MACCFG2_FD;
471 }
472
473 /*
474 * Now deal with the flow control bits.
475 */
476 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO
477 && (mii->mii_media_active & IFM_ETH_FMASK)) {
478 if (mii->mii_media_active & IFM_ETH_RXPAUSE)
479 maccfg1 |= MACCFG1_RX_FLOW;
480 if (mii->mii_media_active & IFM_ETH_TXPAUSE)
481 maccfg1 |= MACCFG1_TX_FLOW;
482 }
483
484 /*
485 * Now deal with the speed.
486 */
487 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
488 maccfg2 |= MACCFG2_IFMODE_GMII;
489 } else {
490 maccfg2 |= MACCFG2_IFMODE_MII;
491 ecntrl &= ~ECNTRL_R100M;
492 if (IFM_SUBTYPE(mii->mii_media_active) != IFM_10_T) {
493 ecntrl |= ECNTRL_R100M;
494 }
495 }
496
497 /*
498 * If things are different, re-init things.
499 */
500 if (maccfg1 != sc->sc_maccfg1
501 || maccfg2 != sc->sc_maccfg2
502 || ecntrl != sc->sc_ecntrl) {
503 if (sc->sc_if.if_flags & IFF_RUNNING)
504 atomic_or_uint(&sc->sc_soft_flags, SOFT_RESET);
505 sc->sc_maccfg1 = maccfg1;
506 sc->sc_maccfg2 = maccfg2;
507 sc->sc_ecntrl = ecntrl;
508 }
509 }
510
511 #if 0
512 static void
513 pq3etsec_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
514 {
515 struct pq3etsec_softc * const sc = ifp->if_softc;
516
517 mii_pollstat(&sc->sc_mii);
518 ether_mediastatus(ifp, ifmr);
519 ifmr->ifm_status = sc->sc_mii.mii_media_status;
520 ifmr->ifm_active = sc->sc_mii.mii_media_active;
521 }
522
523 static int
524 pq3etsec_mediachange(struct ifnet *ifp)
525 {
526 struct pq3etsec_softc * const sc = ifp->if_softc;
527
528 if ((ifp->if_flags & IFF_UP) == 0)
529 return 0;
530
531 int rv = mii_mediachg(&sc->sc_mii);
532 return (rv == ENXIO) ? 0 : rv;
533 }
534 #endif
535
536 static int
537 pq3etsec_match(device_t parent, cfdata_t cf, void *aux)
538 {
539
540 if (!e500_cpunode_submatch(parent, cf, cf->cf_name, aux))
541 return 0;
542
543 return 1;
544 }
545
546 static void
547 pq3etsec_attach(device_t parent, device_t self, void *aux)
548 {
549 struct cpunode_softc * const psc = device_private(parent);
550 struct pq3etsec_softc * const sc = device_private(self);
551 struct cpunode_attach_args * const cna = aux;
552 struct cpunode_locators * const cnl = &cna->cna_locs;
553 cfdata_t cf = device_cfdata(self);
554 int error;
555
556 psc->sc_children |= cna->cna_childmask;
557 sc->sc_dev = self;
558 sc->sc_bst = cna->cna_memt;
559 sc->sc_dmat = &booke_bus_dma_tag;
560
561 /*
562 * Pull out the mdio bus and phy we are supposed to use.
563 */
564 const int mdio = cf->cf_loc[CPUNODECF_MDIO];
565 const int phy = cf->cf_loc[CPUNODECF_PHY];
566 if (mdio != CPUNODECF_MDIO_DEFAULT)
567 aprint_normal(" mdio %d", mdio);
568
569 /*
570 * See if the phy is in the config file...
571 */
572 if (phy != CPUNODECF_PHY_DEFAULT) {
573 sc->sc_phy_addr = phy;
574 } else {
575 unsigned char prop_name[20];
576 snprintf(prop_name, sizeof(prop_name), "tsec%u-phy-addr",
577 cnl->cnl_instance);
578 sc->sc_phy_addr = board_info_get_number(prop_name);
579 }
580 if (sc->sc_phy_addr != MII_PHY_ANY)
581 aprint_normal(" phy %d", sc->sc_phy_addr);
582
583 error = bus_space_map(sc->sc_bst, cnl->cnl_addr, cnl->cnl_size, 0,
584 &sc->sc_bsh);
585 if (error) {
586 aprint_error(": error mapping registers: %d\n", error);
587 return;
588 }
589
590 /*
591 * Assume firmware has aready set the mac address and fetch it
592 * before we reinit it.
593 */
594 sc->sc_macstnaddr2 = etsec_read(sc, MACSTNADDR2);
595 sc->sc_macstnaddr1 = etsec_read(sc, MACSTNADDR1);
596 sc->sc_rctrl = RCTRL_DEFAULT;
597 sc->sc_ecntrl = etsec_read(sc, ECNTRL);
598 sc->sc_maccfg1 = etsec_read(sc, MACCFG1);
599 sc->sc_maccfg2 = etsec_read(sc, MACCFG2) | MACCFG2_DEFAULT;
600
601 if (sc->sc_macstnaddr1 == 0 && sc->sc_macstnaddr2 == 0) {
602 size_t len;
603 const uint8_t *mac_addr =
604 board_info_get_data("tsec-mac-addr-base", &len);
605 KASSERT(len == ETHER_ADDR_LEN);
606 sc->sc_macstnaddr2 =
607 (mac_addr[1] << 24)
608 | (mac_addr[0] << 16);
609 sc->sc_macstnaddr1 =
610 ((mac_addr[5] + cnl->cnl_instance - 1) << 24)
611 | (mac_addr[4] << 16)
612 | (mac_addr[3] << 8)
613 | (mac_addr[2] << 0);
614 #if 0
615 aprint_error(": mac-address unknown\n");
616 return;
617 #endif
618 }
619
620 char enaddr[ETHER_ADDR_LEN] = {
621 [0] = sc->sc_macstnaddr2 >> 16,
622 [1] = sc->sc_macstnaddr2 >> 24,
623 [2] = sc->sc_macstnaddr1 >> 0,
624 [3] = sc->sc_macstnaddr1 >> 8,
625 [4] = sc->sc_macstnaddr1 >> 16,
626 [5] = sc->sc_macstnaddr1 >> 24,
627 };
628
629 error = pq3etsec_rxq_attach(sc, &sc->sc_rxq, 0);
630 if (error) {
631 aprint_error(": failed to init rxq: %d\n", error);
632 return;
633 }
634
635 error = pq3etsec_txq_attach(sc, &sc->sc_txq, 0);
636 if (error) {
637 aprint_error(": failed to init txq: %d\n", error);
638 return;
639 }
640
641 error = pq3etsec_mapcache_create(sc, &sc->sc_rx_mapcache,
642 ETSEC_MAXRXMBUFS, MCLBYTES, ETSEC_NRXSEGS);
643 if (error) {
644 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
645 return;
646 }
647
648 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
649 ETSEC_MAXTXMBUFS, MCLBYTES, ETSEC_NTXSEGS);
650 if (error) {
651 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
652 return;
653 }
654
655 sc->sc_tx_ih = intr_establish(cnl->cnl_intrs[0], IPL_VM, IST_ONCHIP,
656 pq3etsec_tx_intr, sc);
657 if (sc->sc_tx_ih == NULL) {
658 aprint_error(": failed to establish tx interrupt: %d\n",
659 cnl->cnl_intrs[0]);
660 return;
661 }
662
663 sc->sc_rx_ih = intr_establish(cnl->cnl_intrs[1], IPL_VM, IST_ONCHIP,
664 pq3etsec_rx_intr, sc);
665 if (sc->sc_rx_ih == NULL) {
666 aprint_error(": failed to establish rx interrupt: %d\n",
667 cnl->cnl_intrs[1]);
668 return;
669 }
670
671 sc->sc_error_ih = intr_establish(cnl->cnl_intrs[2], IPL_VM, IST_ONCHIP,
672 pq3etsec_error_intr, sc);
673 if (sc->sc_error_ih == NULL) {
674 aprint_error(": failed to establish error interrupt: %d\n",
675 cnl->cnl_intrs[2]);
676 return;
677 }
678
679 sc->sc_soft_ih = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE,
680 pq3etsec_soft_intr, sc);
681 if (sc->sc_soft_ih == NULL) {
682 aprint_error(": failed to establish soft interrupt\n");
683 return;
684 }
685
686 /*
687 * If there was no MDIO
688 */
689 if (mdio == CPUNODECF_MDIO_DEFAULT) {
690 aprint_normal("\n");
691 cfdata_t mdio_cf = config_search_ia(pq3mdio_find, self, NULL, cna);
692 if (mdio_cf != NULL) {
693 sc->sc_mdio_dev = config_attach(self, mdio_cf, cna, NULL);
694 }
695 } else {
696 sc->sc_mdio_dev = device_find_by_driver_unit("mdio", mdio);
697 if (sc->sc_mdio_dev == NULL) {
698 aprint_error(": failed to locate mdio device\n");
699 return;
700 }
701 aprint_normal("\n");
702 }
703
704 etsec_write(sc, ATTR, ATTR_DEFAULT);
705 etsec_write(sc, ATTRELI, ATTRELI_DEFAULT);
706
707 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
708
709 callout_init(&sc->sc_mii_callout, CALLOUT_MPSAFE);
710 callout_setfunc(&sc->sc_mii_callout, pq3etsec_mii_tick, sc);
711
712 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
713 ether_sprintf(enaddr));
714
715 const char * const xname = device_xname(sc->sc_dev);
716 struct ethercom * const ec = &sc->sc_ec;
717 struct ifnet * const ifp = &ec->ec_if;
718
719 ec->ec_mii = &sc->sc_mii;
720
721 sc->sc_mii.mii_ifp = ifp;
722 sc->sc_mii.mii_readreg = pq3mdio_mii_readreg;
723 sc->sc_mii.mii_writereg = pq3mdio_mii_writereg;
724 sc->sc_mii.mii_statchg = pq3etsec_mii_statchg;
725
726 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
727 ether_mediastatus);
728
729 if (sc->sc_mdio_dev != NULL && sc->sc_phy_addr < 32) {
730 mii_attach(sc->sc_mdio_dev, &sc->sc_mii, 0xffffffff,
731 sc->sc_phy_addr, MII_OFFSET_ANY, MIIF_DOPAUSE);
732
733 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
734 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
735 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
736 } else {
737 callout_schedule(&sc->sc_mii_callout, hz);
738 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
739 }
740 } else {
741 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
742 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|IFM_FDX);
743 }
744
745 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING
746 | ETHERCAP_JUMBO_MTU;
747
748 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
749 ifp->if_softc = sc;
750 ifp->if_capabilities = IFCAP_ETSEC;
751 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
752 ifp->if_ioctl = pq3etsec_ifioctl;
753 ifp->if_start = pq3etsec_ifstart;
754 ifp->if_watchdog = pq3etsec_ifwatchdog;
755 ifp->if_init = pq3etsec_ifinit;
756 ifp->if_stop = pq3etsec_ifstop;
757 IFQ_SET_READY(&ifp->if_snd);
758
759 pq3etsec_ifstop(ifp, true);
760
761 /*
762 * Attach the interface.
763 */
764 if_initialize(ifp);
765 ether_ifattach(ifp, enaddr);
766 if_register(ifp);
767
768 evcnt_attach_dynamic(&sc->sc_ev_rx_stall, EVCNT_TYPE_MISC,
769 NULL, xname, "rx stall");
770 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
771 NULL, xname, "tx stall");
772 evcnt_attach_dynamic(&sc->sc_ev_tx_intr, EVCNT_TYPE_INTR,
773 NULL, xname, "tx intr");
774 evcnt_attach_dynamic(&sc->sc_ev_rx_intr, EVCNT_TYPE_INTR,
775 NULL, xname, "rx intr");
776 evcnt_attach_dynamic(&sc->sc_ev_error_intr, EVCNT_TYPE_INTR,
777 NULL, xname, "error intr");
778 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
779 NULL, xname, "soft intr");
780 evcnt_attach_dynamic(&sc->sc_ev_tx_pause, EVCNT_TYPE_MISC,
781 NULL, xname, "tx pause");
782 evcnt_attach_dynamic(&sc->sc_ev_rx_pause, EVCNT_TYPE_MISC,
783 NULL, xname, "rx pause");
784 evcnt_attach_dynamic(&sc->sc_ev_mii_ticks, EVCNT_TYPE_MISC,
785 NULL, xname, "mii ticks");
786 }
787
788 static uint64_t
789 pq3etsec_macaddr_create(const uint8_t *lladdr)
790 {
791 uint64_t macaddr = 0;
792
793 lladdr += ETHER_ADDR_LEN;
794 for (u_int i = ETHER_ADDR_LEN; i-- > 0; ) {
795 macaddr = (macaddr << 8) | *--lladdr;
796 }
797 return macaddr << 16;
798 }
799
800 static int
801 pq3etsec_ifinit(struct ifnet *ifp)
802 {
803 struct pq3etsec_softc * const sc = ifp->if_softc;
804 int error = 0;
805
806 sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
807 if (ifp->if_mtu > ETHERMTU_JUMBO)
808 return error;
809
810 KASSERT(ifp->if_flags & IFF_UP);
811
812 /*
813 * Stop the interface (steps 1 to 4 in the Soft Reset and
814 * Reconfigurating Procedure.
815 */
816 pq3etsec_ifstop(ifp, 0);
817
818 /*
819 * If our frame size has changed (or it's our first time through)
820 * destroy the existing transmit mapcache.
821 */
822 if (sc->sc_tx_mapcache != NULL
823 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
824 pq3etsec_mapcache_destroy(sc, sc->sc_tx_mapcache);
825 sc->sc_tx_mapcache = NULL;
826 }
827
828 if (sc->sc_tx_mapcache == NULL) {
829 error = pq3etsec_mapcache_create(sc, &sc->sc_tx_mapcache,
830 ETSEC_MAXTXMBUFS, sc->sc_maxfrm, ETSEC_NTXSEGS);
831 if (error)
832 return error;
833 }
834
835 sc->sc_ev_mii_ticks.ev_count++;
836 mii_tick(&sc->sc_mii);
837
838 if (ifp->if_flags & IFF_PROMISC) {
839 sc->sc_rctrl |= RCTRL_PROM;
840 } else {
841 sc->sc_rctrl &= ~RCTRL_PROM;
842 }
843
844 uint32_t rctrl_prsdep = 0;
845 sc->sc_rctrl &= ~(RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP);
846 if (VLAN_ATTACHED(&sc->sc_ec)) {
847 sc->sc_rctrl |= RCTRL_VLEX;
848 rctrl_prsdep = RCTRL_PRSDEP_L2;
849 }
850 if (ifp->if_capenable & IFCAP_RCTRL_IPCSEN) {
851 sc->sc_rctrl |= RCTRL_IPCSEN;
852 rctrl_prsdep = RCTRL_PRSDEP_L3;
853 }
854 if (ifp->if_capenable & IFCAP_RCTRL_TUCSEN) {
855 sc->sc_rctrl |= RCTRL_TUCSEN;
856 rctrl_prsdep = RCTRL_PRSDEP_L4;
857 }
858 sc->sc_rctrl |= rctrl_prsdep;
859 #if 0
860 if (sc->sc_rctrl & (RCTRL_IPCSEN|RCTRL_TUCSEN|RCTRL_VLEX|RCTRL_PRSDEP))
861 aprint_normal_dev(sc->sc_dev,
862 "rctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlex=%"PRIuMAX" prsdep=%"PRIuMAX"\n",
863 sc->sc_rctrl,
864 __SHIFTOUT(sc->sc_rctrl, RCTRL_IPCSEN),
865 __SHIFTOUT(sc->sc_rctrl, RCTRL_TUCSEN),
866 __SHIFTOUT(sc->sc_rctrl, RCTRL_VLEX),
867 __SHIFTOUT(sc->sc_rctrl, RCTRL_PRSDEP));
868 #endif
869
870 sc->sc_tctrl &= ~(TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS);
871 if (VLAN_ATTACHED(&sc->sc_ec)) /* is this really true */
872 sc->sc_tctrl |= TCTRL_VLINS;
873 if (ifp->if_capenable & IFCAP_TCTRL_IPCSEN)
874 sc->sc_tctrl |= TCTRL_IPCSEN;
875 if (ifp->if_capenable & IFCAP_TCTRL_TUCSEN)
876 sc->sc_tctrl |= TCTRL_TUCSEN;
877 #if 0
878 if (sc->sc_tctrl & (TCTRL_IPCSEN|TCTRL_TUCSEN|TCTRL_VLINS))
879 aprint_normal_dev(sc->sc_dev,
880 "tctrl=%#x ipcsen=%"PRIuMAX" tucsen=%"PRIuMAX" vlins=%"PRIuMAX"\n",
881 sc->sc_tctrl,
882 __SHIFTOUT(sc->sc_tctrl, TCTRL_IPCSEN),
883 __SHIFTOUT(sc->sc_tctrl, TCTRL_TUCSEN),
884 __SHIFTOUT(sc->sc_tctrl, TCTRL_VLINS));
885 #endif
886
887 sc->sc_maccfg1 &= ~(MACCFG1_TX_EN|MACCFG1_RX_EN);
888
889 const uint64_t macstnaddr =
890 pq3etsec_macaddr_create(CLLADDR(ifp->if_sadl));
891
892 sc->sc_imask = IEVENT_DPE;
893
894 /* 5. Load TDBPH, TBASEH, TBASE0-TBASE7 with new Tx BD pointers */
895 pq3etsec_rxq_reset(sc, &sc->sc_rxq);
896 pq3etsec_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
897
898 /* 6. Load RDBPH, RBASEH, RBASE0-RBASE7 with new Rx BD pointers */
899 pq3etsec_txq_reset(sc, &sc->sc_txq);
900
901 /* 7. Setup other MAC registers (MACCFG2, MAXFRM, etc.) */
902 KASSERT(MACCFG2_PADCRC & sc->sc_maccfg2);
903 etsec_write(sc, MAXFRM, sc->sc_maxfrm);
904 etsec_write(sc, MACSTNADDR1, (uint32_t)(macstnaddr >> 32));
905 etsec_write(sc, MACSTNADDR2, (uint32_t)(macstnaddr >> 0));
906 etsec_write(sc, MACCFG1, sc->sc_maccfg1);
907 etsec_write(sc, MACCFG2, sc->sc_maccfg2);
908 etsec_write(sc, ECNTRL, sc->sc_ecntrl);
909
910 /* 8. Setup group address hash table (GADDR0-GADDR15) */
911 pq3etsec_mc_setup(sc);
912
913 /* 9. Setup receive frame filer table (via RQFAR, RQFCR, and RQFPR) */
914 etsec_write(sc, MRBLR, MCLBYTES);
915
916 /* 10. Setup WWR, WOP, TOD bits in DMACTRL register */
917 sc->sc_dmactrl |= DMACTRL_DEFAULT;
918 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
919
920 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
921 etsec_write(sc, TQUEUE, TQUEUE_EN0);
922 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE|IEVENT_TXC;
923
924 etsec_write(sc, TCTRL, sc->sc_tctrl); /* for TOE stuff */
925
926 /* 12. Enable receive queues in RQUEUE, */
927 etsec_write(sc, RQUEUE, RQUEUE_EN0|RQUEUE_EX0);
928 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY|IEVENT_RXC;
929
930 /* and optionally set TOE functionality in RCTRL. */
931 etsec_write(sc, RCTRL, sc->sc_rctrl);
932 sc->sc_rx_adjlen = __SHIFTOUT(sc->sc_rctrl, RCTRL_PAL);
933 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF)
934 sc->sc_rx_adjlen += sizeof(struct rxfcb);
935
936 /* 13. Clear THLT and TXF bits in TSTAT register by writing 1 to them */
937 etsec_write(sc, TSTAT, TSTAT_THLT | TSTAT_TXF);
938
939 /* 14. Clear QHLT and RXF bits in RSTAT register by writing 1 to them.*/
940 etsec_write(sc, RSTAT, RSTAT_QHLT | RSTAT_RXF);
941
942 /* 15. Clear GRS/GTS bits in DMACTRL (do not change other bits) */
943 sc->sc_dmactrl &= ~(DMACTRL_GRS|DMACTRL_GTS);
944 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
945
946 /* 16. Enable Tx_EN/Rx_EN in MACCFG1 register */
947 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
948 etsec_write(sc, MACCFG1, sc->sc_maccfg1 | MACCFG1_TX_EN|MACCFG1_RX_EN);
949
950 sc->sc_soft_flags = 0;
951
952 etsec_write(sc, IMASK, sc->sc_imask);
953
954 ifp->if_flags |= IFF_RUNNING;
955
956 return error;
957 }
958
959 static void
960 pq3etsec_ifstop(struct ifnet *ifp, int disable)
961 {
962 struct pq3etsec_softc * const sc = ifp->if_softc;
963
964 KASSERT(!cpu_intr_p());
965 const uint32_t imask_gsc_mask = IEVENT_GTSC|IEVENT_GRSC;
966 /*
967 * Clear the GTSC and GRSC from the interrupt mask until
968 * we are ready for them. Then clear them from IEVENT,
969 * request the graceful shutdown, and then enable the
970 * GTSC and GRSC bits in the mask. This should cause the
971 * error interrupt to fire which will issue a wakeup to
972 * allow us to resume.
973 */
974
975 /*
976 * 1. Set GRS/GTS bits in DMACTRL register
977 */
978 sc->sc_dmactrl |= DMACTRL_GRS|DMACTRL_GTS;
979 etsec_write(sc, IMASK, sc->sc_imask & ~imask_gsc_mask);
980 etsec_write(sc, IEVENT, imask_gsc_mask);
981 etsec_write(sc, DMACTRL, sc->sc_dmactrl);
982
983 if (etsec_read(sc, MACCFG1) & (MACCFG1_TX_EN|MACCFG1_RX_EN)) {
984 /*
985 * 2. Poll GRSC/GTSC bits in IEVENT register until both are set
986 */
987 etsec_write(sc, IMASK, sc->sc_imask | imask_gsc_mask);
988
989 u_int timo = 1000;
990 uint32_t ievent = etsec_read(sc, IEVENT);
991 while ((ievent & imask_gsc_mask) != imask_gsc_mask) {
992 if (--timo == 0) {
993 aprint_error_dev(sc->sc_dev,
994 "WARNING: "
995 "request to stop failed (IEVENT=%#x)\n",
996 ievent);
997 break;
998 }
999 delay(10);
1000 ievent = etsec_read(sc, IEVENT);
1001 }
1002 }
1003
1004 /*
1005 * Now reset the controller.
1006 *
1007 * 3. Set SOFT_RESET bit in MACCFG1 register
1008 * 4. Clear SOFT_RESET bit in MACCFG1 register
1009 */
1010 etsec_write(sc, MACCFG1, MACCFG1_SOFT_RESET);
1011 etsec_write(sc, MACCFG1, 0);
1012 etsec_write(sc, IMASK, 0);
1013 etsec_write(sc, IEVENT, ~0);
1014 sc->sc_imask = 0;
1015 ifp->if_flags &= ~IFF_RUNNING;
1016
1017 uint32_t tbipa = etsec_read(sc, TBIPA);
1018 if (tbipa == sc->sc_phy_addr) {
1019 aprint_normal_dev(sc->sc_dev, "relocating TBI\n");
1020 etsec_write(sc, TBIPA, 0x1f);
1021 }
1022 uint32_t miimcfg = etsec_read(sc, MIIMCFG);
1023 etsec_write(sc, MIIMCFG, MIIMCFG_RESET);
1024 etsec_write(sc, MIIMCFG, miimcfg);
1025
1026 /*
1027 * Let's consume any remaing transmitted packets. And if we are
1028 * disabling the interface, purge ourselves of any untransmitted
1029 * packets. But don't consume any received packets, just drop them.
1030 * If we aren't disabling the interface, save the mbufs in the
1031 * receive queue for reuse.
1032 */
1033 pq3etsec_rxq_purge(sc, &sc->sc_rxq, disable);
1034 pq3etsec_txq_consume(sc, &sc->sc_txq);
1035 if (disable) {
1036 pq3etsec_txq_purge(sc, &sc->sc_txq);
1037 IFQ_PURGE(&ifp->if_snd);
1038 }
1039 }
1040
1041 static void
1042 pq3etsec_ifwatchdog(struct ifnet *ifp)
1043 {
1044 }
1045
1046 static void
1047 pq3etsec_mc_setup(
1048 struct pq3etsec_softc *sc)
1049 {
1050 struct ethercom * const ec = &sc->sc_ec;
1051 struct ifnet * const ifp = &sc->sc_if;
1052 struct ether_multi *enm;
1053 struct ether_multistep step;
1054 uint32_t *gaddr = sc->sc_gaddr + ((sc->sc_rctrl & RCTRL_GHTX) ? 0 : 8);
1055 const uint32_t crc_shift = 32 - ((sc->sc_rctrl & RCTRL_GHTX) ? 9 : 8);
1056
1057 memset(sc->sc_gaddr, 0, sizeof(sc->sc_gaddr));
1058 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1059
1060 ifp->if_flags &= ~IFF_ALLMULTI;
1061
1062 ETHER_FIRST_MULTI(step, ec, enm);
1063 for (u_int i = 0; enm != NULL; ) {
1064 const char *addr = enm->enm_addrlo;
1065 if (memcmp(addr, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1066 ifp->if_flags |= IFF_ALLMULTI;
1067 memset(gaddr, 0xff, 32 << (crc_shift & 1));
1068 memset(sc->sc_macaddrs, 0, sizeof(sc->sc_macaddrs));
1069 break;
1070 }
1071 if ((sc->sc_rctrl & RCTRL_EMEN)
1072 && i < __arraycount(sc->sc_macaddrs)) {
1073 sc->sc_macaddrs[i++] = pq3etsec_macaddr_create(addr);
1074 } else {
1075 uint32_t crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
1076 #if 0
1077 printf("%s: %s: crc=%#x: %#x: [%u,%u]=%#x\n", __func__,
1078 ether_sprintf(addr), crc,
1079 crc >> crc_shift,
1080 crc >> (crc_shift + 5),
1081 (crc >> crc_shift) & 31,
1082 1 << (((crc >> crc_shift) & 31) ^ 31));
1083 #endif
1084 /*
1085 * The documentation doesn't completely follow PowerPC
1086 * bit order. The BE crc32 (H) for 01:00:5E:00:00:01
1087 * is 0x7fa32d9b. By empirical testing, the
1088 * corresponding hash bit is word 3, bit 31 (ppc bit
1089 * order). Since 3 << 31 | 31 is 0x7f, we deduce
1090 * H[0:2] selects the register while H[3:7] selects
1091 * the bit (ppc bit order).
1092 */
1093 crc >>= crc_shift;
1094 gaddr[crc / 32] |= 1 << ((crc & 31) ^ 31);
1095 }
1096 ETHER_NEXT_MULTI(step, enm);
1097 }
1098 for (u_int i = 0; i < 8; i++) {
1099 etsec_write(sc, IGADDR(i), sc->sc_gaddr[i]);
1100 etsec_write(sc, GADDR(i), sc->sc_gaddr[i+8]);
1101 #if 0
1102 if (sc->sc_gaddr[i] || sc->sc_gaddr[i+8])
1103 printf("%s: IGADDR%u(%#x)=%#x GADDR%u(%#x)=%#x\n", __func__,
1104 i, IGADDR(i), etsec_read(sc, IGADDR(i)),
1105 i, GADDR(i), etsec_read(sc, GADDR(i)));
1106 #endif
1107 }
1108 for (u_int i = 0; i < __arraycount(sc->sc_macaddrs); i++) {
1109 uint64_t macaddr = sc->sc_macaddrs[i];
1110 etsec_write(sc, MACnADDR1(i), (uint32_t)(macaddr >> 32));
1111 etsec_write(sc, MACnADDR2(i), (uint32_t)(macaddr >> 0));
1112 #if 0
1113 if (macaddr)
1114 printf("%s: MAC%02uADDR2(%08x)=%#x MAC%02uADDR2(%#x)=%08x\n", __func__,
1115 i+1, MACnADDR1(i), etsec_read(sc, MACnADDR1(i)),
1116 i+1, MACnADDR2(i), etsec_read(sc, MACnADDR2(i)));
1117 #endif
1118 }
1119 }
1120
1121 static int
1122 pq3etsec_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
1123 {
1124 struct pq3etsec_softc *sc = ifp->if_softc;
1125 struct ifreq * const ifr = data;
1126 const int s = splnet();
1127 int error;
1128
1129 switch (cmd) {
1130 case SIOCSIFMEDIA:
1131 case SIOCGIFMEDIA:
1132 /* Flow control requires full-duplex mode. */
1133 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1134 (ifr->ifr_media & IFM_FDX) == 0)
1135 ifr->ifr_media &= ~IFM_ETH_FMASK;
1136 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1137 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1138 /* We can do both TXPAUSE and RXPAUSE. */
1139 ifr->ifr_media |=
1140 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1141 }
1142 }
1143 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1144 break;
1145
1146 default:
1147 error = ether_ioctl(ifp, cmd, data);
1148 if (error != ENETRESET)
1149 break;
1150
1151 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1152 error = 0;
1153 if (ifp->if_flags & IFF_RUNNING)
1154 pq3etsec_mc_setup(sc);
1155 break;
1156 }
1157 error = pq3etsec_ifinit(ifp);
1158 break;
1159 }
1160
1161 splx(s);
1162 return error;
1163 }
1164
1165 static void
1166 pq3etsec_rxq_desc_presync(
1167 struct pq3etsec_softc *sc,
1168 struct pq3etsec_rxqueue *rxq,
1169 volatile struct rxbd *rxbd,
1170 size_t count)
1171 {
1172 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1173 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1174 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1175 }
1176
1177 static void
1178 pq3etsec_rxq_desc_postsync(
1179 struct pq3etsec_softc *sc,
1180 struct pq3etsec_rxqueue *rxq,
1181 volatile struct rxbd *rxbd,
1182 size_t count)
1183 {
1184 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
1185 (rxbd - rxq->rxq_first) * sizeof(*rxbd), count * sizeof(*rxbd),
1186 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1187 }
1188
1189 static void
1190 pq3etsec_txq_desc_presync(
1191 struct pq3etsec_softc *sc,
1192 struct pq3etsec_txqueue *txq,
1193 volatile struct txbd *txbd,
1194 size_t count)
1195 {
1196 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1197 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1198 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1199 }
1200
1201 static void
1202 pq3etsec_txq_desc_postsync(
1203 struct pq3etsec_softc *sc,
1204 struct pq3etsec_txqueue *txq,
1205 volatile struct txbd *txbd,
1206 size_t count)
1207 {
1208 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
1209 (txbd - txq->txq_first) * sizeof(*txbd), count * sizeof(*txbd),
1210 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1211 }
1212
1213 static bus_dmamap_t
1214 pq3etsec_mapcache_get(
1215 struct pq3etsec_softc *sc,
1216 struct pq3etsec_mapcache *dmc)
1217 {
1218 KASSERT(dmc->dmc_nmaps > 0);
1219 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
1220 return dmc->dmc_maps[--dmc->dmc_nmaps];
1221 }
1222
1223 static void
1224 pq3etsec_mapcache_put(
1225 struct pq3etsec_softc *sc,
1226 struct pq3etsec_mapcache *dmc,
1227 bus_dmamap_t map)
1228 {
1229 KASSERT(map != NULL);
1230 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
1231 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
1232 }
1233
1234 static void
1235 pq3etsec_mapcache_destroy(
1236 struct pq3etsec_softc *sc,
1237 struct pq3etsec_mapcache *dmc)
1238 {
1239 const size_t dmc_size =
1240 offsetof(struct pq3etsec_mapcache, dmc_maps[dmc->dmc_maxmaps]);
1241
1242 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
1243 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
1244 }
1245 kmem_intr_free(dmc, dmc_size);
1246 }
1247
1248 static int
1249 pq3etsec_mapcache_create(
1250 struct pq3etsec_softc *sc,
1251 struct pq3etsec_mapcache **dmc_p,
1252 size_t maxmaps,
1253 size_t maxmapsize,
1254 size_t maxseg)
1255 {
1256 const size_t dmc_size =
1257 offsetof(struct pq3etsec_mapcache, dmc_maps[maxmaps]);
1258 struct pq3etsec_mapcache * const dmc =
1259 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
1260
1261 dmc->dmc_maxmaps = maxmaps;
1262 dmc->dmc_nmaps = maxmaps;
1263 dmc->dmc_maxmapsize = maxmapsize;
1264 dmc->dmc_maxseg = maxseg;
1265
1266 for (u_int i = 0; i < maxmaps; i++) {
1267 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
1268 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
1269 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
1270 if (error) {
1271 aprint_error_dev(sc->sc_dev,
1272 "failed to creat dma map cache "
1273 "entry %u of %zu: %d\n",
1274 i, maxmaps, error);
1275 while (i-- > 0) {
1276 bus_dmamap_destroy(sc->sc_dmat,
1277 dmc->dmc_maps[i]);
1278 }
1279 kmem_intr_free(dmc, dmc_size);
1280 return error;
1281 }
1282 KASSERT(dmc->dmc_maps[i] != NULL);
1283 }
1284
1285 *dmc_p = dmc;
1286
1287 return 0;
1288 }
1289
1290 #if 0
1291 static void
1292 pq3etsec_dmamem_free(
1293 bus_dma_tag_t dmat,
1294 size_t map_size,
1295 bus_dma_segment_t *seg,
1296 bus_dmamap_t map,
1297 void *kvap)
1298 {
1299 bus_dmamap_destroy(dmat, map);
1300 bus_dmamem_unmap(dmat, kvap, map_size);
1301 bus_dmamem_free(dmat, seg, 1);
1302 }
1303 #endif
1304
1305 static int
1306 pq3etsec_dmamem_alloc(
1307 bus_dma_tag_t dmat,
1308 size_t map_size,
1309 bus_dma_segment_t *seg,
1310 bus_dmamap_t *map,
1311 void **kvap)
1312 {
1313 int error;
1314 int nseg;
1315
1316 *kvap = NULL;
1317 *map = NULL;
1318
1319 error = bus_dmamem_alloc(dmat, map_size, PAGE_SIZE, 0,
1320 seg, 1, &nseg, 0);
1321 if (error)
1322 return error;
1323
1324 KASSERT(nseg == 1);
1325
1326 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap,
1327 BUS_DMA_COHERENT);
1328 if (error == 0) {
1329 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
1330 map);
1331 if (error == 0) {
1332 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
1333 NULL, 0);
1334 if (error == 0)
1335 return 0;
1336 bus_dmamap_destroy(dmat, *map);
1337 *map = NULL;
1338 }
1339 bus_dmamem_unmap(dmat, *kvap, map_size);
1340 *kvap = NULL;
1341 }
1342 bus_dmamem_free(dmat, seg, nseg);
1343 return 0;
1344 }
1345
1346 static struct mbuf *
1347 pq3etsec_rx_buf_alloc(
1348 struct pq3etsec_softc *sc)
1349 {
1350 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
1351 if (m == NULL) {
1352 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
1353 return NULL;
1354 }
1355 MCLGET(m, M_DONTWAIT);
1356 if ((m->m_flags & M_EXT) == 0) {
1357 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
1358 m_freem(m);
1359 return NULL;
1360 }
1361 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1362
1363 bus_dmamap_t map = pq3etsec_mapcache_get(sc, sc->sc_rx_mapcache);
1364 if (map == NULL) {
1365 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
1366 m_freem(m);
1367 return NULL;
1368 }
1369 M_SETCTX(m, map);
1370 m->m_len = m->m_pkthdr.len = MCLBYTES;
1371 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1372 BUS_DMA_READ|BUS_DMA_NOWAIT);
1373 if (error) {
1374 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
1375 error);
1376 M_SETCTX(m, NULL);
1377 m_freem(m);
1378 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1379 return NULL;
1380 }
1381 KASSERT(map->dm_mapsize == MCLBYTES);
1382 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1383 BUS_DMASYNC_PREREAD);
1384
1385 return m;
1386 }
1387
1388 static void
1389 pq3etsec_rx_map_unload(
1390 struct pq3etsec_softc *sc,
1391 struct mbuf *m)
1392 {
1393 KASSERT(m);
1394 for (; m != NULL; m = m->m_next) {
1395 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1396 KASSERT(map);
1397 KASSERT(map->dm_mapsize == MCLBYTES);
1398 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
1399 BUS_DMASYNC_POSTREAD);
1400 bus_dmamap_unload(sc->sc_dmat, map);
1401 pq3etsec_mapcache_put(sc, sc->sc_rx_mapcache, map);
1402 M_SETCTX(m, NULL);
1403 }
1404 }
1405
1406 static bool
1407 pq3etsec_rxq_produce(
1408 struct pq3etsec_softc *sc,
1409 struct pq3etsec_rxqueue *rxq)
1410 {
1411 volatile struct rxbd *producer = rxq->rxq_producer;
1412 #if 0
1413 size_t inuse = rxq->rxq_inuse;
1414 #endif
1415 while (rxq->rxq_inuse < rxq->rxq_threshold) {
1416 struct mbuf *m;
1417 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
1418 if (m == NULL) {
1419 m = pq3etsec_rx_buf_alloc(sc);
1420 if (m == NULL) {
1421 printf("%s: pq3etsec_rx_buf_alloc failed\n", __func__);
1422 break;
1423 }
1424 }
1425 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1426 KASSERT(map);
1427
1428 #ifdef ETSEC_DEBUG
1429 KASSERT(rxq->rxq_mbufs[producer-rxq->rxq_first] == NULL);
1430 rxq->rxq_mbufs[producer-rxq->rxq_first] = m;
1431 #endif
1432
1433 /* rxbd_len is write-only by the ETSEC */
1434 producer->rxbd_bufptr = map->dm_segs[0].ds_addr;
1435 membar_producer();
1436 producer->rxbd_flags |= RXBD_E;
1437 if (__predict_false(rxq->rxq_mhead == NULL)) {
1438 KASSERT(producer == rxq->rxq_consumer);
1439 rxq->rxq_mconsumer = m;
1440 }
1441 *rxq->rxq_mtail = m;
1442 rxq->rxq_mtail = &m->m_next;
1443 m->m_len = MCLBYTES;
1444 m->m_next = NULL;
1445 rxq->rxq_inuse++;
1446 if (++producer == rxq->rxq_last) {
1447 membar_producer();
1448 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1449 rxq->rxq_last - rxq->rxq_producer);
1450 producer = rxq->rxq_producer = rxq->rxq_first;
1451 }
1452 }
1453 if (producer != rxq->rxq_producer) {
1454 membar_producer();
1455 pq3etsec_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1456 producer - rxq->rxq_producer);
1457 rxq->rxq_producer = producer;
1458 }
1459 uint32_t qhlt = etsec_read(sc, RSTAT) & RSTAT_QHLT;
1460 if (qhlt) {
1461 KASSERT(qhlt & rxq->rxq_qmask);
1462 sc->sc_ev_rx_stall.ev_count++;
1463 etsec_write(sc, RSTAT, RSTAT_QHLT & rxq->rxq_qmask);
1464 }
1465 #if 0
1466 aprint_normal_dev(sc->sc_dev,
1467 "%s: buffers inuse went from %zu to %zu\n",
1468 __func__, inuse, rxq->rxq_inuse);
1469 #endif
1470 return true;
1471 }
1472
1473 static bool
1474 pq3etsec_rx_offload(
1475 struct pq3etsec_softc *sc,
1476 struct mbuf *m,
1477 const struct rxfcb *fcb)
1478 {
1479 if (fcb->rxfcb_flags & RXFCB_VLN) {
1480 VLAN_INPUT_TAG(&sc->sc_if, m, fcb->rxfcb_vlctl,
1481 m_freem(m); return false);
1482 }
1483 if ((fcb->rxfcb_flags & RXFCB_IP) == 0
1484 || (fcb->rxfcb_flags & (RXFCB_CIP|RXFCB_CTU)) == 0)
1485 return true;
1486 int csum_flags = 0;
1487 if ((fcb->rxfcb_flags & (RXFCB_IP6|RXFCB_CIP)) == RXFCB_CIP) {
1488 csum_flags |= M_CSUM_IPv4;
1489 if (fcb->rxfcb_flags & RXFCB_EIP)
1490 csum_flags |= M_CSUM_IPv4_BAD;
1491 }
1492 if ((fcb->rxfcb_flags & RXFCB_CTU) == RXFCB_CTU) {
1493 int ipv_flags;
1494 if (fcb->rxfcb_flags & RXFCB_IP6)
1495 ipv_flags = M_CSUM_TCPv6|M_CSUM_UDPv6;
1496 else
1497 ipv_flags = M_CSUM_TCPv4|M_CSUM_UDPv4;
1498 if (fcb->rxfcb_pro == IPPROTO_TCP) {
1499 csum_flags |= (M_CSUM_TCPv4|M_CSUM_TCPv6) & ipv_flags;
1500 } else {
1501 csum_flags |= (M_CSUM_UDPv4|M_CSUM_UDPv6) & ipv_flags;
1502 }
1503 if (fcb->rxfcb_flags & RXFCB_ETU)
1504 csum_flags |= M_CSUM_TCP_UDP_BAD;
1505 }
1506
1507 m->m_pkthdr.csum_flags = csum_flags;
1508 return true;
1509 }
1510
1511 static void
1512 pq3etsec_rx_input(
1513 struct pq3etsec_softc *sc,
1514 struct mbuf *m,
1515 uint16_t rxbd_flags)
1516 {
1517 struct ifnet * const ifp = &sc->sc_if;
1518
1519 pq3etsec_rx_map_unload(sc, m);
1520
1521 if ((sc->sc_rctrl & RCTRL_PRSDEP) != RCTRL_PRSDEP_OFF) {
1522 struct rxfcb fcb = *mtod(m, struct rxfcb *);
1523 if (!pq3etsec_rx_offload(sc, m, &fcb))
1524 return;
1525 }
1526 m_adj(m, sc->sc_rx_adjlen);
1527
1528 if (rxbd_flags & RXBD_M)
1529 m->m_flags |= M_PROMISC;
1530 if (rxbd_flags & RXBD_BC)
1531 m->m_flags |= M_BCAST;
1532 if (rxbd_flags & RXBD_MC)
1533 m->m_flags |= M_MCAST;
1534 m->m_flags |= M_HASFCS;
1535 m->m_pkthdr.rcvif = &sc->sc_if;
1536
1537 ifp->if_ipackets++;
1538 ifp->if_ibytes += m->m_pkthdr.len;
1539
1540 /*
1541 * Let's give it to the network subsystm to deal with.
1542 */
1543 int s = splnet();
1544 bpf_mtap(ifp, m);
1545 (*ifp->if_input)(ifp, m);
1546 splx(s);
1547 }
1548
1549 static void
1550 pq3etsec_rxq_consume(
1551 struct pq3etsec_softc *sc,
1552 struct pq3etsec_rxqueue *rxq)
1553 {
1554 struct ifnet * const ifp = &sc->sc_if;
1555 volatile struct rxbd *consumer = rxq->rxq_consumer;
1556 size_t rxconsumed = 0;
1557
1558 etsec_write(sc, RSTAT, RSTAT_RXF & rxq->rxq_qmask);
1559
1560 for (;;) {
1561 if (consumer == rxq->rxq_producer) {
1562 rxq->rxq_consumer = consumer;
1563 rxq->rxq_inuse -= rxconsumed;
1564 KASSERT(rxq->rxq_inuse == 0);
1565 return;
1566 }
1567 pq3etsec_rxq_desc_postsync(sc, rxq, consumer, 1);
1568 const uint16_t rxbd_flags = consumer->rxbd_flags;
1569 if (rxbd_flags & RXBD_E) {
1570 rxq->rxq_consumer = consumer;
1571 rxq->rxq_inuse -= rxconsumed;
1572 return;
1573 }
1574 KASSERT(rxq->rxq_mconsumer != NULL);
1575 #ifdef ETSEC_DEBUG
1576 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1577 #endif
1578 #if 0
1579 printf("%s: rxdb[%u]: flags=%#x len=%#x: %08x %08x %08x %08x\n",
1580 __func__,
1581 consumer - rxq->rxq_first, rxbd_flags, consumer->rxbd_len,
1582 mtod(rxq->rxq_mconsumer, int *)[0],
1583 mtod(rxq->rxq_mconsumer, int *)[1],
1584 mtod(rxq->rxq_mconsumer, int *)[2],
1585 mtod(rxq->rxq_mconsumer, int *)[3]);
1586 #endif
1587 /*
1588 * We own this packet again. Clear all flags except wrap.
1589 */
1590 rxconsumed++;
1591 consumer->rxbd_flags = rxbd_flags & (RXBD_W|RXBD_I);
1592
1593 /*
1594 * If this descriptor has the LAST bit set and no errors,
1595 * it's a valid input packet.
1596 */
1597 if ((rxbd_flags & (RXBD_L|RXBD_ERRORS)) == RXBD_L) {
1598 size_t rxbd_len = consumer->rxbd_len;
1599 struct mbuf *m = rxq->rxq_mhead;
1600 struct mbuf *m_last = rxq->rxq_mconsumer;
1601 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1602 rxq->rxq_mtail = &rxq->rxq_mhead;
1603 rxq->rxq_mconsumer = rxq->rxq_mhead;
1604 m_last->m_next = NULL;
1605 m_last->m_len = rxbd_len & (MCLBYTES - 1);
1606 m->m_pkthdr.len = rxbd_len;
1607 pq3etsec_rx_input(sc, m, rxbd_flags);
1608 } else if (rxbd_flags & RXBD_L) {
1609 KASSERT(rxbd_flags & RXBD_ERRORS);
1610 struct mbuf *m;
1611 /*
1612 * We encountered an error, take the mbufs and add
1613 * then to the rx bufcache so we can reuse them.
1614 */
1615 ifp->if_ierrors++;
1616 for (m = rxq->rxq_mhead;
1617 m != rxq->rxq_mconsumer;
1618 m = m->m_next) {
1619 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1620 }
1621 m = rxq->rxq_mconsumer;
1622 if ((rxq->rxq_mhead = m->m_next) == NULL)
1623 rxq->rxq_mtail = &rxq->rxq_mhead;
1624 rxq->rxq_mconsumer = m->m_next;
1625 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1626 } else {
1627 rxq->rxq_mconsumer = rxq->rxq_mconsumer->m_next;
1628 }
1629 #ifdef ETSEC_DEBUG
1630 rxq->rxq_mbufs[consumer - rxq->rxq_first] = NULL;
1631 #endif
1632
1633 /*
1634 * Wrap at the last entry!
1635 */
1636 if (rxbd_flags & RXBD_W) {
1637 KASSERT(consumer + 1 == rxq->rxq_last);
1638 consumer = rxq->rxq_first;
1639 } else {
1640 consumer++;
1641 }
1642 #ifdef ETSEC_DEBUG
1643 KASSERT(rxq->rxq_mbufs[consumer - rxq->rxq_first] == rxq->rxq_mconsumer);
1644 #endif
1645 }
1646 }
1647
1648 static void
1649 pq3etsec_rxq_purge(
1650 struct pq3etsec_softc *sc,
1651 struct pq3etsec_rxqueue *rxq,
1652 bool discard)
1653 {
1654 struct mbuf *m;
1655
1656 if ((m = rxq->rxq_mhead) != NULL) {
1657 #ifdef ETSEC_DEBUG
1658 memset(rxq->rxq_mbufs, 0, sizeof(rxq->rxq_mbufs));
1659 #endif
1660
1661 if (discard) {
1662 pq3etsec_rx_map_unload(sc, m);
1663 m_freem(m);
1664 } else {
1665 while (m != NULL) {
1666 struct mbuf *m0 = m->m_next;
1667 m->m_next = NULL;
1668 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1669 m = m0;
1670 }
1671 }
1672
1673 }
1674
1675 rxq->rxq_mconsumer = NULL;
1676 rxq->rxq_mhead = NULL;
1677 rxq->rxq_mtail = &rxq->rxq_mhead;
1678 rxq->rxq_inuse = 0;
1679 }
1680
1681 static void
1682 pq3etsec_rxq_reset(
1683 struct pq3etsec_softc *sc,
1684 struct pq3etsec_rxqueue *rxq)
1685 {
1686 /*
1687 * sync all the descriptors
1688 */
1689 pq3etsec_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1690 rxq->rxq_last - rxq->rxq_first);
1691
1692 /*
1693 * Make sure we own all descriptors in the ring.
1694 */
1695 volatile struct rxbd *rxbd;
1696 for (rxbd = rxq->rxq_first; rxbd < rxq->rxq_last - 1; rxbd++) {
1697 rxbd->rxbd_flags = RXBD_I;
1698 }
1699
1700 /*
1701 * Last descriptor has the wrap flag.
1702 */
1703 rxbd->rxbd_flags = RXBD_W|RXBD_I;
1704
1705 /*
1706 * Reset the producer consumer indexes.
1707 */
1708 rxq->rxq_consumer = rxq->rxq_first;
1709 rxq->rxq_producer = rxq->rxq_first;
1710 rxq->rxq_inuse = 0;
1711 if (rxq->rxq_threshold < ETSEC_MINRXMBUFS)
1712 rxq->rxq_threshold = ETSEC_MINRXMBUFS;
1713
1714 sc->sc_imask |= IEVENT_RXF|IEVENT_BSY;
1715
1716 /*
1717 * Restart the transmit at the first descriptor
1718 */
1719 etsec_write(sc, rxq->rxq_reg_rbase, rxq->rxq_descmap->dm_segs->ds_addr);
1720 }
1721
1722 static int
1723 pq3etsec_rxq_attach(
1724 struct pq3etsec_softc *sc,
1725 struct pq3etsec_rxqueue *rxq,
1726 u_int qno)
1727 {
1728 size_t map_size = PAGE_SIZE;
1729 size_t desc_count = map_size / sizeof(struct rxbd);
1730 int error;
1731 void *descs;
1732
1733 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1734 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1735 if (error)
1736 return error;
1737
1738 memset(descs, 0, map_size);
1739 rxq->rxq_first = descs;
1740 rxq->rxq_last = rxq->rxq_first + desc_count;
1741 rxq->rxq_consumer = descs;
1742 rxq->rxq_producer = descs;
1743
1744 pq3etsec_rxq_purge(sc, rxq, true);
1745 pq3etsec_rxq_reset(sc, rxq);
1746
1747 rxq->rxq_reg_rbase = RBASEn(qno);
1748 rxq->rxq_qmask = RSTAT_QHLTn(qno) | RSTAT_RXFn(qno);
1749
1750 return 0;
1751 }
1752
1753 static bool
1754 pq3etsec_txq_active_p(
1755 struct pq3etsec_softc * const sc,
1756 struct pq3etsec_txqueue *txq)
1757 {
1758 return !IF_IS_EMPTY(&txq->txq_mbufs);
1759 }
1760
1761 static bool
1762 pq3etsec_txq_fillable_p(
1763 struct pq3etsec_softc * const sc,
1764 struct pq3etsec_txqueue *txq)
1765 {
1766 return txq->txq_free >= txq->txq_threshold;
1767 }
1768
1769 static int
1770 pq3etsec_txq_attach(
1771 struct pq3etsec_softc *sc,
1772 struct pq3etsec_txqueue *txq,
1773 u_int qno)
1774 {
1775 size_t map_size = PAGE_SIZE;
1776 size_t desc_count = map_size / sizeof(struct txbd);
1777 int error;
1778 void *descs;
1779
1780 error = pq3etsec_dmamem_alloc(sc->sc_dmat, map_size,
1781 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1782 if (error)
1783 return error;
1784
1785 memset(descs, 0, map_size);
1786 txq->txq_first = descs;
1787 txq->txq_last = txq->txq_first + desc_count;
1788 txq->txq_consumer = descs;
1789 txq->txq_producer = descs;
1790
1791 IFQ_SET_MAXLEN(&txq->txq_mbufs, ETSEC_MAXTXMBUFS);
1792
1793 txq->txq_reg_tbase = TBASEn(qno);
1794 txq->txq_qmask = TSTAT_THLTn(qno) | TSTAT_TXFn(qno);
1795
1796 pq3etsec_txq_reset(sc, txq);
1797
1798 return 0;
1799 }
1800
1801 static int
1802 pq3etsec_txq_map_load(
1803 struct pq3etsec_softc *sc,
1804 struct pq3etsec_txqueue *txq,
1805 struct mbuf *m)
1806 {
1807 bus_dmamap_t map;
1808 int error;
1809
1810 map = M_GETCTX(m, bus_dmamap_t);
1811 if (map != NULL)
1812 return 0;
1813
1814 map = pq3etsec_mapcache_get(sc, sc->sc_tx_mapcache);
1815 if (map == NULL)
1816 return ENOMEM;
1817
1818 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1819 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1820 if (error)
1821 return error;
1822
1823 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1824 BUS_DMASYNC_PREWRITE);
1825 M_SETCTX(m, map);
1826 return 0;
1827 }
1828
1829 static void
1830 pq3etsec_txq_map_unload(
1831 struct pq3etsec_softc *sc,
1832 struct pq3etsec_txqueue *txq,
1833 struct mbuf *m)
1834 {
1835 KASSERT(m);
1836 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1837 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1838 BUS_DMASYNC_POSTWRITE);
1839 bus_dmamap_unload(sc->sc_dmat, map);
1840 pq3etsec_mapcache_put(sc, sc->sc_tx_mapcache, map);
1841 }
1842
1843 static bool
1844 pq3etsec_txq_produce(
1845 struct pq3etsec_softc *sc,
1846 struct pq3etsec_txqueue *txq,
1847 struct mbuf *m)
1848 {
1849 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1850
1851 if (map->dm_nsegs > txq->txq_free)
1852 return false;
1853
1854 /*
1855 * TCP Offload flag must be set in the first descriptor.
1856 */
1857 volatile struct txbd *producer = txq->txq_producer;
1858 uint16_t last_flags = TXBD_L;
1859 uint16_t first_flags = TXBD_R
1860 | ((m->m_flags & M_HASFCB) ? TXBD_TOE : 0);
1861
1862 /*
1863 * If we've produced enough descriptors without consuming any
1864 * we need to ask for an interrupt to reclaim some.
1865 */
1866 txq->txq_lastintr += map->dm_nsegs;
1867 if (txq->txq_lastintr >= txq->txq_threshold
1868 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1869 txq->txq_lastintr = 0;
1870 last_flags |= TXBD_I;
1871 }
1872
1873 #ifdef ETSEC_DEBUG
1874 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1875 #endif
1876 KASSERT(producer != txq->txq_last);
1877 producer->txbd_bufptr = map->dm_segs[0].ds_addr;
1878 producer->txbd_len = map->dm_segs[0].ds_len;
1879
1880 if (map->dm_nsegs > 1) {
1881 volatile struct txbd *start = producer + 1;
1882 size_t count = map->dm_nsegs - 1;
1883 for (u_int i = 1; i < map->dm_nsegs; i++) {
1884 if (__predict_false(++producer == txq->txq_last)) {
1885 producer = txq->txq_first;
1886 if (start < txq->txq_last) {
1887 pq3etsec_txq_desc_presync(sc, txq,
1888 start, txq->txq_last - start);
1889 count -= txq->txq_last - start;
1890 }
1891 start = txq->txq_first;
1892 }
1893 #ifdef ETSEC_DEBUG
1894 KASSERT(txq->txq_lmbufs[producer - txq->txq_first] == NULL);
1895 #endif
1896 producer->txbd_bufptr = map->dm_segs[i].ds_addr;
1897 producer->txbd_len = map->dm_segs[i].ds_len;
1898 producer->txbd_flags = TXBD_R
1899 | (producer->txbd_flags & TXBD_W)
1900 | (i == map->dm_nsegs - 1 ? last_flags : 0);
1901 #if 0
1902 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__, producer - txq->txq_first,
1903 producer->txbd_flags, producer->txbd_len, producer->txbd_bufptr);
1904 #endif
1905 }
1906 pq3etsec_txq_desc_presync(sc, txq, start, count);
1907 } else {
1908 first_flags |= last_flags;
1909 }
1910
1911 membar_producer();
1912 txq->txq_producer->txbd_flags =
1913 first_flags | (txq->txq_producer->txbd_flags & TXBD_W);
1914 #if 0
1915 printf("%s: txbd[%u]=%#x/%u/%#x\n", __func__,
1916 txq->txq_producer - txq->txq_first, txq->txq_producer->txbd_flags,
1917 txq->txq_producer->txbd_len, txq->txq_producer->txbd_bufptr);
1918 #endif
1919 pq3etsec_txq_desc_presync(sc, txq, txq->txq_producer, 1);
1920
1921 /*
1922 * Reduce free count by the number of segments we consumed.
1923 */
1924 txq->txq_free -= map->dm_nsegs;
1925 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1926 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txbd_flags & TXBD_L) == 0);
1927 KASSERT(producer->txbd_flags & TXBD_L);
1928 #ifdef ETSEC_DEBUG
1929 txq->txq_lmbufs[producer - txq->txq_first] = m;
1930 #endif
1931
1932 #if 0
1933 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%u..%u)\n",
1934 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1935 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1936 #endif
1937
1938 if (++producer == txq->txq_last)
1939 txq->txq_producer = txq->txq_first;
1940 else
1941 txq->txq_producer = producer;
1942 IF_ENQUEUE(&txq->txq_mbufs, m);
1943
1944 /*
1945 * Restart the transmitter.
1946 */
1947 etsec_write(sc, TSTAT, txq->txq_qmask & TSTAT_THLT); /* W1C */
1948
1949 return true;
1950 }
1951
1952 static void
1953 pq3etsec_tx_offload(
1954 struct pq3etsec_softc *sc,
1955 struct pq3etsec_txqueue *txq,
1956 struct mbuf **mp)
1957 {
1958 struct mbuf *m = *mp;
1959 u_int csum_flags = m->m_pkthdr.csum_flags;
1960 struct m_tag *vtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m);
1961
1962 KASSERT(m->m_flags & M_PKTHDR);
1963
1964 /*
1965 * Let see if we are doing any offload first.
1966 */
1967 if (csum_flags == 0 && vtag == 0) {
1968 m->m_flags &= ~M_HASFCB;
1969 return;
1970 }
1971
1972 uint16_t flags = 0;
1973 if (csum_flags & M_CSUM_IP) {
1974 flags |= TXFCB_IP
1975 | ((csum_flags & M_CSUM_IP6) ? TXFCB_IP6 : 0)
1976 | ((csum_flags & M_CSUM_TUP) ? TXFCB_TUP : 0)
1977 | ((csum_flags & M_CSUM_UDP) ? TXFCB_UDP : 0)
1978 | ((csum_flags & M_CSUM_CIP) ? TXFCB_CIP : 0)
1979 | ((csum_flags & M_CSUM_CTU) ? TXFCB_CTU : 0);
1980 }
1981 if (vtag) {
1982 flags |= TXFCB_VLN;
1983 }
1984 if (flags == 0) {
1985 m->m_flags &= ~M_HASFCB;
1986 return;
1987 }
1988
1989 struct txfcb fcb;
1990 fcb.txfcb_flags = flags;
1991 if (csum_flags & M_CSUM_IPv4)
1992 fcb.txfcb_l4os = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
1993 else
1994 fcb.txfcb_l4os = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1995 fcb.txfcb_l3os = ETHER_HDR_LEN;
1996 fcb.txfcb_phcs = 0;
1997 fcb.txfcb_vlctl = vtag ? VLAN_TAG_VALUE(vtag) & 0xffff : 0;
1998
1999 #if 0
2000 printf("%s: csum_flags=%#x: txfcb flags=%#x lsos=%u l4os=%u phcs=%u vlctl=%#x\n",
2001 __func__, csum_flags, fcb.txfcb_flags, fcb.txfcb_l3os, fcb.txfcb_l4os,
2002 fcb.txfcb_phcs, fcb.txfcb_vlctl);
2003 #endif
2004
2005 if (M_LEADINGSPACE(m) >= sizeof(fcb)) {
2006 m->m_data -= sizeof(fcb);
2007 m->m_len += sizeof(fcb);
2008 } else if (!(m->m_flags & M_EXT) && MHLEN - m->m_len >= sizeof(fcb)) {
2009 memmove(m->m_pktdat + sizeof(fcb), m->m_data, m->m_len);
2010 m->m_data = m->m_pktdat;
2011 m->m_len += sizeof(fcb);
2012 } else {
2013 struct mbuf *mn;
2014 MGET(mn, M_DONTWAIT, m->m_type);
2015 if (mn == NULL) {
2016 if (csum_flags & M_CSUM_IP4) {
2017 #ifdef INET
2018 ip_undefer_csum(m, ETHER_HDR_LEN,
2019 csum_flags & M_CSUM_IP4);
2020 #else
2021 panic("%s: impossible M_CSUM flags %#x",
2022 device_xname(sc->sc_dev), csum_flags);
2023 #endif
2024 } else if (csum_flags & M_CSUM_IP6) {
2025 #ifdef INET6
2026 ip6_undefer_csum(m, ETHER_HDR_LEN,
2027 csum_flags & M_CSUM_IP6);
2028 #else
2029 panic("%s: impossible M_CSUM flags %#x",
2030 device_xname(sc->sc_dev), csum_flags);
2031 #endif
2032 } else if (vtag) {
2033 }
2034
2035 m->m_flags &= ~M_HASFCB;
2036 return;
2037 }
2038
2039 M_MOVE_PKTHDR(mn, m);
2040 mn->m_next = m;
2041 m = mn;
2042 MH_ALIGN(m, sizeof(fcb));
2043 m->m_len = sizeof(fcb);
2044 *mp = m;
2045 }
2046 m->m_pkthdr.len += sizeof(fcb);
2047 m->m_flags |= M_HASFCB;
2048 *mtod(m, struct txfcb *) = fcb;
2049 return;
2050 }
2051
2052 static bool
2053 pq3etsec_txq_enqueue(
2054 struct pq3etsec_softc *sc,
2055 struct pq3etsec_txqueue *txq)
2056 {
2057 for (;;) {
2058 if (IF_QFULL(&txq->txq_mbufs))
2059 return false;
2060 struct mbuf *m = txq->txq_next;
2061 if (m == NULL) {
2062 int s = splnet();
2063 IFQ_DEQUEUE(&sc->sc_if.if_snd, m);
2064 splx(s);
2065 if (m == NULL)
2066 return true;
2067 M_SETCTX(m, NULL);
2068 pq3etsec_tx_offload(sc, txq, &m);
2069 } else {
2070 txq->txq_next = NULL;
2071 }
2072 int error = pq3etsec_txq_map_load(sc, txq, m);
2073 if (error) {
2074 aprint_error_dev(sc->sc_dev,
2075 "discarded packet due to "
2076 "dmamap load failure: %d\n", error);
2077 m_freem(m);
2078 continue;
2079 }
2080 KASSERT(txq->txq_next == NULL);
2081 if (!pq3etsec_txq_produce(sc, txq, m)) {
2082 txq->txq_next = m;
2083 return false;
2084 }
2085 KASSERT(txq->txq_next == NULL);
2086 }
2087 }
2088
2089 static bool
2090 pq3etsec_txq_consume(
2091 struct pq3etsec_softc *sc,
2092 struct pq3etsec_txqueue *txq)
2093 {
2094 struct ifnet * const ifp = &sc->sc_if;
2095 volatile struct txbd *consumer = txq->txq_consumer;
2096 size_t txfree = 0;
2097
2098 #if 0
2099 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
2100 #endif
2101 etsec_write(sc, TSTAT, TSTAT_TXF & txq->txq_qmask);
2102
2103 for (;;) {
2104 if (consumer == txq->txq_producer) {
2105 txq->txq_consumer = consumer;
2106 txq->txq_free += txfree;
2107 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2108 #if 0
2109 printf("%s: empty: freed %zu descriptors going form %zu to %zu\n",
2110 __func__, txfree, txq->txq_free - txfree, txq->txq_free);
2111 #endif
2112 KASSERT(txq->txq_lastintr == 0);
2113 KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
2114 return true;
2115 }
2116 pq3etsec_txq_desc_postsync(sc, txq, consumer, 1);
2117 const uint16_t txbd_flags = consumer->txbd_flags;
2118 if (txbd_flags & TXBD_R) {
2119 txq->txq_consumer = consumer;
2120 txq->txq_free += txfree;
2121 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
2122 #if 0
2123 printf("%s: freed %zu descriptors\n",
2124 __func__, txfree);
2125 #endif
2126 return pq3etsec_txq_fillable_p(sc, txq);
2127 }
2128
2129 /*
2130 * If this is the last descriptor in the chain, get the
2131 * mbuf, free its dmamap, and free the mbuf chain itself.
2132 */
2133 if (txbd_flags & TXBD_L) {
2134 struct mbuf *m;
2135
2136 IF_DEQUEUE(&txq->txq_mbufs, m);
2137 #ifdef ETSEC_DEBUG
2138 KASSERTMSG(
2139 m == txq->txq_lmbufs[consumer-txq->txq_first],
2140 "%s: %p [%u]: flags %#x m (%p) != %p (%p)",
2141 __func__, consumer, consumer - txq->txq_first,
2142 txbd_flags, m,
2143 &txq->txq_lmbufs[consumer-txq->txq_first],
2144 txq->txq_lmbufs[consumer-txq->txq_first]);
2145 #endif
2146 KASSERT(m);
2147 pq3etsec_txq_map_unload(sc, txq, m);
2148 #if 0
2149 printf("%s: mbuf %p: consumed a %u byte packet\n",
2150 __func__, m, m->m_pkthdr.len);
2151 #endif
2152 if (m->m_flags & M_HASFCB)
2153 m_adj(m, sizeof(struct txfcb));
2154 ifp->if_opackets++;
2155 ifp->if_obytes += m->m_pkthdr.len;
2156 if (m->m_flags & M_MCAST)
2157 ifp->if_omcasts++;
2158 if (txbd_flags & TXBD_ERRORS)
2159 ifp->if_oerrors++;
2160 m_freem(m);
2161 #ifdef ETSEC_DEBUG
2162 txq->txq_lmbufs[consumer - txq->txq_first] = NULL;
2163 #endif
2164 } else {
2165 #ifdef ETSEC_DEBUG
2166 KASSERT(txq->txq_lmbufs[consumer-txq->txq_first] == NULL);
2167 #endif
2168 }
2169
2170 /*
2171 * We own this packet again. Clear all flags except wrap.
2172 */
2173 txfree++;
2174 //consumer->txbd_flags = txbd_flags & TXBD_W;
2175
2176 /*
2177 * Wrap at the last entry!
2178 */
2179 if (txbd_flags & TXBD_W) {
2180 KASSERT(consumer + 1 == txq->txq_last);
2181 consumer = txq->txq_first;
2182 } else {
2183 consumer++;
2184 KASSERT(consumer < txq->txq_last);
2185 }
2186 }
2187 }
2188
2189 static void
2190 pq3etsec_txq_purge(
2191 struct pq3etsec_softc *sc,
2192 struct pq3etsec_txqueue *txq)
2193 {
2194 struct mbuf *m;
2195 KASSERT((etsec_read(sc, MACCFG1) & MACCFG1_TX_EN) == 0);
2196
2197 for (;;) {
2198 IF_DEQUEUE(&txq->txq_mbufs, m);
2199 if (m == NULL)
2200 break;
2201 pq3etsec_txq_map_unload(sc, txq, m);
2202 m_freem(m);
2203 }
2204 if ((m = txq->txq_next) != NULL) {
2205 txq->txq_next = NULL;
2206 pq3etsec_txq_map_unload(sc, txq, m);
2207 m_freem(m);
2208 }
2209 #ifdef ETSEC_DEBUG
2210 memset(txq->txq_lmbufs, 0, sizeof(txq->txq_lmbufs));
2211 #endif
2212 }
2213
2214 static void
2215 pq3etsec_txq_reset(
2216 struct pq3etsec_softc *sc,
2217 struct pq3etsec_txqueue *txq)
2218 {
2219 /*
2220 * sync all the descriptors
2221 */
2222 pq3etsec_txq_desc_postsync(sc, txq, txq->txq_first,
2223 txq->txq_last - txq->txq_first);
2224
2225 /*
2226 * Make sure we own all descriptors in the ring.
2227 */
2228 volatile struct txbd *txbd;
2229 for (txbd = txq->txq_first; txbd < txq->txq_last - 1; txbd++) {
2230 txbd->txbd_flags = 0;
2231 }
2232
2233 /*
2234 * Last descriptor has the wrap flag.
2235 */
2236 txbd->txbd_flags = TXBD_W;
2237
2238 /*
2239 * Reset the producer consumer indexes.
2240 */
2241 txq->txq_consumer = txq->txq_first;
2242 txq->txq_producer = txq->txq_first;
2243 txq->txq_free = txq->txq_last - txq->txq_first - 1;
2244 txq->txq_threshold = txq->txq_free / 2;
2245 txq->txq_lastintr = 0;
2246
2247 /*
2248 * What do we want to get interrupted on?
2249 */
2250 sc->sc_imask |= IEVENT_TXF|IEVENT_TXE;
2251
2252 /*
2253 * Restart the transmit at the first descriptor
2254 */
2255 etsec_write(sc, txq->txq_reg_tbase, txq->txq_descmap->dm_segs->ds_addr);
2256 }
2257
2258 static void
2259 pq3etsec_ifstart(struct ifnet *ifp)
2260 {
2261 struct pq3etsec_softc * const sc = ifp->if_softc;
2262
2263 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2264 softint_schedule(sc->sc_soft_ih);
2265 }
2266
2267 static void
2268 pq3etsec_tx_error(
2269 struct pq3etsec_softc * const sc)
2270 {
2271 struct pq3etsec_txqueue * const txq = &sc->sc_txq;
2272
2273 pq3etsec_txq_consume(sc, txq);
2274
2275 if (pq3etsec_txq_fillable_p(sc, txq))
2276 sc->sc_if.if_flags &= ~IFF_OACTIVE;
2277 if (sc->sc_txerrors & (IEVENT_LC|IEVENT_CRL|IEVENT_XFUN|IEVENT_BABT)) {
2278 } else if (sc->sc_txerrors & IEVENT_EBERR) {
2279 }
2280
2281 if (pq3etsec_txq_active_p(sc, txq))
2282 etsec_write(sc, TSTAT, TSTAT_THLT & txq->txq_qmask);
2283 if (!pq3etsec_txq_enqueue(sc, txq)) {
2284 sc->sc_ev_tx_stall.ev_count++;
2285 sc->sc_if.if_flags |= IFF_OACTIVE;
2286 }
2287
2288 sc->sc_txerrors = 0;
2289 }
2290
2291 int
2292 pq3etsec_tx_intr(void *arg)
2293 {
2294 struct pq3etsec_softc * const sc = arg;
2295
2296 sc->sc_ev_tx_intr.ev_count++;
2297
2298 uint32_t ievent = etsec_read(sc, IEVENT);
2299 ievent &= IEVENT_TXF|IEVENT_TXB;
2300 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2301
2302 #if 0
2303 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2304 __func__, ievent, etsec_read(sc, IMASK));
2305 #endif
2306
2307 if (ievent == 0)
2308 return 0;
2309
2310 sc->sc_imask &= ~(IEVENT_TXF|IEVENT_TXB);
2311 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
2312 etsec_write(sc, IMASK, sc->sc_imask);
2313 softint_schedule(sc->sc_soft_ih);
2314 return 1;
2315 }
2316
2317 int
2318 pq3etsec_rx_intr(void *arg)
2319 {
2320 struct pq3etsec_softc * const sc = arg;
2321
2322 sc->sc_ev_rx_intr.ev_count++;
2323
2324 uint32_t ievent = etsec_read(sc, IEVENT);
2325 ievent &= IEVENT_RXF|IEVENT_RXB;
2326 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2327 if (ievent == 0)
2328 return 0;
2329
2330 #if 0
2331 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x\n", __func__, ievent);
2332 #endif
2333
2334 sc->sc_imask &= ~(IEVENT_RXF|IEVENT_RXB);
2335 atomic_or_uint(&sc->sc_soft_flags, SOFT_RXINTR);
2336 etsec_write(sc, IMASK, sc->sc_imask);
2337 softint_schedule(sc->sc_soft_ih);
2338 return 1;
2339 }
2340
2341 int
2342 pq3etsec_error_intr(void *arg)
2343 {
2344 struct pq3etsec_softc * const sc = arg;
2345
2346 sc->sc_ev_error_intr.ev_count++;
2347
2348 for (int rv = 0, soft_flags = 0;; rv = 1) {
2349 uint32_t ievent = etsec_read(sc, IEVENT);
2350 ievent &= ~(IEVENT_RXF|IEVENT_RXB|IEVENT_TXF|IEVENT_TXB);
2351 etsec_write(sc, IEVENT, ievent); /* write 1 to clear */
2352 if (ievent == 0) {
2353 if (soft_flags) {
2354 atomic_or_uint(&sc->sc_soft_flags, soft_flags);
2355 softint_schedule(sc->sc_soft_ih);
2356 }
2357 return rv;
2358 }
2359 #if 0
2360 aprint_normal_dev(sc->sc_dev, "%s: ievent=%#x imask=%#x\n",
2361 __func__, ievent, etsec_read(sc, IMASK));
2362 #endif
2363
2364 if (ievent & (IEVENT_GRSC|IEVENT_GTSC)) {
2365 sc->sc_imask &= ~(IEVENT_GRSC|IEVENT_GTSC);
2366 etsec_write(sc, IMASK, sc->sc_imask);
2367 wakeup(sc);
2368 }
2369 if (ievent & (IEVENT_MMRD|IEVENT_MMWR)) {
2370 sc->sc_imask &= ~(IEVENT_MMRD|IEVENT_MMWR);
2371 etsec_write(sc, IMASK, sc->sc_imask);
2372 wakeup(&sc->sc_mii);
2373 }
2374 if (ievent & IEVENT_BSY) {
2375 soft_flags |= SOFT_RXBSY;
2376 sc->sc_imask &= ~IEVENT_BSY;
2377 etsec_write(sc, IMASK, sc->sc_imask);
2378 }
2379 if (ievent & IEVENT_TXE) {
2380 soft_flags |= SOFT_TXERROR;
2381 sc->sc_imask &= ~IEVENT_TXE;
2382 sc->sc_txerrors |= ievent;
2383 }
2384 if (ievent & IEVENT_TXC) {
2385 sc->sc_ev_tx_pause.ev_count++;
2386 }
2387 if (ievent & IEVENT_RXC) {
2388 sc->sc_ev_rx_pause.ev_count++;
2389 }
2390 if (ievent & IEVENT_DPE) {
2391 soft_flags |= SOFT_RESET;
2392 sc->sc_imask &= ~IEVENT_DPE;
2393 etsec_write(sc, IMASK, sc->sc_imask);
2394 }
2395 }
2396 }
2397
2398 void
2399 pq3etsec_soft_intr(void *arg)
2400 {
2401 struct pq3etsec_softc * const sc = arg;
2402 struct ifnet * const ifp = &sc->sc_if;
2403
2404 mutex_enter(sc->sc_lock);
2405
2406 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
2407
2408 sc->sc_ev_soft_intr.ev_count++;
2409
2410 if (soft_flags & SOFT_RESET) {
2411 int s = splnet();
2412 pq3etsec_ifinit(ifp);
2413 splx(s);
2414 soft_flags = 0;
2415 }
2416
2417 if (soft_flags & SOFT_RXBSY) {
2418 struct pq3etsec_rxqueue * const rxq = &sc->sc_rxq;
2419 size_t threshold = 5 * rxq->rxq_threshold / 4;
2420 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2421 threshold = rxq->rxq_last - rxq->rxq_first - 1;
2422 } else {
2423 sc->sc_imask |= IEVENT_BSY;
2424 }
2425 aprint_normal_dev(sc->sc_dev,
2426 "increasing receive buffers from %zu to %zu\n",
2427 rxq->rxq_threshold, threshold);
2428 rxq->rxq_threshold = threshold;
2429 }
2430
2431 if ((soft_flags & SOFT_TXINTR)
2432 || pq3etsec_txq_active_p(sc, &sc->sc_txq)) {
2433 /*
2434 * Let's do what we came here for. Consume transmitted
2435 * packets off the the transmit ring.
2436 */
2437 if (!pq3etsec_txq_consume(sc, &sc->sc_txq)
2438 || !pq3etsec_txq_enqueue(sc, &sc->sc_txq)) {
2439 sc->sc_ev_tx_stall.ev_count++;
2440 ifp->if_flags |= IFF_OACTIVE;
2441 } else {
2442 ifp->if_flags &= ~IFF_OACTIVE;
2443 }
2444 sc->sc_imask |= IEVENT_TXF;
2445 }
2446
2447 if (soft_flags & (SOFT_RXINTR|SOFT_RXBSY)) {
2448 /*
2449 * Let's consume
2450 */
2451 pq3etsec_rxq_consume(sc, &sc->sc_rxq);
2452 sc->sc_imask |= IEVENT_RXF;
2453 }
2454
2455 if (soft_flags & SOFT_TXERROR) {
2456 pq3etsec_tx_error(sc);
2457 sc->sc_imask |= IEVENT_TXE;
2458 }
2459
2460 if (ifp->if_flags & IFF_RUNNING) {
2461 pq3etsec_rxq_produce(sc, &sc->sc_rxq);
2462 etsec_write(sc, IMASK, sc->sc_imask);
2463 } else {
2464 KASSERT((soft_flags & SOFT_RXBSY) == 0);
2465 }
2466
2467 mutex_exit(sc->sc_lock);
2468 }
2469
2470 static void
2471 pq3etsec_mii_tick(void *arg)
2472 {
2473 struct pq3etsec_softc * const sc = arg;
2474 mutex_enter(sc->sc_lock);
2475 callout_ack(&sc->sc_mii_callout);
2476 sc->sc_ev_mii_ticks.ev_count++;
2477 #ifdef DEBUG
2478 uint64_t now = mftb();
2479 if (now - sc->sc_mii_last_tick < cpu_timebase - 5000) {
2480 aprint_debug_dev(sc->sc_dev, "%s: diff=%"PRIu64"\n",
2481 __func__, now - sc->sc_mii_last_tick);
2482 callout_stop(&sc->sc_mii_callout);
2483 }
2484 #endif
2485 mii_tick(&sc->sc_mii);
2486 int s = splnet();
2487 if (sc->sc_soft_flags & SOFT_RESET)
2488 softint_schedule(sc->sc_soft_ih);
2489 splx(s);
2490 callout_schedule(&sc->sc_mii_callout, hz);
2491 #ifdef DEBUG
2492 sc->sc_mii_last_tick = now;
2493 #endif
2494 mutex_exit(sc->sc_lock);
2495 }
2496